Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTConsumer.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/ASTMutationListener.h"
     18 #include "clang/AST/DeclObjC.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/Basic/SourceManager.h"
     22 #include "clang/Lex/Preprocessor.h"
     23 #include "clang/Sema/DeclSpec.h"
     24 #include "clang/Sema/ExternalSemaSource.h"
     25 #include "clang/Sema/Lookup.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/ScopeInfo.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 
     30 using namespace clang;
     31 
     32 /// Check whether the given method, which must be in the 'init'
     33 /// family, is a valid member of that family.
     34 ///
     35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     36 ///   if non-null, check this as if making a call to it with the given
     37 ///   receiver type
     38 ///
     39 /// \return true to indicate that there was an error and appropriate
     40 ///   actions were taken
     41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     42                            QualType receiverTypeIfCall) {
     43   if (method->isInvalidDecl()) return true;
     44 
     45   // This castAs is safe: methods that don't return an object
     46   // pointer won't be inferred as inits and will reject an explicit
     47   // objc_method_family(init).
     48 
     49   // We ignore protocols here.  Should we?  What about Class?
     50 
     51   const ObjCObjectType *result = method->getResultType()
     52     ->castAs<ObjCObjectPointerType>()->getObjectType();
     53 
     54   if (result->isObjCId()) {
     55     return false;
     56   } else if (result->isObjCClass()) {
     57     // fall through: always an error
     58   } else {
     59     ObjCInterfaceDecl *resultClass = result->getInterface();
     60     assert(resultClass && "unexpected object type!");
     61 
     62     // It's okay for the result type to still be a forward declaration
     63     // if we're checking an interface declaration.
     64     if (!resultClass->hasDefinition()) {
     65       if (receiverTypeIfCall.isNull() &&
     66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     67         return false;
     68 
     69     // Otherwise, we try to compare class types.
     70     } else {
     71       // If this method was declared in a protocol, we can't check
     72       // anything unless we have a receiver type that's an interface.
     73       const ObjCInterfaceDecl *receiverClass = 0;
     74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     75         if (receiverTypeIfCall.isNull())
     76           return false;
     77 
     78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     79           ->getInterfaceDecl();
     80 
     81         // This can be null for calls to e.g. id<Foo>.
     82         if (!receiverClass) return false;
     83       } else {
     84         receiverClass = method->getClassInterface();
     85         assert(receiverClass && "method not associated with a class!");
     86       }
     87 
     88       // If either class is a subclass of the other, it's fine.
     89       if (receiverClass->isSuperClassOf(resultClass) ||
     90           resultClass->isSuperClassOf(receiverClass))
     91         return false;
     92     }
     93   }
     94 
     95   SourceLocation loc = method->getLocation();
     96 
     97   // If we're in a system header, and this is not a call, just make
     98   // the method unusable.
     99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
    101                 "init method returns a type unrelated to its receiver type"));
    102     return true;
    103   }
    104 
    105   // Otherwise, it's an error.
    106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    107   method->setInvalidDecl();
    108   return true;
    109 }
    110 
    111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    112                                    const ObjCMethodDecl *Overridden) {
    113   if (Overridden->hasRelatedResultType() &&
    114       !NewMethod->hasRelatedResultType()) {
    115     // This can only happen when the method follows a naming convention that
    116     // implies a related result type, and the original (overridden) method has
    117     // a suitable return type, but the new (overriding) method does not have
    118     // a suitable return type.
    119     QualType ResultType = NewMethod->getResultType();
    120     SourceRange ResultTypeRange;
    121     if (const TypeSourceInfo *ResultTypeInfo
    122                                         = NewMethod->getResultTypeSourceInfo())
    123       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    124 
    125     // Figure out which class this method is part of, if any.
    126     ObjCInterfaceDecl *CurrentClass
    127       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    128     if (!CurrentClass) {
    129       DeclContext *DC = NewMethod->getDeclContext();
    130       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    131         CurrentClass = Cat->getClassInterface();
    132       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    133         CurrentClass = Impl->getClassInterface();
    134       else if (ObjCCategoryImplDecl *CatImpl
    135                = dyn_cast<ObjCCategoryImplDecl>(DC))
    136         CurrentClass = CatImpl->getClassInterface();
    137     }
    138 
    139     if (CurrentClass) {
    140       Diag(NewMethod->getLocation(),
    141            diag::warn_related_result_type_compatibility_class)
    142         << Context.getObjCInterfaceType(CurrentClass)
    143         << ResultType
    144         << ResultTypeRange;
    145     } else {
    146       Diag(NewMethod->getLocation(),
    147            diag::warn_related_result_type_compatibility_protocol)
    148         << ResultType
    149         << ResultTypeRange;
    150     }
    151 
    152     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    153       Diag(Overridden->getLocation(),
    154            diag::note_related_result_type_family)
    155         << /*overridden method*/ 0
    156         << Family;
    157     else
    158       Diag(Overridden->getLocation(),
    159            diag::note_related_result_type_overridden);
    160   }
    161   if (getLangOpts().ObjCAutoRefCount) {
    162     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    163          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    164         Diag(NewMethod->getLocation(),
    165              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    166         Diag(Overridden->getLocation(), diag::note_previous_decl)
    167         << "method";
    168     }
    169     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    170               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    171         Diag(NewMethod->getLocation(),
    172              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    173         Diag(Overridden->getLocation(), diag::note_previous_decl)
    174         << "method";
    175     }
    176     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    177                                          oe = Overridden->param_end();
    178     for (ObjCMethodDecl::param_iterator
    179            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    180          ni != ne && oi != oe; ++ni, ++oi) {
    181       const ParmVarDecl *oldDecl = (*oi);
    182       ParmVarDecl *newDecl = (*ni);
    183       if (newDecl->hasAttr<NSConsumedAttr>() !=
    184           oldDecl->hasAttr<NSConsumedAttr>()) {
    185         Diag(newDecl->getLocation(),
    186              diag::err_nsconsumed_attribute_mismatch);
    187         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    188           << "parameter";
    189       }
    190     }
    191   }
    192 }
    193 
    194 /// \brief Check a method declaration for compatibility with the Objective-C
    195 /// ARC conventions.
    196 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
    197   ObjCMethodFamily family = method->getMethodFamily();
    198   switch (family) {
    199   case OMF_None:
    200   case OMF_finalize:
    201   case OMF_retain:
    202   case OMF_release:
    203   case OMF_autorelease:
    204   case OMF_retainCount:
    205   case OMF_self:
    206   case OMF_performSelector:
    207     return false;
    208 
    209   case OMF_dealloc:
    210     if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
    211       SourceRange ResultTypeRange;
    212       if (const TypeSourceInfo *ResultTypeInfo
    213           = method->getResultTypeSourceInfo())
    214         ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    215       if (ResultTypeRange.isInvalid())
    216         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    217           << method->getResultType()
    218           << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    219       else
    220         Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    221           << method->getResultType()
    222           << FixItHint::CreateReplacement(ResultTypeRange, "void");
    223       return true;
    224     }
    225     return false;
    226 
    227   case OMF_init:
    228     // If the method doesn't obey the init rules, don't bother annotating it.
    229     if (checkInitMethod(method, QualType()))
    230       return true;
    231 
    232     method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
    233                                                      Context));
    234 
    235     // Don't add a second copy of this attribute, but otherwise don't
    236     // let it be suppressed.
    237     if (method->hasAttr<NSReturnsRetainedAttr>())
    238       return false;
    239     break;
    240 
    241   case OMF_alloc:
    242   case OMF_copy:
    243   case OMF_mutableCopy:
    244   case OMF_new:
    245     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    246         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    247         method->hasAttr<NSReturnsAutoreleasedAttr>())
    248       return false;
    249     break;
    250   }
    251 
    252   method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
    253                                                       Context));
    254   return false;
    255 }
    256 
    257 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    258                                                 NamedDecl *ND,
    259                                                 SourceLocation ImplLoc,
    260                                                 int select) {
    261   if (ND && ND->isDeprecated()) {
    262     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    263     if (select == 0)
    264       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    265         << ND->getDeclName();
    266     else
    267       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    268   }
    269 }
    270 
    271 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    272 /// pool.
    273 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    274   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    275 
    276   // If we don't have a valid method decl, simply return.
    277   if (!MDecl)
    278     return;
    279   if (MDecl->isInstanceMethod())
    280     AddInstanceMethodToGlobalPool(MDecl, true);
    281   else
    282     AddFactoryMethodToGlobalPool(MDecl, true);
    283 }
    284 
    285 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
    286 /// has explicit ownership attribute; false otherwise.
    287 static bool
    288 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
    289   QualType T = Param->getType();
    290 
    291   if (const PointerType *PT = T->getAs<PointerType>()) {
    292     T = PT->getPointeeType();
    293   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
    294     T = RT->getPointeeType();
    295   } else {
    296     return true;
    297   }
    298 
    299   // If we have a lifetime qualifier, but it's local, we must have
    300   // inferred it. So, it is implicit.
    301   return !T.getLocalQualifiers().hasObjCLifetime();
    302 }
    303 
    304 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    305 /// and user declared, in the method definition's AST.
    306 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    307   assert((getCurMethodDecl() == 0) && "Methodparsing confused");
    308   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    309 
    310   // If we don't have a valid method decl, simply return.
    311   if (!MDecl)
    312     return;
    313 
    314   // Allow all of Sema to see that we are entering a method definition.
    315   PushDeclContext(FnBodyScope, MDecl);
    316   PushFunctionScope();
    317 
    318   // Create Decl objects for each parameter, entrring them in the scope for
    319   // binding to their use.
    320 
    321   // Insert the invisible arguments, self and _cmd!
