Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with code generation of C++ expressions
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCUDARuntime.h"
     16 #include "CGCXXABI.h"
     17 #include "CGDebugInfo.h"
     18 #include "CGObjCRuntime.h"
     19 #include "clang/Frontend/CodeGenOptions.h"
     20 #include "llvm/IR/Intrinsics.h"
     21 #include "llvm/Support/CallSite.h"
     22 
     23 using namespace clang;
     24 using namespace CodeGen;
     25 
     26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
     27                                           SourceLocation CallLoc,
     28                                           llvm::Value *Callee,
     29                                           ReturnValueSlot ReturnValue,
     30                                           llvm::Value *This,
     31                                           llvm::Value *ImplicitParam,
     32                                           QualType ImplicitParamTy,
     33                                           CallExpr::const_arg_iterator ArgBeg,
     34                                           CallExpr::const_arg_iterator ArgEnd) {
     35   assert(MD->isInstance() &&
     36          "Trying to emit a member call expr on a static method!");
     37 
     38   // C++11 [class.mfct.non-static]p2:
     39   //   If a non-static member function of a class X is called for an object that
     40   //   is not of type X, or of a type derived from X, the behavior is undefined.
     41   EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
     42                                             : TCK_MemberCall,
     43                 CallLoc, This, getContext().getRecordType(MD->getParent()));
     44 
     45   CallArgList Args;
     46 
     47   // Push the this ptr.
     48   Args.add(RValue::get(This), MD->getThisType(getContext()));
     49 
     50   // If there is an implicit parameter (e.g. VTT), emit it.
     51   if (ImplicitParam) {
     52     Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
     53   }
     54 
     55   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     56   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
     57 
     58   // And the rest of the call args.
     59   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
     60 
     61   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
     62                   Callee, ReturnValue, Args, MD);
     63 }
     64 
     65 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
     66 // quite what we want.
     67 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
     68   while (true) {
     69     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
     70       E = PE->getSubExpr();
     71       continue;
     72     }
     73 
     74     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     75       if (CE->getCastKind() == CK_NoOp) {
     76         E = CE->getSubExpr();
     77         continue;
     78       }
     79     }
     80     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
     81       if (UO->getOpcode() == UO_Extension) {
     82         E = UO->getSubExpr();
     83         continue;
     84       }
     85     }
     86     return E;
     87   }
     88 }
     89 
     90 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
     91 /// expr can be devirtualized.
     92 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
     93                                                const Expr *Base,
     94                                                const CXXMethodDecl *MD) {
     95 
     96   // When building with -fapple-kext, all calls must go through the vtable since
     97   // the kernel linker can do runtime patching of vtables.
     98   if (Context.getLangOpts().AppleKext)
     99     return false;
    100 
    101   // If the most derived class is marked final, we know that no subclass can
    102   // override this member function and so we can devirtualize it. For example:
    103   //
    104   // struct A { virtual void f(); }
    105   // struct B final : A { };
    106   //
    107   // void f(B *b) {
    108   //   b->f();
    109   // }
    110   //
    111   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
    112   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
    113     return true;
    114 
    115   // If the member function is marked 'final', we know that it can't be
    116   // overridden and can therefore devirtualize it.
    117   if (MD->hasAttr<FinalAttr>())
    118     return true;
    119 
    120   // Similarly, if the class itself is marked 'final' it can't be overridden
    121   // and we can therefore devirtualize the member function call.
    122   if (MD->getParent()->hasAttr<FinalAttr>())
    123     return true;
    124 
    125   Base = skipNoOpCastsAndParens(Base);
    126   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
    127     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    128       // This is a record decl. We know the type and can devirtualize it.
    129       return VD->getType()->isRecordType();
    130     }
    131 
    132     return false;
    133   }
    134 
    135   // We can devirtualize calls on an object accessed by a class member access
    136   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
    137   // a derived class object constructed in the same location.
    138   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
    139     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
    140       return VD->getType()->isRecordType();
    141 
    142   // We can always devirtualize calls on temporary object expressions.
    143   if (isa<CXXConstructExpr>(Base))
    144     return true;
    145 
    146   // And calls on bound temporaries.
    147   if (isa<CXXBindTemporaryExpr>(Base))
    148     return true;
    149 
    150   // Check if this is a call expr that returns a record type.
    151   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
    152     return CE->getCallReturnType()->isRecordType();
    153 
    154   // We can't devirtualize the call.
    155   return false;
    156 }
    157 
    158 static CXXRecordDecl *getCXXRecord(const Expr *E) {
    159   QualType T = E->getType();
    160   if (const PointerType *PTy = T->getAs<PointerType>())
    161     T = PTy->getPointeeType();
    162   const RecordType *Ty = T->castAs<RecordType>();
    163   return cast<CXXRecordDecl>(Ty->getDecl());
    164 }
    165 
    166 // Note: This function also emit constructor calls to support a MSVC
    167 // extensions allowing explicit constructor function call.
    168 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
    169                                               ReturnValueSlot ReturnValue) {
    170   const Expr *callee = CE->getCallee()->IgnoreParens();
    171 
    172   if (isa<BinaryOperator>(callee))
    173     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
    174 
    175   const MemberExpr *ME = cast<MemberExpr>(callee);
    176   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
    177 
    178   if (MD->isStatic()) {
    179     // The method is static, emit it as we would a regular call.
    180     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    181     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
    182                     ReturnValue, CE->arg_begin(), CE->arg_end());
    183   }
    184 
    185   // Compute the object pointer.
    186   const Expr *Base = ME->getBase();
    187   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
    188 
    189   const CXXMethodDecl *DevirtualizedMethod = NULL;
    190   if (CanUseVirtualCall &&
    191       canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
    192     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
    193     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
    194     assert(DevirtualizedMethod);
    195     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
    196     const Expr *Inner = Base->ignoreParenBaseCasts();
    197     if (getCXXRecord(Inner) == DevirtualizedClass)
    198       // If the class of the Inner expression is where the dynamic method
    199       // is defined, build the this pointer from it.
    200       Base = Inner;
    201     else if (getCXXRecord(Base) != DevirtualizedClass) {
    202       // If the method is defined in a class that is not the best dynamic
    203       // one or the one of the full expression, we would have to build
    204       // a derived-to-base cast to compute the correct this pointer, but
    205       // we don't have support for that yet, so do a virtual call.
    206       DevirtualizedMethod = NULL;
    207     }
    208     // If the return types are not the same, this might be a case where more
    209     // code needs to run to compensate for it. For example, the derived
    210     // method might return a type that inherits form from the return
    211     // type of MD and has a prefix.
    212     // For now we just avoid devirtualizing these covariant cases.
    213     if (DevirtualizedMethod &&
    214         DevirtualizedMethod->getResultType().getCanonicalType() !=
    215         MD->getResultType().getCanonicalType())
    216       DevirtualizedMethod = NULL;
    217   }
    218 
    219   llvm::Value *This;
    220   if (ME->isArrow())
    221     This = EmitScalarExpr(Base);
    222   else
    223     This = EmitLValue(Base).getAddress();
    224 
    225 
    226   if (MD->isTrivial()) {
    227     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
    228     if (isa<CXXConstructorDecl>(MD) &&
    229         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
    230       return RValue::get(0);
    231 
    232     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
    233       // We don't like to generate the trivial copy/move assignment operator
    234       // when it isn't necessary; just produce the proper effect here.
    235       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    236       EmitAggregateAssign(This, RHS, CE->getType());
    237       return RValue::get(This);
    238     }
    239 
    240     if (isa<CXXConstructorDecl>(MD) &&
    241         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
    242       // Trivial move and copy ctor are the same.
    243       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    244       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
    245                                      CE->arg_begin(), CE->arg_end());
    246       return RValue::get(This);
    247     }
    248     llvm_unreachable("unknown trivial member function");
    249   }
    250 
    251   // Compute the function type we're calling.
    252   const CXXMethodDecl *CalleeDecl = DevirtualizedMethod ? DevirtualizedMethod : MD;
    253   const CGFunctionInfo *FInfo = 0;
    254   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
    255     FInfo = &CGM.getTypes().arrangeCXXDestructor(Dtor,
    256                                                  Dtor_Complete);
    257   else if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
    258     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor,
    259                                                              Ctor_Complete);
    260   else
    261     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
    262 
    263   llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
    264 
    265   // C++ [class.virtual]p12:
    266   //   Explicit qualification with the scope operator (5.1) suppresses the
    267   //   virtual call mechanism.
    268   //
    269   // We also don't emit a virtual call if the base expression has a record type
    270   // because then we know what the type is.
    271   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
    272   llvm::Value *Callee;
    273 
    274   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    275     assert(CE->arg_begin() == CE->arg_end() &&
    276            "Destructor shouldn't have explicit parameters");
    277     assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
    278     if (UseVirtualCall) {
    279       CGM.getCXXABI().EmitVirtualDestructorCall(*this, Dtor, Dtor_Complete,
    280                                                 CE->getExprLoc(), This);
    281     } else {
    282       if (getLangOpts().AppleKext &&
    283           MD->isVirtual() &&
    284           ME->hasQualifier())
    285         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    286       else if (!DevirtualizedMethod)
    287         Callee = CGM.GetAddrOfCXXDestructor(Dtor, Dtor_Complete, FInfo, Ty);
    288       else {
    289         const CXXDestructorDecl *DDtor =
    290           cast<CXXDestructorDecl>(DevirtualizedMethod);
    291         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
    292       }
    293       EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
    294                         /*ImplicitParam=*/0, QualType(), 0, 0);
    295     }
    296     return RValue::get(0);
    297   }
    298 
    299   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
    300     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
    301   } else if (UseVirtualCall) {
    302     Callee = BuildVirtualCall(MD, This, Ty);
    303   } else {
    304     if (getLangOpts().AppleKext &&
    305         MD->isVirtual() &&
    306         ME->hasQualifier())
    307       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    308     else if (!DevirtualizedMethod)
    309       Callee = CGM.GetAddrOfFunction(MD, Ty);
    310     else {
    311       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
    312     }
    313   }
    314 
    315   return EmitCXXMemberCall(MD, CE->getExprLoc(), Callee, ReturnValue, This,
    316                            /*ImplicitParam=*/0, QualType(),
    317                            CE->arg_begin(), CE->arg_end());
    318 }
    319 
    320 RValue
    321 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
    322                                               ReturnValueSlot ReturnValue) {
    323   const BinaryOperator *BO =
    324       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
    325   const Expr *BaseExpr = BO->getLHS();
    326   const Expr *MemFnExpr = BO->getRHS();
    327 
    328   const MemberPointerType *MPT =
    329     MemFnExpr->getType()->castAs<MemberPointerType>();
    330 
    331   const FunctionProtoType *FPT =
    332     MPT->getPointeeType()->castAs<FunctionProtoType>();
    333   const CXXRecordDecl *RD =
    334     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    335 
    336   // Get the member function pointer.
    337   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
    338 
    339   // Emit the 'this' pointer.
    340   llvm::Value *This;
    341 
    342   if (BO->getOpcode() == BO_PtrMemI)
    343     This = EmitScalarExpr(BaseExpr);
    344   else
    345     This = EmitLValue(BaseExpr).getAddress();
    346 
    347   EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
    348                 QualType(MPT->getClass(), 0));
    349 
    350   // Ask the ABI to load the callee.  Note that This is modified.
    351   llvm::Value *Callee =
    352     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
    353 
    354   CallArgList Args;
    355 
    356   QualType ThisType =
    357     getContext().getPointerType(getContext().getTagDeclType(RD));
    358 
    359   // Push the this ptr.
    360   Args.add(RValue::get(This), ThisType);
    361 
    362   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
    363 
    364   // And the rest of the call args
    365   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
    366   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
    367                   ReturnValue, Args);
    368 }
    369 
    370 RValue
    371 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
    372                                                const CXXMethodDecl *MD,
    373                                                ReturnValueSlot ReturnValue) {
    374   assert(MD->isInstance() &&
    375          "Trying to emit a member call expr on a static method!");
    376   LValue LV = EmitLValue(E->getArg(0));
    377   llvm::Value *This = LV.getAddress();
    378 
    379   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
    380       MD->isTrivial()) {
    381     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
    382     QualType Ty = E->getType();
    383     EmitAggregateAssign(This, Src, Ty);
    384     return RValue::get(This);
    385   }
    386 
    387   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
    388   return EmitCXXMemberCall(MD, E->getExprLoc(), Callee, ReturnValue, This,
    389                            /*ImplicitParam=*/0, QualType(),
    390                            E->arg_begin() + 1, E->arg_end());
    391 }
    392 
    393 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
    394                                                ReturnValueSlot ReturnValue) {
    395   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
    396 }
    397 
    398 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
    399                                             llvm::Value *DestPtr,
    400                                             const CXXRecordDecl *Base) {
    401   if (Base->isEmpty())
    402     return;
    403 
    404   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
    405 
    406   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
    407   CharUnits Size = Layout.getNonVirtualSize();
    408   CharUnits Align = Layout.getNonVirtualAlign();
    409 
    410   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
    411 
    412   // If the type contains a pointer to data member we can't memset it to zero.
    413   // Instead, create a null constant and copy it to the destination.
    414   // TODO: there are other patterns besides zero that we can usefully memset,
    415   // like -1, which happens to be the pattern used by member-pointers.
    416   // TODO: isZeroInitializable can be over-conservative in the case where a
    417   // virtual base contains a member pointer.
    418   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
    419     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
    420 
    421     llvm::GlobalVariable *NullVariable =
    422       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
    423                                /*isConstant=*/true,
    424                                llvm::GlobalVariable::PrivateLinkage,
    425                                NullConstant, Twine());
    426     NullVariable->setAlignment(Align.getQuantity());
    427     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
    428 
    429     // Get and call the appropriate llvm.memcpy overload.
    430     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
    431     return;
    432   }
    433 
    434   // Otherwise, just memset the whole thing to zero.  This is legal
    435   // because in LLVM, all default initializers (other than the ones we just
    436   // handled above) are guaranteed to have a bit pattern of all zeros.
    437   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
    438                            Align.getQuantity());
    439 }
    440 
    441 void
    442 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
    443                                       AggValueSlot Dest) {
    444   assert(!Dest.isIgnored() && "Must have a destination!");
    445   const CXXConstructorDecl *CD = E->getConstructor();
    446 
    447   // If we require zero initialization before (or instead of) calling the
    448   // constructor, as can be the case with a non-user-provided default
    449   // constructor, emit the zero initialization now, unless destination is
    450   // already zeroed.
    451   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    452     switch (E->getConstructionKind()) {
    453     case CXXConstructExpr::CK_Delegating:
    454     case CXXConstructExpr::CK_Complete:
    455       EmitNullInitialization(Dest.getAddr(), E->getType());
    456       break;
    457     case CXXConstructExpr::CK_VirtualBase:
    458     case CXXConstructExpr::CK_NonVirtualBase:
    459       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
    460       break;
    461     }
    462   }
    463 
    464   // If this is a call to a trivial default constructor, do nothing.
    465   if (CD->isTrivial() && CD->isDefaultConstructor())
    466     return;
    467 
    468   // Elide the constructor if we're constructing from a temporary.
    469   // The temporary check is required because Sema sets this on NRVO
    470   // returns.
    471   if (getLangOpts().ElideConstructors && E->isElidable()) {
    472     assert(getContext().hasSameUnqualifiedType(E->getType(),
    473                                                E->getArg(0)->getType()));
    474     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
    475       EmitAggExpr(E->getArg(0), Dest);
    476       return;
    477     }
    478   }
    479 
    480   if (const ConstantArrayType *arrayType
    481         = getContext().getAsConstantArrayType(E->getType())) {
    482     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
    483                                E->arg_begin(), E->arg_end());
    484   } else {
    485     CXXCtorType Type = Ctor_Complete;
    486     bool ForVirtualBase = false;
    487     bool Delegating = false;
    488 
    489     switch (E->getConstructionKind()) {
    490      case CXXConstructExpr::CK_Delegating:
    491       // We should be emitting a constructor; GlobalDecl will assert this
    492       Type = CurGD.getCtorType();
    493       Delegating = true;
    494       break;
    495 
    496      case CXXConstructExpr::CK_Complete:
    497       Type = Ctor_Complete;
    498       break;
    499 
    500      case CXXConstructExpr::CK_VirtualBase:
    501       ForVirtualBase = true;
    502       // fall-through
    503 
    504      case CXXConstructExpr::CK_NonVirtualBase:
    505       Type = Ctor_Base;
    506     }
    507 
    508     // Call the constructor.