    322   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    323 
    324   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    325   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    326 
    327   // The ObjC parser requires parameter names so there's no need to check.
    328   CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
    329                            /*CheckParameterNames=*/false);
    330 
    331   // Introduce all of the other parameters into this scope.
    332   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    333        E = MDecl->param_end(); PI != E; ++PI) {
    334     ParmVarDecl *Param = (*PI);
    335     if (!Param->isInvalidDecl() &&
    336         getLangOpts().ObjCAutoRefCount &&
    337         !HasExplicitOwnershipAttr(*this, Param))
    338       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    339             Param->getType();
    340 
    341     if ((*PI)->getIdentifier())
    342       PushOnScopeChains(*PI, FnBodyScope);
    343   }
    344 
    345   // In ARC, disallow definition of retain/release/autorelease/retainCount
    346   if (getLangOpts().ObjCAutoRefCount) {
    347     switch (MDecl->getMethodFamily()) {
    348     case OMF_retain:
    349     case OMF_retainCount:
    350     case OMF_release:
    351     case OMF_autorelease:
    352       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    353         << 0 << MDecl->getSelector();
    354       break;
    355 
    356     case OMF_None:
    357     case OMF_dealloc:
    358     case OMF_finalize:
    359     case OMF_alloc:
    360     case OMF_init:
    361     case OMF_mutableCopy:
    362     case OMF_copy:
    363     case OMF_new:
    364     case OMF_self:
    365     case OMF_performSelector:
    366       break;
    367     }
    368   }
    369 
    370   // Warn on deprecated methods under -Wdeprecated-implementations,
    371   // and prepare for warning on missing super calls.
    372   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    373     ObjCMethodDecl *IMD =
    374       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    375 
    376     if (IMD) {
    377       ObjCImplDecl *ImplDeclOfMethodDef =
    378         dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
    379       ObjCContainerDecl *ContDeclOfMethodDecl =
    380         dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
    381       ObjCImplDecl *ImplDeclOfMethodDecl = 0;
    382       if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
    383         ImplDeclOfMethodDecl = OID->getImplementation();
    384       else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
    385         ImplDeclOfMethodDecl = CD->getImplementation();
    386       // No need to issue deprecated warning if deprecated mehod in class/category
    387       // is being implemented in its own implementation (no overriding is involved).
    388       if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
    389         DiagnoseObjCImplementedDeprecations(*this,
    390                                           dyn_cast<NamedDecl>(IMD),
    391                                           MDecl->getLocation(), 0);
    392     }
    393 
    394     // If this is "dealloc" or "finalize", set some bit here.
    395     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    396     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    397     // Only do this if the current class actually has a superclass.
    398     if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
    399       ObjCMethodFamily Family = MDecl->getMethodFamily();
    400       if (Family == OMF_dealloc) {
    401         if (!(getLangOpts().ObjCAutoRefCount ||
    402               getLangOpts().getGC() == LangOptions::GCOnly))
    403           getCurFunction()->ObjCShouldCallSuper = true;
    404 
    405       } else if (Family == OMF_finalize) {
    406         if (Context.getLangOpts().getGC() != LangOptions::NonGC)
    407           getCurFunction()->ObjCShouldCallSuper = true;
    408 
    409       } else if (MDecl->hasAttr<ObjCRequiresSuperAttr>())
    410         getCurFunction()->ObjCShouldCallSuper = true;
    411       else {
    412         const ObjCMethodDecl *SuperMethod =
    413           SuperClass->lookupMethod(MDecl->getSelector(),
    414                                    MDecl->isInstanceMethod());
    415         getCurFunction()->ObjCShouldCallSuper =
    416           (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
    417       }
    418     }
    419   }
    420 }
    421 
    422 namespace {
    423 
    424 // Callback to only accept typo corrections that are Objective-C classes.
    425 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    426 // function will reject corrections to that class.
    427 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    428  public:
    429   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
    430   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    431       : CurrentIDecl(IDecl) {}
    432 
    433   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    434     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    435     return ID && !declaresSameEntity(ID, CurrentIDecl);
    436   }
    437 
    438  private:
    439   ObjCInterfaceDecl *CurrentIDecl;
    440 };
    441 
    442 }
    443 
    444 Decl *Sema::
    445 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    446                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    447                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    448                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    449                          const SourceLocation *ProtoLocs,
    450                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    451   assert(ClassName && "Missing class identifier");
    452 
    453   // Check for another declaration kind with the same name.
    454   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    455                                          LookupOrdinaryName, ForRedeclaration);
    456 
    457   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    458     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    459     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    460   }
    461 
    462   // Create a declaration to describe this @interface.
    463   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    464 
    465   if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
    466     // A previous decl with a different name is because of
    467     // @compatibility_alias, for example:
    468     // \code
    469     //   @class NewImage;
    470     //   @compatibility_alias OldImage NewImage;
    471     // \endcode
    472     // A lookup for 'OldImage' will return the 'NewImage' decl.
    473     //
    474     // In such a case use the real declaration name, instead of the alias one,
    475     // otherwise we will break IdentifierResolver and redecls-chain invariants.
    476     // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
    477     // has been aliased.
    478     ClassName = PrevIDecl->getIdentifier();
    479   }
    480 
    481   ObjCInterfaceDecl *IDecl
    482     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    483                                 PrevIDecl, ClassLoc);
    484 
    485   if (PrevIDecl) {
    486     // Class already seen. Was it a definition?
    487     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    488       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    489         << PrevIDecl->getDeclName();
    490       Diag(Def->getLocation(), diag::note_previous_definition);
    491       IDecl->setInvalidDecl();
    492     }
    493   }
    494 
    495   if (AttrList)
    496     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    497   PushOnScopeChains(IDecl, TUScope);
    498 
    499   // Start the definition of this class. If we're in a redefinition case, there
    500   // may already be a definition, so we'll end up adding to it.
    501   if (!IDecl->hasDefinition())
    502     IDecl->startDefinition();
    503 
    504   if (SuperName) {
    505     // Check if a different kind of symbol declared in this scope.
    506     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    507                                 LookupOrdinaryName);
    508 
    509     if (!PrevDecl) {
    510       // Try to correct for a typo in the superclass name without correcting
    511       // to the class we're defining.
    512       ObjCInterfaceValidatorCCC Validator(IDecl);
    513       if (TypoCorrection Corrected = CorrectTypo(
    514           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    515           NULL, Validator)) {
    516         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    517         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    518           << SuperName << ClassName << PrevDecl->getDeclName();
    519         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    520           << PrevDecl->getDeclName();
    521       }
    522     }
    523 
    524     if (declaresSameEntity(PrevDecl, IDecl)) {
    525       Diag(SuperLoc, diag::err_recursive_superclass)
    526         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    527       IDecl->setEndOfDefinitionLoc(ClassLoc);
    528     } else {
    529       ObjCInterfaceDecl *SuperClassDecl =
    530                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    531 
    532       // Diagnose classes that inherit from deprecated classes.
    533       if (SuperClassDecl)
    534         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    535 
    536       if (PrevDecl && SuperClassDecl == 0) {
    537         // The previous declaration was not a class decl. Check if we have a
    538         // typedef. If we do, get the underlying class type.
    539         if (const TypedefNameDecl *TDecl =
    540               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    541           QualType T = TDecl->getUnderlyingType();
    542           if (T->isObjCObjectType()) {
    543             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    544               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    545               // This handles the following case:
    546               // @interface NewI @end
    547               // typedef NewI DeprI __attribute__((deprecated("blah")))
    548               // @interface SI : DeprI /* warn here */ @end
    549               (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
    550             }
    551           }
    552         }
    553 
    554         // This handles the following case:
    555         //
    556         // typedef int SuperClass;
    557         // @interface MyClass : SuperClass {} @end
    558         //
    559         if (!SuperClassDecl) {
    560           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    561           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    562         }
    563       }
    564 
    565       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    566         if (!SuperClassDecl)
    567           Diag(SuperLoc, diag::err_undef_superclass)
    568             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    569         else if (RequireCompleteType(SuperLoc,
    570                                   Context.getObjCInterfaceType(SuperClassDecl),
    571                                      diag::err_forward_superclass,
    572                                      SuperClassDecl->getDeclName(),
    573                                      ClassName,
    574                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
    575           SuperClassDecl = 0;
    576         }
    577       }
    578       IDecl->setSuperClass(SuperClassDecl);
    579       IDecl->setSuperClassLoc(SuperLoc);
    580       IDecl->setEndOfDefinitionLoc(SuperLoc);
    581     }
    582   } else { // we have a root class.
    583     IDecl->setEndOfDefinitionLoc(ClassLoc);
    584   }
    585 
    586   // Check then save referenced protocols.
    587   if (NumProtoRefs) {
    588     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    589                            ProtoLocs, Context);
    590     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
    591   }
    592 
    593   CheckObjCDeclScope(IDecl);
    594   return ActOnObjCContainerStartDefinition(IDecl);
    595 }
    596 
    597 /// ActOnCompatibilityAlias - this action is called after complete parsing of
    598 /// a \@compatibility_alias declaration. It sets up the alias relationships.
    599 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
    600                                     IdentifierInfo *AliasName,
    601                                     SourceLocation AliasLocation,
    602                                     IdentifierInfo *ClassName,
    603                                     SourceLocation ClassLocation) {
    604   // Look for previous declaration of alias name
    605   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    606                                       LookupOrdinaryName, ForRedeclaration);
    607   if (ADecl) {
    608     Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    609     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    610     return 0;
    611   }
    612   // Check for class declaration
    613   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    614                                        LookupOrdinaryName, ForRedeclaration);
    615   if (const TypedefNameDecl *TDecl =
    616         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    617     QualType T = TDecl->getUnderlyingType();
    618     if (T->isObjCObjectType()) {
    619       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    620         ClassName = IDecl->getIdentifier();
    621         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    622                                   LookupOrdinaryName, ForRedeclaration);
    623       }
    624     }
    625   }
    626   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    627   if (CDecl == 0) {
    628     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    629     if (CDeclU)
    630       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    631     return 0;
    632   }
    633 
    634   // Everything checked out, instantiate a new alias declaration AST.