    509     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
    510                            E->arg_begin(), E->arg_end());
    511   }
    512 }
    513 
    514 void
    515 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
    516                                             llvm::Value *Src,
    517                                             const Expr *Exp) {
    518   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    519     Exp = E->getSubExpr();
    520   assert(isa<CXXConstructExpr>(Exp) &&
    521          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
    522   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
    523   const CXXConstructorDecl *CD = E->getConstructor();
    524   RunCleanupsScope Scope(*this);
    525 
    526   // If we require zero initialization before (or instead of) calling the
    527   // constructor, as can be the case with a non-user-provided default
    528   // constructor, emit the zero initialization now.
    529   // FIXME. Do I still need this for a copy ctor synthesis?
    530   if (E->requiresZeroInitialization())
    531     EmitNullInitialization(Dest, E->getType());
    532 
    533   assert(!getContext().getAsConstantArrayType(E->getType())
    534          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
    535   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
    536                                  E->arg_begin(), E->arg_end());
    537 }
    538 
    539 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
    540                                         const CXXNewExpr *E) {
    541   if (!E->isArray())
    542     return CharUnits::Zero();
    543 
    544   // No cookie is required if the operator new[] being used is the
    545   // reserved placement operator new[].
    546   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    547     return CharUnits::Zero();
    548 
    549   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
    550 }
    551 
    552 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
    553                                         const CXXNewExpr *e,
    554                                         unsigned minElements,
    555                                         llvm::Value *&numElements,
    556                                         llvm::Value *&sizeWithoutCookie) {
    557   QualType type = e->getAllocatedType();
    558 
    559   if (!e->isArray()) {
    560     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    561     sizeWithoutCookie
    562       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    563     return sizeWithoutCookie;
    564   }
    565 
    566   // The width of size_t.
    567   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
    568 
    569   // Figure out the cookie size.
    570   llvm::APInt cookieSize(sizeWidth,
    571                          CalculateCookiePadding(CGF, e).getQuantity());
    572 
    573   // Emit the array size expression.
    574   // We multiply the size of all dimensions for NumElements.
    575   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
    576   numElements = CGF.EmitScalarExpr(e->getArraySize());
    577   assert(isa<llvm::IntegerType>(numElements->getType()));
    578 
    579   // The number of elements can be have an arbitrary integer type;
    580   // essentially, we need to multiply it by a constant factor, add a
    581   // cookie size, and verify that the result is representable as a
    582   // size_t.  That's just a gloss, though, and it's wrong in one
    583   // important way: if the count is negative, it's an error even if
    584   // the cookie size would bring the total size >= 0.
    585   bool isSigned
    586     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
    587   llvm::IntegerType *numElementsType
    588     = cast<llvm::IntegerType>(numElements->getType());
    589   unsigned numElementsWidth = numElementsType->getBitWidth();
    590 
    591   // Compute the constant factor.
    592   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
    593   while (const ConstantArrayType *CAT
    594              = CGF.getContext().getAsConstantArrayType(type)) {
    595     type = CAT->getElementType();
    596     arraySizeMultiplier *= CAT->getSize();
    597   }
    598 
    599   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    600   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
    601   typeSizeMultiplier *= arraySizeMultiplier;
    602 
    603   // This will be a size_t.
    604   llvm::Value *size;
    605 
    606   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
    607   // Don't bloat the -O0 code.
    608   if (llvm::ConstantInt *numElementsC =
    609         dyn_cast<llvm::ConstantInt>(numElements)) {
    610     const llvm::APInt &count = numElementsC->getValue();
    611 
    612     bool hasAnyOverflow = false;
    613 
    614     // If 'count' was a negative number, it's an overflow.
    615     if (isSigned && count.isNegative())
    616       hasAnyOverflow = true;
    617 
    618     // We want to do all this arithmetic in size_t.  If numElements is
    619     // wider than that, check whether it's already too big, and if so,
    620     // overflow.
    621     else if (numElementsWidth > sizeWidth &&
    622              numElementsWidth - sizeWidth > count.countLeadingZeros())
    623       hasAnyOverflow = true;
    624 
    625     // Okay, compute a count at the right width.
    626     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
    627 
    628     // If there is a brace-initializer, we cannot allocate fewer elements than
    629     // there are initializers. If we do, that's treated like an overflow.
    630     if (adjustedCount.ult(minElements))
    631       hasAnyOverflow = true;
    632 
    633     // Scale numElements by that.  This might overflow, but we don't
    634     // care because it only overflows if allocationSize does, too, and
    635     // if that overflows then we shouldn't use this.
    636     numElements = llvm::ConstantInt::get(CGF.SizeTy,
    637                                          adjustedCount * arraySizeMultiplier);
    638 
    639     // Compute the size before cookie, and track whether it overflowed.
    640     bool overflow;
    641     llvm::APInt allocationSize
    642       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    643     hasAnyOverflow |= overflow;
    644 
    645     // Add in the cookie, and check whether it's overflowed.
    646     if (cookieSize != 0) {
    647       // Save the current size without a cookie.  This shouldn't be
    648       // used if there was overflow.
    649       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    650 
    651       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
    652       hasAnyOverflow |= overflow;
    653     }
    654 
    655     // On overflow, produce a -1 so operator new will fail.
    656     if (hasAnyOverflow) {
    657       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    658     } else {
    659       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    660     }
    661 
    662   // Otherwise, we might need to use the overflow intrinsics.
    663   } else {
    664     // There are up to five conditions we need to test for:
    665     // 1) if isSigned, we need to check whether numElements is negative;
    666     // 2) if numElementsWidth > sizeWidth, we need to check whether
    667     //   numElements is larger than something representable in size_t;
    668     // 3) if minElements > 0, we need to check whether numElements is smaller
    669     //    than that.
    670     // 4) we need to compute
    671     //      sizeWithoutCookie := numElements * typeSizeMultiplier
    672     //    and check whether it overflows; and
    673     // 5) if we need a cookie, we need to compute
    674     //      size := sizeWithoutCookie + cookieSize
    675     //    and check whether it overflows.
    676 
    677     llvm::Value *hasOverflow = 0;
    678 
    679     // If numElementsWidth > sizeWidth, then one way or another, we're
    680     // going to have to do a comparison for (2), and this happens to
    681     // take care of (1), too.
    682     if (numElementsWidth > sizeWidth) {
    683       llvm::APInt threshold(numElementsWidth, 1);
    684       threshold <<= sizeWidth;
    685 
    686       llvm::Value *thresholdV
    687         = llvm::ConstantInt::get(numElementsType, threshold);
    688 
    689       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
    690       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
    691 
    692     // Otherwise, if we're signed, we want to sext up to size_t.
    693     } else if (isSigned) {
    694       if (numElementsWidth < sizeWidth)
    695         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
    696 
    697       // If there's a non-1 type size multiplier, then we can do the
    698       // signedness check at the same time as we do the multiply
    699       // because a negative number times anything will cause an
    700       // unsigned overflow.  Otherwise, we have to do it here. But at least
    701       // in this case, we can subsume the >= minElements check.
    702       if (typeSizeMultiplier == 1)
    703         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
    704                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    705 
    706     // Otherwise, zext up to size_t if necessary.
    707     } else if (numElementsWidth < sizeWidth) {
    708       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    709     }
    710 
    711     assert(numElements->getType() == CGF.SizeTy);
    712 
    713     if (minElements) {
    714       // Don't allow allocation of fewer elements than we have initializers.
    715       if (!hasOverflow) {
    716         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
    717                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    718       } else if (numElementsWidth > sizeWidth) {
    719         // The other existing overflow subsumes this check.
    720         // We do an unsigned comparison, since any signed value < -1 is
    721         // taken care of either above or below.
    722         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
    723                           CGF.Builder.CreateICmpULT(numElements,
    724                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
    725       }
    726     }
    727 
    728     size = numElements;
    729 
    730     // Multiply by the type size if necessary.  This multiplier
    731     // includes all the factors for nested arrays.
    732     //
    733     // This step also causes numElements to be scaled up by the
    734     // nested-array factor if necessary.  Overflow on this computation
    735     // can be ignored because the result shouldn't be used if
    736     // allocation fails.