    635   ObjCCompatibleAliasDecl *AliasDecl =
    636     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    637 
    638   if (!CheckObjCDeclScope(AliasDecl))
    639     PushOnScopeChains(AliasDecl, TUScope);
    640 
    641   return AliasDecl;
    642 }
    643 
    644 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    645   IdentifierInfo *PName,
    646   SourceLocation &Ploc, SourceLocation PrevLoc,
    647   const ObjCList<ObjCProtocolDecl> &PList) {
    648 
    649   bool res = false;
    650   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    651        E = PList.end(); I != E; ++I) {
    652     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    653                                                  Ploc)) {
    654       if (PDecl->getIdentifier() == PName) {
    655         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    656         Diag(PrevLoc, diag::note_previous_definition);
    657         res = true;
    658       }
    659 
    660       if (!PDecl->hasDefinition())
    661         continue;
    662 
    663       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    664             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    665         res = true;
    666     }
    667   }
    668   return res;
    669 }
    670 
    671 Decl *
    672 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    673                                   IdentifierInfo *ProtocolName,
    674                                   SourceLocation ProtocolLoc,
    675                                   Decl * const *ProtoRefs,
    676                                   unsigned NumProtoRefs,
    677                                   const SourceLocation *ProtoLocs,
    678                                   SourceLocation EndProtoLoc,
    679                                   AttributeList *AttrList) {
    680   bool err = false;
    681   // FIXME: Deal with AttrList.
    682   assert(ProtocolName && "Missing protocol identifier");
    683   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
    684                                               ForRedeclaration);
    685   ObjCProtocolDecl *PDecl = 0;
    686   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
    687     // If we already have a definition, complain.
    688     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    689     Diag(Def->getLocation(), diag::note_previous_definition);
    690 
    691     // Create a new protocol that is completely distinct from previous
    692     // declarations, and do not make this protocol available for name lookup.
    693     // That way, we'll end up completely ignoring the duplicate.
    694     // FIXME: Can we turn this into an error?
    695     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    696                                      ProtocolLoc, AtProtoInterfaceLoc,
    697                                      /*PrevDecl=*/0);
    698     PDecl->startDefinition();
    699   } else {
    700     if (PrevDecl) {
    701       // Check for circular dependencies among protocol declarations. This can
    702       // only happen if this protocol was forward-declared.
    703       ObjCList<ObjCProtocolDecl> PList;
    704       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    705       err = CheckForwardProtocolDeclarationForCircularDependency(
    706               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
    707     }
    708 
    709     // Create the new declaration.
    710     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    711                                      ProtocolLoc, AtProtoInterfaceLoc,
    712                                      /*PrevDecl=*/PrevDecl);
    713 
    714     PushOnScopeChains(PDecl, TUScope);
    715     PDecl->startDefinition();
    716   }
    717 
    718   if (AttrList)
    719     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    720 
    721   // Merge attributes from previous declarations.
    722   if (PrevDecl)
    723     mergeDeclAttributes(PDecl, PrevDecl);
    724 
    725   if (!err && NumProtoRefs ) {
    726     /// Check then save referenced protocols.
    727     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    728                            ProtoLocs, Context);
    729   }
    730 
    731   CheckObjCDeclScope(PDecl);
    732   return ActOnObjCContainerStartDefinition(PDecl);
    733 }
    734 
    735 /// FindProtocolDeclaration - This routine looks up protocols and
    736 /// issues an error if they are not declared. It returns list of
    737 /// protocol declarations in its 'Protocols' argument.
    738 void
    739 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    740                               const IdentifierLocPair *ProtocolId,
    741                               unsigned NumProtocols,
    742                               SmallVectorImpl<Decl *> &Protocols) {
    743   for (unsigned i = 0; i != NumProtocols; ++i) {
    744     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    745                                              ProtocolId[i].second);
    746     if (!PDecl) {
    747       DeclFilterCCC<ObjCProtocolDecl> Validator;
    748       TypoCorrection Corrected = CorrectTypo(
    749           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    750           LookupObjCProtocolName, TUScope, NULL, Validator);
    751       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    752         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    753           << ProtocolId[i].first << Corrected.getCorrection();
    754         Diag(PDecl->getLocation(), diag::note_previous_decl)
    755           << PDecl->getDeclName();
    756       }
    757     }
    758 
    759     if (!PDecl) {
    760       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    761         << ProtocolId[i].first;
    762       continue;
    763     }
    764     // If this is a forward protocol declaration, get its definition.
    765     if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
    766       PDecl = PDecl->getDefinition();
    767 
    768     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    769 
    770     // If this is a forward declaration and we are supposed to warn in this
    771     // case, do it.
    772     // FIXME: Recover nicely in the hidden case.
    773     if (WarnOnDeclarations &&
    774         (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
    775       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    776         << ProtocolId[i].first;
    777     Protocols.push_back(PDecl);
    778   }
    779 }
    780 
    781 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    782 /// a class method in its extension.
    783 ///
    784 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    785                                             ObjCInterfaceDecl *ID) {
    786   if (!ID)
    787     return;  // Possibly due to previous error
    788 
    789   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    790   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    791        e =  ID->meth_end(); i != e; ++i) {
    792     ObjCMethodDecl *MD = *i;
    793     MethodMap[MD->getSelector()] = MD;
    794   }
    795 
    796   if (MethodMap.empty())
    797     return;
    798   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    799        e =  CAT->meth_end(); i != e; ++i) {
    800     ObjCMethodDecl *Method = *i;
    801     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    802     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    803       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    804             << Method->getDeclName();
    805       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    806     }
    807   }
    808 }
    809 
    810 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
    811 Sema::DeclGroupPtrTy
    812 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    813                                       const IdentifierLocPair *IdentList,
    814                                       unsigned NumElts,
    815                                       AttributeList *attrList) {
    816   SmallVector<Decl *, 8> DeclsInGroup;
    817   for (unsigned i = 0; i != NumElts; ++i) {
    818     IdentifierInfo *Ident = IdentList[i].first;
    819     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
    820                                                 ForRedeclaration);
    821     ObjCProtocolDecl *PDecl
    822       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    823                                  IdentList[i].second, AtProtocolLoc,
    824                                  PrevDecl);
    825 
    826     PushOnScopeChains(PDecl, TUScope);
    827     CheckObjCDeclScope(PDecl);
    828 
    829     if (attrList)
    830       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    831 
    832     if (PrevDecl)
    833       mergeDeclAttributes(PDecl, PrevDecl);
    834 
    835     DeclsInGroup.push_back(PDecl);
    836   }
    837 
    838   return BuildDeclaratorGroup(DeclsInGroup, false);
    839 }
    840 
    841 Decl *Sema::
    842 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    843                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    844                             IdentifierInfo *CategoryName,
    845                             SourceLocation CategoryLoc,
    846                             Decl * const *ProtoRefs,
    847                             unsigned NumProtoRefs,
    848                             const SourceLocation *ProtoLocs,
    849                             SourceLocation EndProtoLoc) {
    850   ObjCCategoryDecl *CDecl;
    851   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    852 
    853   /// Check that class of this category is already completely declared.
    854 
    855   if (!IDecl
    856       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    857                              diag::err_category_forward_interface,
    858                              CategoryName == 0)) {
    859     // Create an invalid ObjCCategoryDecl to serve as context for
    860     // the enclosing method declarations.  We mark the decl invalid
    861     // to make it clear that this isn't a valid AST.
    862     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    863                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    864     CDecl->setInvalidDecl();
    865     CurContext->addDecl(CDecl);
    866 
    867     if (!IDecl)
    868       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    869     return ActOnObjCContainerStartDefinition(CDecl);
    870   }
    871 
    872   if (!CategoryName && IDecl->getImplementation()) {
    873     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    874     Diag(IDecl->getImplementation()->getLocation(),
    875           diag::note_implementation_declared);
    876   }
    877 
    878   if (CategoryName) {
    879     /// Check for duplicate interface declaration for this category
    880     if (ObjCCategoryDecl *Previous
    881           = IDecl->FindCategoryDeclaration(CategoryName)) {
    882       // Class extensions can be declared multiple times, categories cannot.
    883       Diag(CategoryLoc, diag::warn_dup_category_def)
    884         << ClassName << CategoryName;
    885       Diag(Previous->getLocation(), diag::note_previous_definition);
    886     }
    887   }
    888 
    889   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    890                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    891   // FIXME: PushOnScopeChains?
    892   CurContext->addDecl(CDecl);
    893 
    894   if (NumProtoRefs) {
    895     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    896                            ProtoLocs, Context);
    897     // Protocols in the class extension belong to the class.
    898     if (CDecl->IsClassExtension())
    899      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
    900                                             NumProtoRefs, Context);
    901   }
    902 
    903   CheckObjCDeclScope(CDecl);
    904   return ActOnObjCContainerStartDefinition(CDecl);
    905 }
    906 
    907 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    908 /// category implementation declaration and build an ObjCCategoryImplDecl
    909 /// object.
    910 Decl *Sema::ActOnStartCategoryImplementation(
    911                       SourceLocation AtCatImplLoc,
    912                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    913                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    914   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    915   ObjCCategoryDecl *CatIDecl = 0;
    916   if (IDecl && IDecl->hasDefinition()) {
    917     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    918     if (!CatIDecl) {
    919       // Category @implementation with no corresponding @interface.