    737     if (typeSizeMultiplier != 1) {
    738       llvm::Value *umul_with_overflow
    739         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
    740 
    741       llvm::Value *tsmV =
    742         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
    743       llvm::Value *result =
    744         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
    745 
    746       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    747       if (hasOverflow)
    748         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    749       else
    750         hasOverflow = overflowed;
    751 
    752       size = CGF.Builder.CreateExtractValue(result, 0);
    753 
    754       // Also scale up numElements by the array size multiplier.
    755       if (arraySizeMultiplier != 1) {
    756         // If the base element type size is 1, then we can re-use the
    757         // multiply we just did.
    758         if (typeSize.isOne()) {
    759           assert(arraySizeMultiplier == typeSizeMultiplier);
    760           numElements = size;
    761 
    762         // Otherwise we need a separate multiply.
    763         } else {
    764           llvm::Value *asmV =
    765             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
    766           numElements = CGF.Builder.CreateMul(numElements, asmV);
    767         }
    768       }
    769     } else {
    770       // numElements doesn't need to be scaled.
    771       assert(arraySizeMultiplier == 1);
    772     }
    773 
    774     // Add in the cookie size if necessary.
    775     if (cookieSize != 0) {
    776       sizeWithoutCookie = size;
    777 
    778       llvm::Value *uadd_with_overflow
    779         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
    780 
    781       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
    782       llvm::Value *result =
    783         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
    784 
    785       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    786       if (hasOverflow)
    787         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    788       else
    789         hasOverflow = overflowed;
    790 
    791       size = CGF.Builder.CreateExtractValue(result, 0);
    792     }
    793 
    794     // If we had any possibility of dynamic overflow, make a select to
    795     // overwrite 'size' with an all-ones value, which should cause
    796     // operator new to throw.
    797     if (hasOverflow)
    798       size = CGF.Builder.CreateSelect(hasOverflow,
    799                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
    800                                       size);
    801   }
    802 
    803   if (cookieSize == 0)
    804     sizeWithoutCookie = size;
    805   else
    806     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
    807 
    808   return size;
    809 }
    810 
    811 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
    812                                     QualType AllocType, llvm::Value *NewPtr) {
    813 
    814   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
    815   switch (CGF.getEvaluationKind(AllocType)) {
    816   case TEK_Scalar:
    817     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
    818                                                    Alignment),
    819                        false);
    820     return;
    821   case TEK_Complex:
    822     CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
    823                                                            Alignment),
    824                                   /*isInit*/ true);
    825     return;
    826   case TEK_Aggregate: {
    827     AggValueSlot Slot
    828       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
    829                               AggValueSlot::IsDestructed,
    830                               AggValueSlot::DoesNotNeedGCBarriers,
    831                               AggValueSlot::IsNotAliased);
    832     CGF.EmitAggExpr(Init, Slot);
    833     return;
    834   }
    835   }
    836   llvm_unreachable("bad evaluation kind");
    837 }
    838 
    839 void
    840 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
    841                                          QualType elementType,
    842                                          llvm::Value *beginPtr,
    843                                          llvm::Value *numElements) {
    844   if (!E->hasInitializer())
    845     return; // We have a POD type.
    846 
    847   llvm::Value *explicitPtr = beginPtr;
    848   // Find the end of the array, hoisted out of the loop.
    849   llvm::Value *endPtr =
    850     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
    851 
    852   unsigned initializerElements = 0;
    853 
    854   const Expr *Init = E->getInitializer();
    855   llvm::AllocaInst *endOfInit = 0;
    856   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    857   EHScopeStack::stable_iterator cleanup;
    858   llvm::Instruction *cleanupDominator = 0;
    859   // If the initializer is an initializer list, first do the explicit elements.
    860   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    861     initializerElements = ILE->getNumInits();
    862 
    863     // Enter a partial-destruction cleanup if necessary.
    864     if (needsEHCleanup(dtorKind)) {
    865       // In principle we could tell the cleanup where we are more
    866       // directly, but the control flow can get so varied here that it
    867       // would actually be quite complex.  Therefore we go through an
    868       // alloca.
    869       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
    870       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
    871       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
    872                                        getDestroyer(dtorKind));
    873       cleanup = EHStack.stable_begin();
    874     }
    875 
    876     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
    877       // Tell the cleanup that it needs to destroy up to this
    878       // element.  TODO: some of these stores can be trivially
    879       // observed to be unnecessary.
    880       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
    881       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
    882       explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
    883     }
    884 
    885     // The remaining elements are filled with the array filler expression.
    886     Init = ILE->getArrayFiller();
    887   }
    888 
    889   // Create the continuation block.
    890   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
    891 
    892   // If the number of elements isn't constant, we have to now check if there is
    893   // anything left to initialize.
    894   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
    895     // If all elements have already been initialized, skip the whole loop.
    896     if (constNum->getZExtValue() <= initializerElements) {
    897       // If there was a cleanup, deactivate it.
    898       if (cleanupDominator)
    899         DeactivateCleanupBlock(cleanup, cleanupDominator);
    900       return;
    901     }
    902   } else {
    903     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
    904     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
    905                                                 "array.isempty");
    906     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
    907     EmitBlock(nonEmptyBB);
    908   }
    909 
    910   // Enter the loop.
    911   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    912   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
    913 
    914   EmitBlock(loopBB);
    915 
    916   // Set up the current-element phi.
    917   llvm::PHINode *curPtr =
    918     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
    919   curPtr->addIncoming(explicitPtr, entryBB);
    920 
    921   // Store the new cleanup position for irregular cleanups.
    922   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
    923 
    924   // Enter a partial-destruction cleanup if necessary.
    925   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
    926     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
    927                                    getDestroyer(dtorKind));
    928     cleanup = EHStack.stable_begin();
    929     cleanupDominator = Builder.CreateUnreachable();
    930   }
    931 
    932   // Emit the initializer into this element.
    933   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
    934 
    935   // Leave the cleanup if we entered one.
    936   if (cleanupDominator) {
    937     DeactivateCleanupBlock(cleanup, cleanupDominator);
    938     cleanupDominator->eraseFromParent();
    939   }
    940 
    941   // Advance to the next element.
    942   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
    943 
    944   // Check whether we've gotten to the end of the array and, if so,
    945   // exit the loop.
    946   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
    947   Builder.CreateCondBr(isEnd, contBB, loopBB);
    948   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
    949 
    950   EmitBlock(contBB);
    951 }
    952 
    953 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
    954                            llvm::Value *NewPtr, llvm::Value *Size) {
    955   CGF.EmitCastToVoidPtr(NewPtr);
    956   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
    957   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
    958                            Alignment.getQuantity(), false);
    959 }
    960 
    961 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
    962                                QualType ElementType,
    963                                llvm::Value *NewPtr,
    964                                llvm::Value *NumElements,
    965                                llvm::Value *AllocSizeWithoutCookie) {
    966   const Expr *Init = E->getInitializer();
    967   if (E->isArray()) {
    968     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
    969       CXXConstructorDecl *Ctor = CCE->getConstructor();
    970       if (Ctor->isTrivial()) {
    971         // If new expression did not specify value-initialization, then there
    972         // is no initialization.
    973         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
    974           return;
    975 
    976         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
    977           // Optimization: since zero initialization will just set the memory
    978           // to all zeroes, generate a single memset to do it in one shot.
    979           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
    980           return;
    981         }
    982       }
    983 
    984       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
    985                                      CCE->arg_begin(),  CCE->arg_end(),
    986                                      CCE->requiresZeroInitialization());
    987       return;
    988     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
    989                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
    990       // Optimization: since zero initialization will just set the memory
    991       // to all zeroes, generate a single memset to do it in one shot.
    992       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
    993       return;
    994     }
    995     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
    996     return;
    997   }
    998 
    999   if (!Init)
   1000     return;
   1001 
   1002   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
   1003 }
   1004 
   1005 /// Emit a call to an operator new or operator delete function, as implicitly
   1006 /// created by new-expressions and delete-expressions.
   1007 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
   1008                                 const FunctionDecl *Callee,
   1009                                 const FunctionProtoType *CalleeType,
   1010                                 const CallArgList &Args) {
   1011   llvm::Instruction *CallOrInvoke;
   1012   llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
   1013   RValue RV =
   1014       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(Args, CalleeType),
   1015                    CalleeAddr, ReturnValueSlot(), Args,
   1016                    Callee, &CallOrInvoke);
   1017 
   1018   /// C++1y [expr.new]p10:
   1019   ///   [In a new-expression,] an implementation is allowed to omit a call
   1020   ///   to a replaceable global allocation function.