    920       // Create and install one.
    921       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
    922                                           ClassLoc, CatLoc,
    923                                           CatName, IDecl);
    924       CatIDecl->setImplicit();
    925     }
    926   }
    927 
    928   ObjCCategoryImplDecl *CDecl =
    929     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    930                                  ClassLoc, AtCatImplLoc, CatLoc);
    931   /// Check that class of this category is already completely declared.
    932   if (!IDecl) {
    933     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    934     CDecl->setInvalidDecl();
    935   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    936                                  diag::err_undef_interface)) {
    937     CDecl->setInvalidDecl();
    938   }
    939 
    940   // FIXME: PushOnScopeChains?
    941   CurContext->addDecl(CDecl);
    942 
    943   // If the interface is deprecated/unavailable, warn/error about it.
    944   if (IDecl)
    945     DiagnoseUseOfDecl(IDecl, ClassLoc);
    946 
    947   /// Check that CatName, category name, is not used in another implementation.
    948   if (CatIDecl) {
    949     if (CatIDecl->getImplementation()) {
    950       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    951         << CatName;
    952       Diag(CatIDecl->getImplementation()->getLocation(),
    953            diag::note_previous_definition);
    954       CDecl->setInvalidDecl();
    955     } else {
    956       CatIDecl->setImplementation(CDecl);
    957       // Warn on implementating category of deprecated class under
    958       // -Wdeprecated-implementations flag.
    959       DiagnoseObjCImplementedDeprecations(*this,
    960                                           dyn_cast<NamedDecl>(IDecl),
    961                                           CDecl->getLocation(), 2);
    962     }
    963   }
    964 
    965   CheckObjCDeclScope(CDecl);
    966   return ActOnObjCContainerStartDefinition(CDecl);
    967 }
    968 
    969 Decl *Sema::ActOnStartClassImplementation(
    970                       SourceLocation AtClassImplLoc,
    971                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    972                       IdentifierInfo *SuperClassname,
    973                       SourceLocation SuperClassLoc) {
    974   ObjCInterfaceDecl* IDecl = 0;
    975   // Check for another declaration kind with the same name.
    976   NamedDecl *PrevDecl
    977     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    978                        ForRedeclaration);
    979   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    980     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    981     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    982   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    983     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    984                         diag::warn_undef_interface);
    985   } else {
    986     // We did not find anything with the name ClassName; try to correct for
    987     // typos in the class name.
    988     ObjCInterfaceValidatorCCC Validator;
    989     if (TypoCorrection Corrected = CorrectTypo(
    990         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    991         NULL, Validator)) {
    992       // Suggest the (potentially) correct interface name. However, put the
    993       // fix-it hint itself in a separate note, since changing the name in
    994       // the warning would make the fix-it change semantics.However, don't
    995       // provide a code-modification hint or use the typo name for recovery,
    996       // because this is just a warning. The program may actually be correct.
    997       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    998       DeclarationName CorrectedName = Corrected.getCorrection();
    999       Diag(ClassLoc, diag::warn_undef_interface_suggest)
   1000         << ClassName << CorrectedName;
   1001       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
   1002         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
   1003       IDecl = 0;
   1004     } else {
   1005       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
   1006     }
   1007   }
   1008 
   1009   // Check that super class name is valid class name
   1010   ObjCInterfaceDecl* SDecl = 0;
   1011   if (SuperClassname) {
   1012     // Check if a different kind of symbol declared in this scope.
   1013     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
   1014                                 LookupOrdinaryName);
   1015     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1016       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
   1017         << SuperClassname;
   1018       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1019     } else {
   1020       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1021       if (SDecl && !SDecl->hasDefinition())
   1022         SDecl = 0;
   1023       if (!SDecl)
   1024         Diag(SuperClassLoc, diag::err_undef_superclass)
   1025           << SuperClassname << ClassName;
   1026       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
   1027         // This implementation and its interface do not have the same
   1028         // super class.
   1029         Diag(SuperClassLoc, diag::err_conflicting_super_class)
   1030           << SDecl->getDeclName();
   1031         Diag(SDecl->getLocation(), diag::note_previous_definition);
   1032       }
   1033     }
   1034   }
   1035 
   1036   if (!IDecl) {
   1037     // Legacy case of @implementation with no corresponding @interface.
   1038     // Build, chain & install the interface decl into the identifier.
   1039 
   1040     // FIXME: Do we support attributes on the @implementation? If so we should
   1041     // copy them over.
   1042     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1043                                       ClassName, /*PrevDecl=*/0, ClassLoc,
   1044                                       true);
   1045     IDecl->startDefinition();
   1046     if (SDecl) {
   1047       IDecl->setSuperClass(SDecl);
   1048       IDecl->setSuperClassLoc(SuperClassLoc);
   1049       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1050     } else {
   1051       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1052     }
   1053 
   1054     PushOnScopeChains(IDecl, TUScope);
   1055   } else {
   1056     // Mark the interface as being completed, even if it was just as
   1057     //   @class ....;
   1058     // declaration; the user cannot reopen it.
   1059     if (!IDecl->hasDefinition())
   1060       IDecl->startDefinition();
   1061   }
   1062 
   1063   ObjCImplementationDecl* IMPDecl =
   1064     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1065                                    ClassLoc, AtClassImplLoc, SuperClassLoc);
   1066 
   1067   if (CheckObjCDeclScope(IMPDecl))
   1068     return ActOnObjCContainerStartDefinition(IMPDecl);
   1069 
   1070   // Check that there is no duplicate implementation of this class.
   1071   if (IDecl->getImplementation()) {
   1072     // FIXME: Don't leak everything!
   1073     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1074     Diag(IDecl->getImplementation()->getLocation(),
   1075          diag::note_previous_definition);
   1076     IMPDecl->setInvalidDecl();
   1077   } else { // add it to the list.
   1078     IDecl->setImplementation(IMPDecl);
   1079     PushOnScopeChains(IMPDecl, TUScope);
   1080     // Warn on implementating deprecated class under
   1081     // -Wdeprecated-implementations flag.
   1082     DiagnoseObjCImplementedDeprecations(*this,
   1083                                         dyn_cast<NamedDecl>(IDecl),
   1084                                         IMPDecl->getLocation(), 1);
   1085   }
   1086   return ActOnObjCContainerStartDefinition(IMPDecl);
   1087 }
   1088 
   1089 Sema::DeclGroupPtrTy
   1090 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   1091   SmallVector<Decl *, 64> DeclsInGroup;
   1092   DeclsInGroup.reserve(Decls.size() + 1);
   1093 
   1094   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1095     Decl *Dcl = Decls[i];
   1096     if (!Dcl)
   1097       continue;
   1098     if (Dcl->getDeclContext()->isFileContext())
   1099       Dcl->setTopLevelDeclInObjCContainer();
   1100     DeclsInGroup.push_back(Dcl);
   1101   }
   1102 
   1103   DeclsInGroup.push_back(ObjCImpDecl);
   1104 
   1105   return BuildDeclaratorGroup(DeclsInGroup, false);
   1106 }
   1107 
   1108 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1109                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1110                                     SourceLocation RBrace) {
   1111   assert(ImpDecl && "missing implementation decl");
   1112   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1113   if (!IDecl)
   1114     return;
   1115   /// Check case of non-existing \@interface decl.
   1116   /// (legacy objective-c \@implementation decl without an \@interface decl).
   1117   /// Add implementations's ivar to the synthesize class's ivar list.
   1118   if (IDecl->isImplicitInterfaceDecl()) {
   1119     IDecl->setEndOfDefinitionLoc(RBrace);
   1120     // Add ivar's to class's DeclContext.
   1121     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1122       ivars[i]->setLexicalDeclContext(ImpDecl);
   1123       IDecl->makeDeclVisibleInContext(ivars[i]);
   1124       ImpDecl->addDecl(ivars[i]);
   1125     }
   1126 
   1127     return;
   1128   }
   1129   // If implementation has empty ivar list, just return.
   1130   if (numIvars == 0)
   1131     return;
   1132 
   1133   assert(ivars && "missing @implementation ivars");
   1134   if (LangOpts.ObjCRuntime.isNonFragile()) {
   1135     if (ImpDecl->getSuperClass())
   1136       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1137     for (unsigned i = 0; i < numIvars; i++) {
   1138       ObjCIvarDecl* ImplIvar = ivars[i];
   1139       if (const ObjCIvarDecl *ClsIvar =
   1140             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1141         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1142         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1143         continue;
   1144       }
   1145       // Check class extensions (unnamed categories) for duplicate ivars.
   1146       for (ObjCInterfaceDecl::visible_extensions_iterator
   1147            Ext = IDecl->visible_extensions_begin(),
   1148            ExtEnd = IDecl->visible_extensions_end();
   1149          Ext != ExtEnd; ++Ext) {
   1150         ObjCCategoryDecl *CDecl = *Ext;
   1151         if (const ObjCIvarDecl *ClsExtIvar =
   1152             CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1153           Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1154           Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
   1155           continue;
   1156         }
   1157       }
   1158       // Instance ivar to Implementation's DeclContext.
   1159       ImplIvar->setLexicalDeclContext(ImpDecl);
   1160       IDecl->makeDeclVisibleInContext(ImplIvar);
   1161       ImpDecl->addDecl(ImplIvar);
   1162     }
   1163     return;
   1164   }
   1165   // Check interface's Ivar list against those in the implementation.
   1166   // names and types must match.