   1021   ///
   1022   /// We model such elidable calls with the 'builtin' attribute.
   1023   llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
   1024   if (Callee->isReplaceableGlobalAllocationFunction() &&
   1025       Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
   1026     // FIXME: Add addAttribute to CallSite.
   1027     if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
   1028       CI->addAttribute(llvm::AttributeSet::FunctionIndex,
   1029                        llvm::Attribute::Builtin);
   1030     else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
   1031       II->addAttribute(llvm::AttributeSet::FunctionIndex,
   1032                        llvm::Attribute::Builtin);
   1033     else
   1034       llvm_unreachable("unexpected kind of call instruction");
   1035   }
   1036 
   1037   return RV;
   1038 }
   1039 
   1040 namespace {
   1041   /// A cleanup to call the given 'operator delete' function upon
   1042   /// abnormal exit from a new expression.
   1043   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
   1044     size_t NumPlacementArgs;
   1045     const FunctionDecl *OperatorDelete;
   1046     llvm::Value *Ptr;
   1047     llvm::Value *AllocSize;
   1048 
   1049     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
   1050 
   1051   public:
   1052     static size_t getExtraSize(size_t NumPlacementArgs) {
   1053       return NumPlacementArgs * sizeof(RValue);
   1054     }
   1055 
   1056     CallDeleteDuringNew(size_t NumPlacementArgs,
   1057                         const FunctionDecl *OperatorDelete,
   1058                         llvm::Value *Ptr,
   1059                         llvm::Value *AllocSize)
   1060       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1061         Ptr(Ptr), AllocSize(AllocSize) {}
   1062 
   1063     void setPlacementArg(unsigned I, RValue Arg) {
   1064       assert(I < NumPlacementArgs && "index out of range");
   1065       getPlacementArgs()[I] = Arg;
   1066     }
   1067 
   1068     void Emit(CodeGenFunction &CGF, Flags flags) {
   1069       const FunctionProtoType *FPT
   1070         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1071       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
   1072              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
   1073 
   1074       CallArgList DeleteArgs;
   1075 
   1076       // The first argument is always a void*.
   1077       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
   1078       DeleteArgs.add(RValue::get(Ptr), *AI++);
   1079 
   1080       // A member 'operator delete' can take an extra 'size_t' argument.
   1081       if (FPT->getNumArgs() == NumPlacementArgs + 2)
   1082         DeleteArgs.add(RValue::get(AllocSize), *AI++);
   1083 
   1084       // Pass the rest of the arguments, which must match exactly.
   1085       for (unsigned I = 0; I != NumPlacementArgs; ++I)
   1086         DeleteArgs.add(getPlacementArgs()[I], *AI++);
   1087 
   1088       // Call 'operator delete'.
   1089       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1090     }
   1091   };
   1092 
   1093   /// A cleanup to call the given 'operator delete' function upon
   1094   /// abnormal exit from a new expression when the new expression is
   1095   /// conditional.
   1096   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
   1097     size_t NumPlacementArgs;
   1098     const FunctionDecl *OperatorDelete;
   1099     DominatingValue<RValue>::saved_type Ptr;
   1100     DominatingValue<RValue>::saved_type AllocSize;
   1101 
   1102     DominatingValue<RValue>::saved_type *getPlacementArgs() {
   1103       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
   1104     }
   1105 
   1106   public:
   1107     static size_t getExtraSize(size_t NumPlacementArgs) {
   1108       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
   1109     }
   1110 
   1111     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
   1112                                    const FunctionDecl *OperatorDelete,
   1113                                    DominatingValue<RValue>::saved_type Ptr,
   1114                               DominatingValue<RValue>::saved_type AllocSize)
   1115       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1116         Ptr(Ptr), AllocSize(AllocSize) {}
   1117 
   1118     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
   1119       assert(I < NumPlacementArgs && "index out of range");
   1120       getPlacementArgs()[I] = Arg;
   1121     }
   1122 
   1123     void Emit(CodeGenFunction &CGF, Flags flags) {
   1124       const FunctionProtoType *FPT
   1125         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1126       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
   1127              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
   1128 
   1129       CallArgList DeleteArgs;
   1130 
   1131       // The first argument is always a void*.
   1132       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
   1133       DeleteArgs.add(Ptr.restore(CGF), *AI++);
   1134 
   1135       // A member 'operator delete' can take an extra 'size_t' argument.
   1136       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
   1137         RValue RV = AllocSize.restore(CGF);
   1138         DeleteArgs.add(RV, *AI++);
   1139       }
   1140 
   1141       // Pass the rest of the arguments, which must match exactly.
   1142       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
   1143         RValue RV = getPlacementArgs()[I].restore(CGF);
   1144         DeleteArgs.add(RV, *AI++);
   1145       }
   1146 
   1147       // Call 'operator delete'.
   1148       EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
   1149     }
   1150   };
   1151 }
   1152 
   1153 /// Enter a cleanup to call 'operator delete' if the initializer in a
   1154 /// new-expression throws.
   1155 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
   1156                                   const CXXNewExpr *E,
   1157                                   llvm::Value *NewPtr,
   1158                                   llvm::Value *AllocSize,
   1159                                   const CallArgList &NewArgs) {
   1160   // If we're not inside a conditional branch, then the cleanup will
   1161   // dominate and we can do the easier (and more efficient) thing.
   1162   if (!CGF.isInConditionalBranch()) {
   1163     CallDeleteDuringNew *Cleanup = CGF.EHStack
   1164       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
   1165                                                  E->getNumPlacementArgs(),
   1166                                                  E->getOperatorDelete(),
   1167                                                  NewPtr, AllocSize);
   1168     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1169       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
   1170 
   1171     return;
   1172   }
   1173 
   1174   // Otherwise, we need to save all this stuff.
   1175   DominatingValue<RValue>::saved_type SavedNewPtr =
   1176     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
   1177   DominatingValue<RValue>::saved_type SavedAllocSize =
   1178     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
   1179 
   1180   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
   1181     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
   1182                                                  E->getNumPlacementArgs(),
   1183                                                  E->getOperatorDelete(),
   1184                                                  SavedNewPtr,
   1185                                                  SavedAllocSize);
   1186   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1187     Cleanup->setPlacementArg(I,
   1188                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
   1189 
   1190   CGF.initFullExprCleanup();
   1191 }
   1192 
   1193 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
   1194   // The element type being allocated.
   1195   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
   1196 
   1197   // 1. Build a call to the allocation function.
   1198   FunctionDecl *allocator = E->getOperatorNew();
   1199   const FunctionProtoType *allocatorType =
   1200     allocator->getType()->castAs<FunctionProtoType>();
   1201 
   1202   CallArgList allocatorArgs;
   1203 
   1204   // The allocation size is the first argument.
   1205   QualType sizeType = getContext().getSizeType();
   1206 
   1207   // If there is a brace-initializer, cannot allocate fewer elements than inits.
   1208   unsigned minElements = 0;
   1209   if (E->isArray() && E->hasInitializer()) {
   1210     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
   1211       minElements = ILE->getNumInits();
   1212   }
   1213 
   1214   llvm::Value *numElements = 0;
   1215   llvm::Value *allocSizeWithoutCookie = 0;
   1216   llvm::Value *allocSize =
   1217     EmitCXXNewAllocSize(*this, E, minElements, numElements,
   1218                         allocSizeWithoutCookie);
   1219 
   1220   allocatorArgs.add(RValue::get(allocSize), sizeType);
   1221 
   1222   // Emit the rest of the arguments.
   1223   // FIXME: Ideally, this should just use EmitCallArgs.
   1224   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
   1225 
   1226   // First, use the types from the function type.
   1227   // We start at 1 here because the first argument (the allocation size)
   1228   // has already been emitted.
   1229   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
   1230        ++i, ++placementArg) {
   1231     QualType argType = allocatorType->getArgType(i);
   1232 
   1233     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
   1234                                                placementArg->getType()) &&
   1235            "type mismatch in call argument!");
   1236 
   1237     EmitCallArg(allocatorArgs, *placementArg, argType);
   1238   }
   1239 
   1240   // Either we've emitted all the call args, or we have a call to a
   1241   // variadic function.
   1242   assert((placementArg == E->placement_arg_end() ||
   1243           allocatorType->isVariadic()) &&
   1244          "Extra arguments to non-variadic function!");
   1245 
   1246   // If we still have any arguments, emit them using the type of the argument.