   1167   //
   1168   unsigned j = 0;
   1169   ObjCInterfaceDecl::ivar_iterator
   1170     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1171   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1172     ObjCIvarDecl* ImplIvar = ivars[j++];
   1173     ObjCIvarDecl* ClsIvar = *IVI;
   1174     assert (ImplIvar && "missing implementation ivar");
   1175     assert (ClsIvar && "missing class ivar");
   1176 
   1177     // First, make sure the types match.
   1178     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1179       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1180         << ImplIvar->getIdentifier()
   1181         << ImplIvar->getType() << ClsIvar->getType();
   1182       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1183     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1184                ImplIvar->getBitWidthValue(Context) !=
   1185                ClsIvar->getBitWidthValue(Context)) {
   1186       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1187            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1188       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1189            diag::note_previous_definition);
   1190     }
   1191     // Make sure the names are identical.
   1192     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1193       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1194         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1195       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1196     }
   1197     --numIvars;
   1198   }
   1199 
   1200   if (numIvars > 0)
   1201     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1202   else if (IVI != IVE)
   1203     Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
   1204 }
   1205 
   1206 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1207                                bool &IncompleteImpl, unsigned DiagID) {
   1208   // No point warning no definition of method which is 'unavailable'.
   1209   switch (method->getAvailability()) {
   1210   case AR_Available:
   1211   case AR_Deprecated:
   1212     break;
   1213 
   1214       // Don't warn about unavailable or not-yet-introduced methods.
   1215   case AR_NotYetIntroduced:
   1216   case AR_Unavailable:
   1217     return;
   1218   }
   1219 
   1220   // FIXME: For now ignore 'IncompleteImpl'.
   1221   // Previously we grouped all unimplemented methods under a single
   1222   // warning, but some users strongly voiced that they would prefer
   1223   // separate warnings.  We will give that approach a try, as that
   1224   // matches what we do with protocols.
   1225 
   1226   Diag(ImpLoc, DiagID) << method->getDeclName();
   1227 
   1228   // Issue a note to the original declaration.
   1229   SourceLocation MethodLoc = method->getLocStart();
   1230   if (MethodLoc.isValid())
   1231     Diag(MethodLoc, diag::note_method_declared_at) << method;
   1232 }
   1233 
   1234 /// Determines if type B can be substituted for type A.  Returns true if we can
   1235 /// guarantee that anything that the user will do to an object of type A can
   1236 /// also be done to an object of type B.  This is trivially true if the two
   1237 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1238 /// in cases where protocols are involved.
   1239 ///
   1240 /// Object types in Objective-C describe the minimum requirements for an
   1241 /// object, rather than providing a complete description of a type.  For
   1242 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1243 /// The principle of substitutability means that we may use an instance of A
   1244 /// anywhere that we may use an instance of B - it will implement all of the
   1245 /// ivars of B and all of the methods of B.
   1246 ///
   1247 /// This substitutability is important when type checking methods, because
   1248 /// the implementation may have stricter type definitions than the interface.
   1249 /// The interface specifies minimum requirements, but the implementation may
   1250 /// have more accurate ones.  For example, a method may privately accept
   1251 /// instances of B, but only publish that it accepts instances of A.  Any
   1252 /// object passed to it will be type checked against B, and so will implicitly
   1253 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1254 /// it is declared as returning.
   1255 ///
   1256 /// This is most important when considering subclassing.  A method in a
   1257 /// subclass must accept any object as an argument that its superclass's
   1258 /// implementation accepts.  It may, however, accept a more general type
   1259 /// without breaking substitutability (i.e. you can still use the subclass
   1260 /// anywhere that you can use the superclass, but not vice versa).  The
   1261 /// converse requirement applies to return types: the return type for a
   1262 /// subclass method must be a valid object of the kind that the superclass
   1263 /// advertises, but it may be specified more accurately.  This avoids the need
   1264 /// for explicit down-casting by callers.
   1265 ///
   1266 /// Note: This is a stricter requirement than for assignment.
   1267 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1268                                     const ObjCObjectPointerType *A,
   1269                                     const ObjCObjectPointerType *B,
   1270                                     bool rejectId) {
   1271   // Reject a protocol-unqualified id.
   1272   if (rejectId && B->isObjCIdType()) return false;
   1273 
   1274   // If B is a qualified id, then A must also be a qualified id and it must
   1275   // implement all of the protocols in B.  It may not be a qualified class.
   1276   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1277   // stricter definition so it is not substitutable for id<A>.
   1278   if (B->isObjCQualifiedIdType()) {
   1279     return A->isObjCQualifiedIdType() &&
   1280            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1281                                                      QualType(B,0),
   1282                                                      false);
   1283   }
   1284 
   1285   /*
   1286   // id is a special type that bypasses type checking completely.  We want a
   1287   // warning when it is used in one place but not another.
   1288   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1289 
   1290 
   1291   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1292   // if we've got this far)
   1293   if (B->isObjCQualifiedIdType()) return false;
   1294   */
   1295 
   1296   // Now we know that A and B are (potentially-qualified) class types.  The
   1297   // normal rules for assignment apply.
   1298   return Context.canAssignObjCInterfaces(A, B);
   1299 }
   1300 
   1301 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1302   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1303 }
   1304 
   1305 static bool CheckMethodOverrideReturn(Sema &S,
   1306                                       ObjCMethodDecl *MethodImpl,
   1307                                       ObjCMethodDecl *MethodDecl,
   1308                                       bool IsProtocolMethodDecl,
   1309                                       bool IsOverridingMode,
   1310                                       bool Warn) {
   1311   if (IsProtocolMethodDecl &&
   1312       (MethodDecl->getObjCDeclQualifier() !=
   1313        MethodImpl->getObjCDeclQualifier())) {
   1314     if (Warn) {
   1315         S.Diag(MethodImpl->getLocation(),
   1316                (IsOverridingMode ?
   1317                  diag::warn_conflicting_overriding_ret_type_modifiers
   1318                  : diag::warn_conflicting_ret_type_modifiers))
   1319           << MethodImpl->getDeclName()
   1320           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1321         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1322           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1323     }
   1324     else
   1325       return false;
   1326   }
   1327 
   1328   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1329                                        MethodDecl->getResultType()))
   1330     return true;
   1331   if (!Warn)
   1332     return false;
   1333 
   1334   unsigned DiagID =
   1335     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1336                      : diag::warn_conflicting_ret_types;
   1337 
   1338   // Mismatches between ObjC pointers go into a different warning
   1339   // category, and sometimes they're even completely whitelisted.
   1340   if (const ObjCObjectPointerType *ImplPtrTy =
   1341         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1342     if (const ObjCObjectPointerType *IfacePtrTy =
   1343           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1344       // Allow non-matching return types as long as they don't violate
   1345       // the principle of substitutability.  Specifically, we permit
   1346       // return types that are subclasses of the declared return type,
   1347       // or that are more-qualified versions of the declared type.
   1348       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1349         return false;
   1350 
   1351       DiagID =
   1352         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1353                           : diag::warn_non_covariant_ret_types;
   1354     }
   1355   }
   1356 
   1357   S.Diag(MethodImpl->getLocation(), DiagID)
   1358     << MethodImpl->getDeclName()
   1359     << MethodDecl->getResultType()
   1360     << MethodImpl->getResultType()
   1361     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1362   S.Diag(MethodDecl->getLocation(),
   1363          IsOverridingMode ? diag::note_previous_declaration
   1364                           : diag::note_previous_definition)
   1365     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1366   return false;
   1367 }
   1368 
   1369 static bool CheckMethodOverrideParam(Sema &S,
   1370                                      ObjCMethodDecl *MethodImpl,
   1371                                      ObjCMethodDecl *MethodDecl,
   1372                                      ParmVarDecl *ImplVar,
   1373                                      ParmVarDecl *IfaceVar,
   1374                                      bool IsProtocolMethodDecl,
   1375                                      bool IsOverridingMode,
   1376                                      bool Warn) {
   1377   if (IsProtocolMethodDecl &&
   1378       (ImplVar->getObjCDeclQualifier() !=
   1379        IfaceVar->getObjCDeclQualifier())) {
   1380     if (Warn) {
   1381       if (IsOverridingMode)
   1382         S.Diag(ImplVar->getLocation(),
   1383                diag::warn_conflicting_overriding_param_modifiers)
   1384             << getTypeRange(ImplVar->getTypeSourceInfo())
   1385             << MethodImpl->getDeclName();
   1386       else S.Diag(ImplVar->getLocation(),
   1387              diag::warn_conflicting_param_modifiers)
   1388           << getTypeRange(ImplVar->getTypeSourceInfo())
   1389           << MethodImpl->getDeclName();
   1390       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1391           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1392     }
   1393     else
   1394       return false;
   1395   }
   1396 
   1397   QualType ImplTy = ImplVar->getType();
   1398   QualType IfaceTy = IfaceVar->getType();
   1399 
   1400   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1401     return true;
   1402 
   1403   if (!Warn)
   1404     return false;
   1405   unsigned DiagID =
   1406     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1407                      : diag::warn_conflicting_param_types;
   1408 
   1409   // Mismatches between ObjC pointers go into a different warning
   1410   // category, and sometimes they're even completely whitelisted.
   1411   if (const ObjCObjectPointerType *ImplPtrTy =
   1412         ImplTy->getAs<ObjCObjectPointerType>()) {
   1413     if (const ObjCObjectPointerType *IfacePtrTy =
   1414           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1415       // Allow non-matching argument types as long as they don't
   1416       // violate the principle of substitutability.  Specifically, the
   1417       // implementation must accept any objects that the superclass
   1418       // accepts, however it may also accept others.
   1419       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1420         return false;
   1421 
   1422       DiagID =
   1423       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1424                        :  diag::warn_non_contravariant_param_types;
   1425     }
   1426   }
   1427 
   1428   S.Diag(ImplVar->getLocation(), DiagID)
   1429     << getTypeRange(ImplVar->getTypeSourceInfo())
   1430     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1431   S.Diag(IfaceVar->getLocation(),
   1432          (IsOverridingMode ? diag::note_previous_declaration
   1433                         : diag::note_previous_definition))
   1434     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1435   return false;
   1436 }
   1437 
   1438 /// In ARC, check whether the conventional meanings of the two methods
   1439 /// match.  If they don't, it's a hard error.
   1440 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1441                                       ObjCMethodDecl *decl) {
   1442   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1443   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1444   if (implFamily == declFamily) return false;
   1445 
   1446   // Since conventions are sorted by selector, the only possibility is
   1447   // that the types differ enough to cause one selector or the other
   1448   // to fall out of the family.
   1449   assert(implFamily == OMF_None || declFamily == OMF_None);
   1450 
   1451   // No further diagnostics required on invalid declarations.
   1452   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1453 
   1454   const ObjCMethodDecl *unmatched = impl;
   1455   ObjCMethodFamily family = declFamily;
   1456   unsigned errorID = diag::err_arc_lost_method_convention;
   1457   unsigned noteID = diag::note_arc_lost_method_convention;
   1458   if (declFamily == OMF_None) {
   1459     unmatched = decl;
   1460     family = implFamily;
   1461     errorID = diag::err_arc_gained_method_convention;
   1462     noteID = diag::note_arc_gained_method_convention;
   1463   }
   1464 
   1465   // Indexes into a %select clause in the diagnostic.
   1466   enum FamilySelector {
   1467     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1468   };
   1469   FamilySelector familySelector = FamilySelector();
   1470 
   1471   switch (family) {
   1472   case OMF_None: llvm_unreachable("logic error, no method convention");
   1473   case OMF_retain:
   1474   case OMF_release:
   1475   case OMF_autorelease:
   1476   case OMF_dealloc:
   1477   case OMF_finalize:
   1478   case OMF_retainCount:
   1479   case OMF_self:
   1480   case OMF_performSelector:
   1481     // Mismatches for these methods don't change ownership
   1482     // conventions, so we don't care.
   1483     return false;
   1484 
   1485   case OMF_init: familySelector = F_init; break;
   1486   case OMF_alloc: familySelector = F_alloc; break;
   1487   case OMF_copy: familySelector = F_copy; break;
   1488   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1489   case OMF_new: familySelector = F_new; break;
   1490   }
   1491 
   1492   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1493   ReasonSelector reasonSelector;
   1494 
   1495   // The only reason these methods don't fall within their families is
   1496   // due to unusual result types.
   1497   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1498     reasonSelector = R_UnrelatedReturn;
   1499   } else {
   1500     reasonSelector = R_NonObjectReturn;
   1501   }
   1502 
   1503   S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
   1504   S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
   1505 
   1506   return true;
   1507 }
   1508 
   1509 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1510                                        ObjCMethodDecl *MethodDecl,
   1511                                        bool IsProtocolMethodDecl) {
   1512   if (getLangOpts().ObjCAutoRefCount &&
   1513       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1514     return;
   1515 
   1516   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1517                             IsProtocolMethodDecl, false,
   1518                             true);
   1519 
   1520   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1521        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1522        EF = MethodDecl->param_end();
   1523        IM != EM && IF != EF; ++IM, ++IF) {
   1524     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1525                              IsProtocolMethodDecl, false, true);
   1526   }
   1527 
   1528   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1529     Diag(ImpMethodDecl->getLocation(),
   1530          diag::warn_conflicting_variadic);
   1531     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1532   }
   1533 }
   1534 
   1535 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1536                                        ObjCMethodDecl *Overridden,
   1537                                        bool IsProtocolMethodDecl) {
   1538 
   1539   CheckMethodOverrideReturn(*this, Method, Overridden,
   1540                             IsProtocolMethodDecl, true,
   1541                             true);
   1542 
   1543   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1544        IF = Overridden->param_begin(), EM = Method->param_end(),
   1545        EF = Overridden->param_end();
   1546        IM != EM && IF != EF; ++IM, ++IF) {
   1547     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1548                              IsProtocolMethodDecl, true, true);
   1549   }
   1550 
   1551   if (Method->isVariadic() != Overridden->isVariadic()) {
   1552     Diag(Method->getLocation(),
   1553          diag::warn_conflicting_overriding_variadic);
   1554     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1555   }
   1556 }
   1557 
   1558 /// WarnExactTypedMethods - This routine issues a warning if method
   1559 /// implementation declaration matches exactly that of its declaration.
   1560 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1561                                  ObjCMethodDecl *MethodDecl,
   1562                                  bool IsProtocolMethodDecl) {
   1563   // don't issue warning when protocol method is optional because primary
   1564   // class is not required to implement it and it is safe for protocol
   1565   // to implement it.
   1566   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1567     return;
   1568   // don't issue warning when primary class's method is
   1569   // depecated/unavailable.
   1570   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1571       MethodDecl->hasAttr<DeprecatedAttr>())
   1572     return;
   1573 
   1574   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1575                                       IsProtocolMethodDecl, false, false);
   1576   if (match)
   1577     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1578          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1579          EF = MethodDecl->param_end();
   1580          IM != EM && IF != EF; ++IM, ++IF) {
   1581       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1582                                        *IM, *IF,
   1583                                        IsProtocolMethodDecl, false, false);
   1584       if (!match)
   1585         break;
   1586     }
   1587   if (match)
   1588     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1589   if (match)
   1590     match = !(MethodDecl->isClassMethod() &&
   1591               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1592 
   1593   if (match) {
   1594     Diag(ImpMethodDecl->getLocation(),
   1595          diag::warn_category_method_impl_match);
   1596     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   1597       << MethodDecl->getDeclName();
   1598   }
   1599 }
   1600 
   1601 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1602 /// improve the efficiency of selector lookups and type checking by associating
   1603 /// with each protocol / interface / category the flattened instance tables. If
   1604 /// we used an immutable set to keep the table then it wouldn't add significant
   1605 /// memory cost and it would be handy for lookups.
   1606 
   1607 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1608 /// Declared in protocol, and those referenced by it.
   1609 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1610                                    ObjCProtocolDecl *PDecl,
   1611                                    bool& IncompleteImpl,
   1612                                    const SelectorSet &InsMap,
   1613                                    const SelectorSet &ClsMap,
   1614                                    ObjCContainerDecl *CDecl) {
   1615   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   1616   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   1617                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   1618   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1619 
   1620   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1621   ObjCInterfaceDecl *NSIDecl = 0;
   1622   if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
   1623     // check to see if class implements forwardInvocation method and objects
   1624     // of this class are derived from 'NSProxy' so that to forward requests
   1625     // from one object to another.
   1626     // Under such conditions, which means that every method possible is
   1627     // implemented in the class, we should not issue "Method definition not
   1628     // found" warnings.
   1629     // FIXME: Use a general GetUnarySelector method for this.
   1630     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1631     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1632     if (InsMap.count(fISelector))
   1633       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1634       // need be implemented in the implementation.
   1635       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1636   }
   1637 
   1638   // If this is a forward protocol declaration, get its definition.
   1639   if (!PDecl->isThisDeclarationADefinition() &&
   1640       PDecl->getDefinition())
   1641     PDecl = PDecl->getDefinition();
   1642 
   1643   // If a method lookup fails locally we still need to look and see if
   1644   // the method was implemented by a base class or an inherited
   1645   // protocol. This lookup is slow, but occurs rarely in correct code
   1646   // and otherwise would terminate in a warning.
   1647 
   1648   // check unimplemented instance methods.
   1649   if (!NSIDecl)
   1650     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1651          E = PDecl->instmeth_end(); I != E; ++I) {
   1652       ObjCMethodDecl *method = *I;
   1653       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1654           !method->isPropertyAccessor() &&
   1655           !InsMap.count(method->getSelector()) &&
   1656           (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
   1657             // If a method is not implemented in the category implementation but
   1658             // has been declared in its primary class, superclass,
   1659             // or in one of their protocols, no need to issue the warning.
   1660             // This is because method will be implemented in the primary class
   1661             // or one of its super class implementation.
   1662 
   1663             // Ugly, but necessary. Method declared in protcol might have
   1664             // have been synthesized due to a property declared in the class which
   1665             // uses the protocol.
   1666             if (ObjCMethodDecl *MethodInClass =
   1667                   IDecl->lookupInstanceMethod(method->getSelector(),
   1668                                               true /*shallowCategoryLookup*/))
   1669               if (C || MethodInClass->isPropertyAccessor())
   1670                 continue;
   1671             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1672             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1673                 != DiagnosticsEngine::Ignored) {
   1674               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1675               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1676                 << PDecl->getDeclName();
   1677             }
   1678           }
   1679     }
   1680   // check unimplemented class methods
   1681   for (ObjCProtocolDecl::classmeth_iterator
   1682          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1683        I != E; ++I) {
   1684     ObjCMethodDecl *method = *I;
   1685     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1686         !ClsMap.count(method->getSelector()) &&
   1687         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1688       // See above comment for instance method lookups.
   1689       if (C && IDecl->lookupClassMethod(method->getSelector(),
   1690                                         true /*shallowCategoryLookup*/))
   1691         continue;
   1692       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1693       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
   1694             DiagnosticsEngine::Ignored) {
   1695         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1696         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1697           PDecl->getDeclName();
   1698       }
   1699     }
   1700   }
   1701   // Check on this protocols's referenced protocols, recursively.