   1247   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
   1248        placementArg != placementArgsEnd; ++placementArg) {
   1249     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
   1250   }
   1251 
   1252   // Emit the allocation call.  If the allocator is a global placement
   1253   // operator, just "inline" it directly.
   1254   RValue RV;
   1255   if (allocator->isReservedGlobalPlacementOperator()) {
   1256     assert(allocatorArgs.size() == 2);
   1257     RV = allocatorArgs[1].RV;
   1258     // TODO: kill any unnecessary computations done for the size
   1259     // argument.
   1260   } else {
   1261     RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
   1262   }
   1263 
   1264   // Emit a null check on the allocation result if the allocation
   1265   // function is allowed to return null (because it has a non-throwing
   1266   // exception spec; for this part, we inline
   1267   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
   1268   // interesting initializer.
   1269   bool nullCheck = allocatorType->isNothrow(getContext()) &&
   1270     (!allocType.isPODType(getContext()) || E->hasInitializer());
   1271 
   1272   llvm::BasicBlock *nullCheckBB = 0;
   1273   llvm::BasicBlock *contBB = 0;
   1274 
   1275   llvm::Value *allocation = RV.getScalarVal();
   1276   unsigned AS = allocation->getType()->getPointerAddressSpace();
   1277 
   1278   // The null-check means that the initializer is conditionally
   1279   // evaluated.
   1280   ConditionalEvaluation conditional(*this);
   1281 
   1282   if (nullCheck) {
   1283     conditional.begin(*this);
   1284 
   1285     nullCheckBB = Builder.GetInsertBlock();
   1286     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
   1287     contBB = createBasicBlock("new.cont");
   1288 
   1289     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
   1290     Builder.CreateCondBr(isNull, contBB, notNullBB);
   1291     EmitBlock(notNullBB);
   1292   }
   1293 
   1294   // If there's an operator delete, enter a cleanup to call it if an
   1295   // exception is thrown.
   1296   EHScopeStack::stable_iterator operatorDeleteCleanup;
   1297   llvm::Instruction *cleanupDominator = 0;
   1298   if (E->getOperatorDelete() &&
   1299       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1300     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
   1301     operatorDeleteCleanup = EHStack.stable_begin();
   1302     cleanupDominator = Builder.CreateUnreachable();
   1303   }
   1304 
   1305   assert((allocSize == allocSizeWithoutCookie) ==
   1306          CalculateCookiePadding(*this, E).isZero());
   1307   if (allocSize != allocSizeWithoutCookie) {
   1308     assert(E->isArray());
   1309     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
   1310                                                        numElements,
   1311                                                        E, allocType);
   1312   }
   1313 
   1314   llvm::Type *elementPtrTy
   1315     = ConvertTypeForMem(allocType)->getPointerTo(AS);
   1316   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
   1317 
   1318   EmitNewInitializer(*this, E, allocType, result, numElements,
   1319                      allocSizeWithoutCookie);
   1320   if (E->isArray()) {
   1321     // NewPtr is a pointer to the base element type.  If we're
   1322     // allocating an array of arrays, we'll need to cast back to the
   1323     // array pointer type.
   1324     llvm::Type *resultType = ConvertTypeForMem(E->getType());
   1325     if (result->getType() != resultType)
   1326       result = Builder.CreateBitCast(result, resultType);
   1327   }
   1328 
   1329   // Deactivate the 'operator delete' cleanup if we finished
   1330   // initialization.
   1331   if (operatorDeleteCleanup.isValid()) {
   1332     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
   1333     cleanupDominator->eraseFromParent();
   1334   }
   1335 
   1336   if (nullCheck) {
   1337     conditional.end(*this);
   1338 
   1339     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
   1340     EmitBlock(contBB);
   1341 
   1342     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
   1343     PHI->addIncoming(result, notNullBB);
   1344     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
   1345                      nullCheckBB);
   1346 
   1347     result = PHI;
   1348   }
   1349 
   1350   return result;
   1351 }
   1352 
   1353 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
   1354                                      llvm::Value *Ptr,
   1355                                      QualType DeleteTy) {
   1356   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
   1357 
   1358   const FunctionProtoType *DeleteFTy =
   1359     DeleteFD->getType()->getAs<FunctionProtoType>();
   1360 
   1361   CallArgList DeleteArgs;
   1362 
   1363   // Check if we need to pass the size to the delete operator.
   1364   llvm::Value *Size = 0;
   1365   QualType SizeTy;
   1366   if (DeleteFTy->getNumArgs() == 2) {
   1367     SizeTy = DeleteFTy->getArgType(1);
   1368     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
   1369     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
   1370                                   DeleteTypeSize.getQuantity());
   1371   }
   1372 
   1373   QualType ArgTy = DeleteFTy->getArgType(0);
   1374   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
   1375   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
   1376 
   1377   if (Size)
   1378     DeleteArgs.add(RValue::get(Size), SizeTy);
   1379 
   1380   // Emit the call to delete.
   1381   EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
   1382 }
   1383 
   1384 namespace {
   1385   /// Calls the given 'operator delete' on a single object.
   1386   struct CallObjectDelete : EHScopeStack::Cleanup {
   1387     llvm::Value *Ptr;
   1388     const FunctionDecl *OperatorDelete;
   1389     QualType ElementType;
   1390 
   1391     CallObjectDelete(llvm::Value *Ptr,
   1392                      const FunctionDecl *OperatorDelete,
   1393                      QualType ElementType)
   1394       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
   1395 
   1396     void Emit(CodeGenFunction &CGF, Flags flags) {
   1397       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
   1398     }
   1399   };
   1400 }
   1401 
   1402 /// Emit the code for deleting a single object.
   1403 static void EmitObjectDelete(CodeGenFunction &CGF,
   1404                              const FunctionDecl *OperatorDelete,
   1405                              llvm::Value *Ptr,
   1406                              QualType ElementType,
   1407                              bool UseGlobalDelete) {
   1408   // Find the destructor for the type, if applicable.  If the
   1409   // destructor is virtual, we'll just emit the vcall and return.
   1410   const CXXDestructorDecl *Dtor = 0;
   1411   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
   1412     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1413     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
   1414       Dtor = RD->getDestructor();
   1415 
   1416       if (Dtor->isVirtual()) {
   1417         if (UseGlobalDelete) {
   1418           // If we're supposed to call the global delete, make sure we do so
   1419           // even if the destructor throws.
   1420 
   1421           // Derive the complete-object pointer, which is what we need
   1422           // to pass to the deallocation function.
   1423           llvm::Value *completePtr =
   1424             CGF.CGM.getCXXABI().adjustToCompleteObject(CGF, Ptr, ElementType);
   1425 
   1426           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1427                                                     completePtr, OperatorDelete,
   1428                                                     ElementType);
   1429         }
   1430 
   1431         // FIXME: Provide a source location here.
   1432         CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
   1433         CGF.CGM.getCXXABI().EmitVirtualDestructorCall(CGF, Dtor, DtorType,
   1434                                                       SourceLocation(), Ptr);
   1435 
   1436         if (UseGlobalDelete) {
   1437           CGF.PopCleanupBlock();
   1438         }
   1439 
   1440         return;
   1441       }
   1442     }
   1443   }
   1444 
   1445   // Make sure that we call delete even if the dtor throws.
   1446   // This doesn't have to a conditional cleanup because we're going
   1447   // to pop it off in a second.
   1448   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1449                                             Ptr, OperatorDelete, ElementType);
   1450 
   1451   if (Dtor)
   1452     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1453                               /*ForVirtualBase=*/false,
   1454                               /*Delegating=*/false,
   1455                               Ptr);
   1456   else if (CGF.getLangOpts().ObjCAutoRefCount &&
   1457            ElementType->isObjCLifetimeType()) {
   1458     switch (ElementType.getObjCLifetime()) {
   1459     case Qualifiers::OCL_None:
   1460     case Qualifiers::OCL_ExplicitNone:
   1461     case Qualifiers::OCL_Autoreleasing:
   1462       break;
   1463 
   1464     case Qualifiers::OCL_Strong: {
   1465       // Load the pointer value.
   1466       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
   1467                                              ElementType.isVolatileQualified());
   1468 
   1469       CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
   1470       break;
   1471     }
   1472 
   1473     case Qualifiers::OCL_Weak:
   1474       CGF.EmitARCDestroyWeak(Ptr);
   1475       break;
   1476     }
   1477   }
   1478 
   1479   CGF.PopCleanupBlock();
   1480 }
   1481 
   1482 namespace {
   1483   /// Calls the given 'operator delete' on an array of objects.
   1484   struct CallArrayDelete : EHScopeStack::Cleanup {
   1485     llvm::Value *Ptr;
   1486     const FunctionDecl *OperatorDelete;
   1487     llvm::Value *NumElements;
   1488     QualType ElementType;
   1489     CharUnits CookieSize;
   1490 
   1491     CallArrayDelete(llvm::Value *Ptr,
   1492                     const FunctionDecl *OperatorDelete,
   1493                     llvm::Value *NumElements,
   1494                     QualType ElementType,
   1495                     CharUnits CookieSize)
   1496       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
   1497         ElementType(ElementType), CookieSize(CookieSize) {}
   1498 
   1499     void Emit(CodeGenFunction &CGF, Flags flags) {
   1500       const FunctionProtoType *DeleteFTy =
   1501         OperatorDelete->getType()->getAs<FunctionProtoType>();
   1502       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
   1503 
   1504       CallArgList Args;
   1505 
   1506       // Pass the pointer as the first argument.
   1507       QualType VoidPtrTy = DeleteFTy->getArgType(0);
   1508       llvm::Value *DeletePtr
   1509         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
   1510       Args.add(RValue::get(DeletePtr), VoidPtrTy);
   1511 
   1512       // Pass the original requested size as the second argument.
   1513       if (DeleteFTy->getNumArgs() == 2) {
   1514         QualType size_t = DeleteFTy->getArgType(1);
   1515         llvm::IntegerType *SizeTy
   1516           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
   1517 
   1518         CharUnits ElementTypeSize =
   1519           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
   1520 
   1521         // The size of an element, multiplied by the number of elements.
   1522         llvm::Value *Size
   1523           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
   1524         Size = CGF.Builder.CreateMul(Size, NumElements);
   1525 
   1526         // Plus the size of the cookie if applicable.
   1527         if (!CookieSize.isZero()) {
   1528           llvm::Value *CookieSizeV
   1529             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
   1530           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
   1531         }
   1532 
   1533         Args.add(RValue::get(Size), size_t);
   1534       }
   1535 
   1536       // Emit the call to delete.
   1537       EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
   1538     }
   1539   };
   1540 }
   1541 
   1542 /// Emit the code for deleting an array of objects.
   1543 static void EmitArrayDelete(CodeGenFunction &CGF,
   1544                             const CXXDeleteExpr *E,
   1545                             llvm::Value *deletedPtr,
   1546                             QualType elementType) {
   1547   llvm::Value *numElements = 0;
   1548   llvm::Value *allocatedPtr = 0;
   1549   CharUnits cookieSize;
   1550   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
   1551                                       numElements, allocatedPtr, cookieSize);
   1552 
   1553   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
   1554 
   1555   // Make sure that we call delete even if one of the dtors throws.
   1556   const FunctionDecl *operatorDelete = E->getOperatorDelete();
   1557   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
   1558                                            allocatedPtr, operatorDelete,
   1559                                            numElements, elementType,
   1560                                            cookieSize);
   1561 
   1562   // Destroy the elements.
   1563   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
   1564     assert(numElements && "no element count for a type with a destructor!");
   1565 
   1566     llvm::Value *arrayEnd =
   1567       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
   1568 
   1569     // Note that it is legal to allocate a zero-length array, and we
   1570     // can never fold the check away because the length should always
   1571     // come from a cookie.
   1572     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
   1573                          CGF.getDestroyer(dtorKind),
   1574                          /*checkZeroLength*/ true,
   1575                          CGF.needsEHCleanup(dtorKind));
   1576   }
   1577 
   1578   // Pop the cleanup block.
   1579   CGF.PopCleanupBlock();
   1580 }
   1581 
   1582 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
   1583   const Expr *Arg = E->getArgument();
   1584   llvm::Value *Ptr = EmitScalarExpr(Arg);
   1585 
   1586   // Null check the pointer.
   1587   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
   1588   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
   1589 
   1590   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
   1591 
   1592   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
   1593   EmitBlock(DeleteNotNull);
   1594 
   1595   // We might be deleting a pointer to array.  If so, GEP down to the
   1596   // first non-array element.
   1597   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
   1598   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
   1599   if (DeleteTy->isConstantArrayType()) {
   1600     llvm::Value *Zero = Builder.getInt32(0);
   1601     SmallVector<llvm::Value*,8> GEP;
   1602 
   1603     GEP.push_back(Zero); // point at the outermost array
   1604 
   1605     // For each layer of array type we're pointing at:
   1606     while (const ConstantArrayType *Arr
   1607              = getContext().getAsConstantArrayType(DeleteTy)) {
   1608       // 1. Unpeel the array type.
   1609       DeleteTy = Arr->getElementType();
   1610 
   1611       // 2. GEP to the first element of the array.
   1612       GEP.push_back(Zero);
   1613     }
   1614 
   1615     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
   1616   }
   1617 
   1618   assert(ConvertTypeForMem(DeleteTy) ==
   1619          cast<llvm::PointerType>(Ptr->getType())->getElementType());
   1620 
   1621   if (E->isArrayForm()) {
   1622     EmitArrayDelete(*this, E, Ptr, DeleteTy);
   1623   } else {
   1624     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
   1625                      E->isGlobalDelete());
   1626   }
   1627 
   1628   EmitBlock(DeleteEnd);
   1629 }
   1630 
   1631 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
   1632   // void __cxa_bad_typeid();
   1633   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
   1634 
   1635   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
   1636 }
   1637 
   1638 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
   1639   llvm::Value *Fn = getBadTypeidFn(CGF);
   1640   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
   1641   CGF.Builder.CreateUnreachable();
   1642 }
   1643 
   1644 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
   1645                                          const Expr *E,
   1646                                          llvm::Type *StdTypeInfoPtrTy) {
   1647   // Get the vtable pointer.
   1648   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
   1649 
   1650   // C++ [expr.typeid]p2:
   1651   //   If the glvalue expression is obtained by applying the unary * operator to
   1652   //   a pointer and the pointer is a null pointer value, the typeid expression
   1653   //   throws the std::bad_typeid exception.
   1654   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
   1655     if (UO->getOpcode() == UO_Deref) {
   1656       llvm::BasicBlock *BadTypeidBlock =
   1657         CGF.createBasicBlock("typeid.bad_typeid");
   1658       llvm::BasicBlock *EndBlock =
   1659         CGF.createBasicBlock("typeid.end");
   1660 
   1661       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
   1662       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
   1663 
   1664       CGF.EmitBlock(BadTypeidBlock);
   1665       EmitBadTypeidCall(CGF);
   1666       CGF.EmitBlock(EndBlock);
   1667     }
   1668   }
   1669 
   1670   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
   1671                                         StdTypeInfoPtrTy->getPointerTo());
   1672 
   1673   // Load the type info.
   1674   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
   1675   return CGF.Builder.CreateLoad(Value);
   1676 }
   1677 
   1678 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
   1679   llvm::Type *StdTypeInfoPtrTy =
   1680     ConvertType(E->getType())->getPointerTo();
   1681 
   1682   if (E->isTypeOperand()) {
   1683     llvm::Constant *TypeInfo =
   1684       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
   1685     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
   1686   }
   1687 
   1688   // C++ [expr.typeid]p2:
   1689   //   When typeid is applied to a glvalue expression whose type is a
   1690   //   polymorphic class type, the result refers to a std::type_info object
   1691   //   representing the type of the most derived object (that is, the dynamic
   1692   //   type) to which the glvalue refers.
   1693   if (E->isPotentiallyEvaluated())
   1694     return EmitTypeidFromVTable(*this, E->getExprOperand(),
   1695                                 StdTypeInfoPtrTy);
   1696 
   1697   QualType OperandTy = E->getExprOperand()->getType();
   1698   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
   1699                                StdTypeInfoPtrTy);
   1700 }
   1701 
   1702 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
   1703   // void *__dynamic_cast(const void *sub,
   1704   //                      const abi::__class_type_info *src,
   1705   //                      const abi::__class_type_info *dst,
   1706   //                      std::ptrdiff_t src2dst_offset);
   1707 
   1708   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
   1709   llvm::Type *PtrDiffTy =
   1710     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1711 
   1712   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
   1713 
   1714   llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
   1715 
   1716   // Mark the function as nounwind readonly.