   1702   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1703        E = PDecl->protocol_end(); PI != E; ++PI)
   1704     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
   1705 }
   1706 
   1707 /// MatchAllMethodDeclarations - Check methods declared in interface
   1708 /// or protocol against those declared in their implementations.
   1709 ///
   1710 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   1711                                       const SelectorSet &ClsMap,
   1712                                       SelectorSet &InsMapSeen,
   1713                                       SelectorSet &ClsMapSeen,
   1714                                       ObjCImplDecl* IMPDecl,
   1715                                       ObjCContainerDecl* CDecl,
   1716                                       bool &IncompleteImpl,
   1717                                       bool ImmediateClass,
   1718                                       bool WarnCategoryMethodImpl) {
   1719   // Check and see if instance methods in class interface have been
   1720   // implemented in the implementation class. If so, their types match.
   1721   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1722        E = CDecl->instmeth_end(); I != E; ++I) {
   1723     if (InsMapSeen.count((*I)->getSelector()))
   1724         continue;
   1725     InsMapSeen.insert((*I)->getSelector());
   1726     if (!(*I)->isPropertyAccessor() &&
   1727         !InsMap.count((*I)->getSelector())) {
   1728       if (ImmediateClass)
   1729         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1730                             diag::warn_undef_method_impl);
   1731       continue;
   1732     } else {
   1733       ObjCMethodDecl *ImpMethodDecl =
   1734         IMPDecl->getInstanceMethod((*I)->getSelector());
   1735       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
   1736              "Expected to find the method through lookup as well");
   1737       ObjCMethodDecl *MethodDecl = *I;
   1738       // ImpMethodDecl may be null as in a @dynamic property.
   1739       if (ImpMethodDecl) {
   1740         if (!WarnCategoryMethodImpl)
   1741           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1742                                       isa<ObjCProtocolDecl>(CDecl));
   1743         else if (!MethodDecl->isPropertyAccessor())
   1744           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1745                                 isa<ObjCProtocolDecl>(CDecl));
   1746       }
   1747     }
   1748   }
   1749 
   1750   // Check and see if class methods in class interface have been
   1751   // implemented in the implementation class. If so, their types match.
   1752    for (ObjCInterfaceDecl::classmeth_iterator
   1753        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1754      if (ClsMapSeen.count((*I)->getSelector()))
   1755        continue;
   1756      ClsMapSeen.insert((*I)->getSelector());
   1757     if (!ClsMap.count((*I)->getSelector())) {
   1758       if (ImmediateClass)
   1759         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1760                             diag::warn_undef_method_impl);
   1761     } else {
   1762       ObjCMethodDecl *ImpMethodDecl =
   1763         IMPDecl->getClassMethod((*I)->getSelector());
   1764       assert(CDecl->getClassMethod((*I)->getSelector()) &&
   1765              "Expected to find the method through lookup as well");
   1766       ObjCMethodDecl *MethodDecl = *I;
   1767       if (!WarnCategoryMethodImpl)
   1768         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1769                                     isa<ObjCProtocolDecl>(CDecl));
   1770       else
   1771         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1772                               isa<ObjCProtocolDecl>(CDecl));
   1773     }
   1774   }
   1775 
   1776   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1777     // when checking that methods in implementation match their declaration,
   1778     // i.e. when WarnCategoryMethodImpl is false, check declarations in class
   1779     // extension; as well as those in categories.
   1780     if (!WarnCategoryMethodImpl) {
   1781       for (ObjCInterfaceDecl::visible_categories_iterator
   1782              Cat = I->visible_categories_begin(),
   1783            CatEnd = I->visible_categories_end();
   1784            Cat != CatEnd; ++Cat) {
   1785         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1786                                    IMPDecl, *Cat, IncompleteImpl, false,
   1787                                    WarnCategoryMethodImpl);
   1788       }
   1789     } else {
   1790       // Also methods in class extensions need be looked at next.
   1791       for (ObjCInterfaceDecl::visible_extensions_iterator
   1792              Ext = I->visible_extensions_begin(),
   1793              ExtEnd = I->visible_extensions_end();
   1794            Ext != ExtEnd; ++Ext) {
   1795         MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1796                                    IMPDecl, *Ext, IncompleteImpl, false,
   1797                                    WarnCategoryMethodImpl);
   1798       }
   1799     }
   1800 
   1801     // Check for any implementation of a methods declared in protocol.
   1802     for (ObjCInterfaceDecl::all_protocol_iterator
   1803           PI = I->all_referenced_protocol_begin(),
   1804           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1805       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1806                                  IMPDecl,
   1807                                  (*PI), IncompleteImpl, false,
   1808                                  WarnCategoryMethodImpl);
   1809 
   1810     // FIXME. For now, we are not checking for extact match of methods
   1811     // in category implementation and its primary class's super class.
   1812     if (!WarnCategoryMethodImpl && I->getSuperClass())
   1813       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1814                                  IMPDecl,
   1815                                  I->getSuperClass(), IncompleteImpl, false);
   1816   }
   1817 }
   1818 
   1819 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1820 /// category matches with those implemented in its primary class and
   1821 /// warns each time an exact match is found.
   1822 void Sema::CheckCategoryVsClassMethodMatches(
   1823                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1824   SelectorSet InsMap, ClsMap;
   1825 
   1826   for (ObjCImplementationDecl::instmeth_iterator
   1827        I = CatIMPDecl->instmeth_begin(),
   1828        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
   1829     InsMap.insert((*I)->getSelector());
   1830 
   1831   for (ObjCImplementationDecl::classmeth_iterator
   1832        I = CatIMPDecl->classmeth_begin(),
   1833        E = CatIMPDecl->classmeth_end(); I != E; ++I)
   1834     ClsMap.insert((*I)->getSelector());
   1835   if (InsMap.empty() && ClsMap.empty())
   1836     return;
   1837 
   1838   // Get category's primary class.
   1839   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1840   if (!CatDecl)
   1841     return;
   1842   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1843   if (!IDecl)
   1844     return;
   1845   SelectorSet InsMapSeen, ClsMapSeen;
   1846   bool IncompleteImpl = false;
   1847   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1848                              CatIMPDecl, IDecl,
   1849                              IncompleteImpl, false,
   1850                              true /*WarnCategoryMethodImpl*/);
   1851 }
   1852 
   1853 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1854                                      ObjCContainerDecl* CDecl,
   1855                                      bool IncompleteImpl) {
   1856   SelectorSet InsMap;
   1857   // Check and see if instance methods in class interface have been
   1858   // implemented in the implementation class.
   1859   for (ObjCImplementationDecl::instmeth_iterator
   1860          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1861     InsMap.insert((*I)->getSelector());
   1862 
   1863   // Check and see if properties declared in the interface have either 1)
   1864   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1865   // of the property in the @implementation.
   1866   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
   1867     if  (!(LangOpts.ObjCDefaultSynthProperties &&
   1868            LangOpts.ObjCRuntime.isNonFragile()) ||
   1869          IDecl->isObjCRequiresPropertyDefs())
   1870       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
   1871 
   1872   SelectorSet ClsMap;
   1873   for (ObjCImplementationDecl::classmeth_iterator
   1874        I = IMPDecl->classmeth_begin(),
   1875        E = IMPDecl->classmeth_end(); I != E; ++I)
   1876     ClsMap.insert((*I)->getSelector());
   1877 
   1878   // Check for type conflict of methods declared in a class/protocol and
   1879   // its implementation; if any.
   1880   SelectorSet InsMapSeen, ClsMapSeen;
   1881   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1882                              IMPDecl, CDecl,
   1883                              IncompleteImpl, true);
   1884 
   1885   // check all methods implemented in category against those declared
   1886   // in its primary class.
   1887   if (ObjCCategoryImplDecl *CatDecl =
   1888         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1889     CheckCategoryVsClassMethodMatches(CatDecl);
   1890 
   1891   // Check the protocol list for unimplemented methods in the @implementation
   1892   // class.
   1893   // Check and see if class methods in class interface have been
   1894   // implemented in the implementation class.
   1895 
   1896   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1897     for (ObjCInterfaceDecl::all_protocol_iterator
   1898           PI = I->all_referenced_protocol_begin(),
   1899           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1900       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1901                               InsMap, ClsMap, I);
   1902     // Check class extensions (unnamed categories)
   1903     for (ObjCInterfaceDecl::visible_extensions_iterator
   1904            Ext = I->visible_extensions_begin(),
   1905            ExtEnd = I->visible_extensions_end();
   1906          Ext != ExtEnd; ++Ext) {
   1907       ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
   1908     }
   1909   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1910     // For extended class, unimplemented methods in its protocols will
   1911     // be reported in the primary class.
   1912     if (!C->IsClassExtension()) {
   1913       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1914            E = C->protocol_end(); PI != E; ++PI)
   1915         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1916                                 InsMap, ClsMap, CDecl);
   1917       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl);
   1918     }
   1919   } else
   1920     llvm_unreachable("invalid ObjCContainerDecl type.");
   1921 }
   1922 
   1923 /// ActOnForwardClassDeclaration -
   1924 Sema::DeclGroupPtrTy
   1925 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1926                                    IdentifierInfo **IdentList,
   1927                                    SourceLocation *IdentLocs,
   1928                                    unsigned NumElts) {
   1929   SmallVector<Decl *, 8> DeclsInGroup;
   1930   for (unsigned i = 0; i != NumElts; ++i) {
   1931     // Check for another declaration kind with the same name.
   1932     NamedDecl *PrevDecl
   1933       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1934                          LookupOrdinaryName, ForRedeclaration);
   1935     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1936       // GCC apparently allows the following idiom:
   1937       //
   1938       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1939       // @class XCElementToggler;
   1940       //
   1941       // Here we have chosen to ignore the forward class declaration
   1942       // with a warning. Since this is the implied behavior.