   1717   llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
   1718                                             llvm::Attribute::ReadOnly };
   1719   llvm::AttributeSet Attrs = llvm::AttributeSet::get(
   1720       CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
   1721 
   1722   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
   1723 }
   1724 
   1725 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
   1726   // void __cxa_bad_cast();
   1727   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
   1728   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
   1729 }
   1730 
   1731 static void EmitBadCastCall(CodeGenFunction &CGF) {
   1732   llvm::Value *Fn = getBadCastFn(CGF);
   1733   CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
   1734   CGF.Builder.CreateUnreachable();
   1735 }
   1736 
   1737 /// \brief Compute the src2dst_offset hint as described in the
   1738 /// Itanium C++ ABI [2.9.7]
   1739 static CharUnits computeOffsetHint(ASTContext &Context,
   1740                                    const CXXRecordDecl *Src,
   1741                                    const CXXRecordDecl *Dst) {
   1742   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
   1743                      /*DetectVirtual=*/false);
   1744 
   1745   // If Dst is not derived from Src we can skip the whole computation below and
   1746   // return that Src is not a public base of Dst.  Record all inheritance paths.
   1747   if (!Dst->isDerivedFrom(Src, Paths))
   1748     return CharUnits::fromQuantity(-2ULL);
   1749 
   1750   unsigned NumPublicPaths = 0;
   1751   CharUnits Offset;
   1752 
   1753   // Now walk all possible inheritance paths.
   1754   for (CXXBasePaths::paths_iterator I = Paths.begin(), E = Paths.end();
   1755        I != E; ++I) {
   1756     if (I->Access != AS_public) // Ignore non-public inheritance.
   1757       continue;
   1758 
   1759     ++NumPublicPaths;
   1760 
   1761     for (CXXBasePath::iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
   1762       // If the path contains a virtual base class we can't give any hint.
   1763       // -1: no hint.
   1764       if (J->Base->isVirtual())
   1765         return CharUnits::fromQuantity(-1ULL);
   1766 
   1767       if (NumPublicPaths > 1) // Won't use offsets, skip computation.
   1768         continue;
   1769 
   1770       // Accumulate the base class offsets.
   1771       const ASTRecordLayout &L = Context.getASTRecordLayout(J->Class);
   1772       Offset += L.getBaseClassOffset(J->Base->getType()->getAsCXXRecordDecl());
   1773     }
   1774   }
   1775 
   1776   // -2: Src is not a public base of Dst.
   1777   if (NumPublicPaths == 0)
   1778     return CharUnits::fromQuantity(-2ULL);
   1779 
   1780   // -3: Src is a multiple public base type but never a virtual base type.
   1781   if (NumPublicPaths > 1)
   1782     return CharUnits::fromQuantity(-3ULL);
   1783 
   1784   // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
   1785   // Return the offset of Src from the origin of Dst.
   1786   return Offset;
   1787 }
   1788 
   1789 static llvm::Value *
   1790 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
   1791                     QualType SrcTy, QualType DestTy,
   1792                     llvm::BasicBlock *CastEnd) {
   1793   llvm::Type *PtrDiffLTy =
   1794     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1795   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1796 
   1797   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
   1798     if (PTy->getPointeeType()->isVoidType()) {
   1799       // C++ [expr.dynamic.cast]p7:
   1800       //   If T is "pointer to cv void," then the result is a pointer to the
   1801       //   most derived object pointed to by v.
   1802 
   1803       // Get the vtable pointer.
   1804       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
   1805 
   1806       // Get the offset-to-top from the vtable.
   1807       llvm::Value *OffsetToTop =
   1808         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
   1809       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
   1810 
   1811       // Finally, add the offset to the pointer.
   1812       Value = CGF.EmitCastToVoidPtr(Value);
   1813       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
   1814 
   1815       return CGF.Builder.CreateBitCast(Value, DestLTy);
   1816     }
   1817   }
   1818 
   1819   QualType SrcRecordTy;
   1820   QualType DestRecordTy;
   1821 
   1822   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
   1823     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
   1824     DestRecordTy = DestPTy->getPointeeType();
   1825   } else {
   1826     SrcRecordTy = SrcTy;
   1827     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
   1828   }
   1829 
   1830   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
   1831   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
   1832 
   1833   llvm::Value *SrcRTTI =
   1834     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
   1835   llvm::Value *DestRTTI =
   1836     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
   1837 
   1838   // Compute the offset hint.
   1839   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
   1840   const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
   1841   llvm::Value *OffsetHint =
   1842     llvm::ConstantInt::get(PtrDiffLTy,
   1843                            computeOffsetHint(CGF.getContext(), SrcDecl,
   1844                                              DestDecl).getQuantity());
   1845 
   1846   // Emit the call to __dynamic_cast.
   1847   Value = CGF.EmitCastToVoidPtr(Value);
   1848 
   1849   llvm::Value *args[] = { Value, SrcRTTI, DestRTTI, OffsetHint };
   1850   Value = CGF.EmitNounwindRuntimeCall(getDynamicCastFn(CGF), args);
   1851   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
   1852 
   1853   /// C++ [expr.dynamic.cast]p9:
   1854   ///   A failed cast to reference type throws std::bad_cast
   1855   if (DestTy->isReferenceType()) {
   1856     llvm::BasicBlock *BadCastBlock =
   1857       CGF.createBasicBlock("dynamic_cast.bad_cast");
   1858 
   1859     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
   1860     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
   1861 
   1862     CGF.EmitBlock(BadCastBlock);
   1863     EmitBadCastCall(CGF);
   1864   }
   1865 
   1866   return Value;
   1867 }
   1868 
   1869 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
   1870                                           QualType DestTy) {
   1871   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1872   if (DestTy->isPointerType())
   1873     return llvm::Constant::getNullValue(DestLTy);
   1874 
   1875   /// C++ [expr.dynamic.cast]p9:
   1876   ///   A failed cast to reference type throws std::bad_cast
   1877   EmitBadCastCall(CGF);
   1878 
   1879   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
   1880   return llvm::UndefValue::get(DestLTy);
   1881 }
   1882 
   1883 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
   1884                                               const CXXDynamicCastExpr *DCE) {
   1885   QualType DestTy = DCE->getTypeAsWritten();
   1886 
   1887   if (DCE->isAlwaysNull())
   1888     return EmitDynamicCastToNull(*this, DestTy);
   1889 
   1890   QualType SrcTy = DCE->getSubExpr()->getType();
   1891 
   1892   // C++ [expr.dynamic.cast]p4:
   1893   //   If the value of v is a null pointer value in the pointer case, the result
   1894   //   is the null pointer value of type T.
   1895   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
   1896 
   1897   llvm::BasicBlock *CastNull = 0;
   1898   llvm::BasicBlock *CastNotNull = 0;
   1899   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
   1900 
   1901   if (ShouldNullCheckSrcValue) {
   1902     CastNull = createBasicBlock("dynamic_cast.null");
   1903     CastNotNull = createBasicBlock("dynamic_cast.notnull");
   1904 
   1905     llvm::Value *IsNull = Builder.CreateIsNull(Value);
   1906     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
   1907     EmitBlock(CastNotNull);
   1908   }
   1909 
   1910   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
   1911 
   1912   if (ShouldNullCheckSrcValue) {
   1913     EmitBranch(CastEnd);
   1914 
   1915     EmitBlock(CastNull);
   1916     EmitBranch(CastEnd);
   1917   }
   1918 
   1919   EmitBlock(CastEnd);
   1920 
   1921   if (ShouldNullCheckSrcValue) {
   1922     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
   1923     PHI->addIncoming(Value, CastNotNull);
   1924     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
   1925 
   1926     Value = PHI;
   1927   }
   1928 
   1929   return Value;
   1930 }
   1931 
   1932 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
   1933   RunCleanupsScope Scope(*this);
   1934   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
   1935                                  Slot.getAlignment());
   1936 
   1937   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
   1938   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
   1939                                          e = E->capture_init_end();
   1940        i != e; ++i, ++CurField) {
   1941     // Emit initialization
   1942 
   1943     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   1944     ArrayRef<VarDecl *> ArrayIndexes;
   1945     if (CurField->getType()->isArrayType())
   1946       ArrayIndexes = E->getCaptureInitIndexVars(i);
   1947     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
   1948   }
   1949 }
   1950