   1943       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1944       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1945         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1946         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1947       } else {
   1948         // a forward class declaration matching a typedef name of a class refers
   1949         // to the underlying class. Just ignore the forward class with a warning
   1950         // as this will force the intended behavior which is to lookup the typedef
   1951         // name.
   1952         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   1953           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
   1954           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1955           continue;
   1956         }
   1957       }
   1958     }
   1959 
   1960     // Create a declaration to describe this forward declaration.
   1961     ObjCInterfaceDecl *PrevIDecl
   1962       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1963 
   1964     IdentifierInfo *ClassName = IdentList[i];
   1965     if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
   1966       // A previous decl with a different name is because of
   1967       // @compatibility_alias, for example:
   1968       // \code
   1969       //   @class NewImage;
   1970       //   @compatibility_alias OldImage NewImage;
   1971       // \endcode
   1972       // A lookup for 'OldImage' will return the 'NewImage' decl.
   1973       //
   1974       // In such a case use the real declaration name, instead of the alias one,
   1975       // otherwise we will break IdentifierResolver and redecls-chain invariants.
   1976       // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
   1977       // has been aliased.
   1978       ClassName = PrevIDecl->getIdentifier();
   1979     }
   1980 
   1981     ObjCInterfaceDecl *IDecl
   1982       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1983                                   ClassName, PrevIDecl, IdentLocs[i]);
   1984     IDecl->setAtEndRange(IdentLocs[i]);
   1985 
   1986     PushOnScopeChains(IDecl, TUScope);
   1987     CheckObjCDeclScope(IDecl);
   1988     DeclsInGroup.push_back(IDecl);
   1989   }
   1990 
   1991   return BuildDeclaratorGroup(DeclsInGroup, false);
   1992 }
   1993 
   1994 static bool tryMatchRecordTypes(ASTContext &Context,
   1995                                 Sema::MethodMatchStrategy strategy,
   1996                                 const Type *left, const Type *right);
   1997 
   1998 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1999                        QualType leftQT, QualType rightQT) {
   2000   const Type *left =
   2001     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   2002   const Type *right =
   2003     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   2004 
   2005   if (left == right) return true;
   2006 
   2007   // If we're doing a strict match, the types have to match exactly.
   2008   if (strategy == Sema::MMS_strict) return false;
   2009 
   2010   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   2011 
   2012   // Otherwise, use this absurdly complicated algorithm to try to
   2013   // validate the basic, low-level compatibility of the two types.
   2014 
   2015   // As a minimum, require the sizes and alignments to match.
   2016   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   2017     return false;
   2018 
   2019   // Consider all the kinds of non-dependent canonical types:
   2020   // - functions and arrays aren't possible as return and parameter types
   2021 
   2022   // - vector types of equal size can be arbitrarily mixed
   2023   if (isa<VectorType>(left)) return isa<VectorType>(right);
   2024   if (isa<VectorType>(right)) return false;
   2025 
   2026   // - references should only match references of identical type
   2027   // - structs, unions, and Objective-C objects must match more-or-less
   2028   //   exactly
   2029   // - everything else should be a scalar
   2030   if (!left->isScalarType() || !right->isScalarType())
   2031     return tryMatchRecordTypes(Context, strategy, left, right);
   2032 
   2033   // Make scalars agree in kind, except count bools as chars, and group
   2034   // all non-member pointers together.
   2035   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   2036   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   2037   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   2038   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   2039   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   2040     leftSK = Type::STK_ObjCObjectPointer;
   2041   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   2042     rightSK = Type::STK_ObjCObjectPointer;
   2043 
   2044   // Note that data member pointers and function member pointers don't
   2045   // intermix because of the size differences.
   2046 
   2047   return (leftSK == rightSK);
   2048 }
   2049 
   2050 static bool tryMatchRecordTypes(ASTContext &Context,
   2051                                 Sema::MethodMatchStrategy strategy,
   2052                                 const Type *lt, const Type *rt) {
   2053   assert(lt && rt && lt != rt);
   2054 
   2055   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   2056   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   2057   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   2058 
   2059   // Require union-hood to match.
   2060   if (left->isUnion() != right->isUnion()) return false;
   2061 
   2062   // Require an exact match if either is non-POD.
   2063   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   2064       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   2065     return false;
   2066 
   2067   // Require size and alignment to match.
   2068   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   2069 
   2070   // Require fields to match.
   2071   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   2072   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   2073   for (; li != le && ri != re; ++li, ++ri) {
   2074     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   2075       return false;
   2076   }
   2077   return (li == le && ri == re);
   2078 }
   2079 
   2080 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   2081 /// returns true, or false, accordingly.
   2082 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   2083 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   2084                                       const ObjCMethodDecl *right,
   2085                                       MethodMatchStrategy strategy) {
   2086   if (!matchTypes(Context, strategy,
   2087                   left->getResultType(), right->getResultType()))
   2088     return false;
   2089 
   2090   // If either is hidden, it is not considered to match.
   2091   if (left->isHidden() || right->isHidden())
   2092     return false;
   2093 
   2094   if (getLangOpts().ObjCAutoRefCount &&
   2095       (left->hasAttr<NSReturnsRetainedAttr>()
   2096          != right->hasAttr<NSReturnsRetainedAttr>() ||
   2097        left->hasAttr<NSConsumesSelfAttr>()
   2098          != right->hasAttr<NSConsumesSelfAttr>()))
   2099     return false;
   2100 
   2101   ObjCMethodDecl::param_const_iterator
   2102     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   2103     re = right->param_end();
   2104 
   2105   for (; li != le && ri != re; ++li, ++ri) {
   2106     assert(ri != right->param_end() && "Param mismatch");
   2107     const ParmVarDecl *lparm = *li, *rparm = *ri;
   2108 
   2109     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   2110       return false;
   2111 
   2112     if (getLangOpts().ObjCAutoRefCount &&
   2113         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   2114       return false;
   2115   }
   2116   return true;
   2117 }
   2118 
   2119 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
   2120   // Record at the head of the list whether there were 0, 1, or >= 2 methods
   2121   // inside categories.
   2122   if (ObjCCategoryDecl *
   2123         CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
   2124     if (!CD->IsClassExtension() && List->getBits() < 2)
   2125         List->setBits(List->getBits()+1);
   2126 
   2127   // If the list is empty, make it a singleton list.
   2128   if (List->Method == 0) {
   2129     List->Method = Method;
   2130     List->setNext(0);
   2131     return;
   2132   }
   2133 
   2134   // We've seen a method with this name, see if we have already seen this type
   2135   // signature.
   2136   ObjCMethodList *Previous = List;
   2137   for (; List; Previous = List, List = List->getNext()) {
   2138     // If we are building a module, keep all of the methods.
   2139     if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
   2140       continue;
   2141 
   2142     if (!MatchTwoMethodDeclarations(Method, List->Method))
   2143       continue;
   2144 
   2145     ObjCMethodDecl *PrevObjCMethod = List->Method;
   2146 
   2147     // Propagate the 'defined' bit.
   2148     if (Method->isDefined())
   2149       PrevObjCMethod->setDefined(true);
   2150 
   2151     // If a method is deprecated, push it in the global pool.
   2152     // This is used for better diagnostics.
   2153     if (Method->isDeprecated()) {
   2154       if (!PrevObjCMethod->isDeprecated())
   2155         List->Method = Method;
   2156     }
   2157     // If new method is unavailable, push it into global pool
   2158     // unless previous one is deprecated.
   2159     if (Method->isUnavailable()) {
   2160       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   2161         List->Method = Method;
   2162     }
   2163 
   2164     return;
   2165   }
   2166 
   2167   // We have a new signature for an existing method - add it.
   2168   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   2169   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   2170   Previous->setNext(new (Mem) ObjCMethodList(Method, 0));
   2171 }
   2172 
   2173 /// \brief Read the contents of the method pool for a given selector from
   2174 /// external storage.
   2175 void Sema::ReadMethodPool(Selector Sel) {
   2176   assert(ExternalSource && "We need an external AST source");
   2177   ExternalSource->ReadMethodPool(Sel);
   2178 }
   2179 
   2180 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   2181                                  bool instance) {
   2182   // Ignore methods of invalid containers.
   2183   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   2184     return;
   2185 
   2186   if (ExternalSource)
   2187     ReadMethodPool(Method->getSelector());
   2188 
   2189   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   2190   if (Pos == MethodPool.end())
   2191     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   2192                                            GlobalMethods())).first;
   2193 
   2194   Method->setDefined(impl);
   2195 
   2196   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   2197   addMethodToGlobalList(&Entry, Method);
   2198 }
   2199 
   2200 /// Determines if this is an "acceptable" loose mismatch in the global
   2201 /// method pool.  This exists mostly as a hack to get around certain
   2202 /// global mismatches which we can't afford to make warnings / errors.
   2203 /// Really, what we want is a way to take a method out of the global
   2204 /// method pool.
   2205 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   2206                                        ObjCMethodDecl *other) {
   2207   if (!chosen->isInstanceMethod())
   2208     return false;
   2209 
   2210   Selector sel = chosen->getSelector();
   2211   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   2212     return false;
   2213 
   2214   // Don't complain about mismatches for -length if the method we
   2215   // chose has an integral result type.
   2216   return (chosen->getResultType()->isIntegerType());
   2217 }
   2218 
   2219 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   2220                                                bool receiverIdOrClass,
   2221                                                bool warn, bool instance) {
   2222   if (ExternalSource)
   2223     ReadMethodPool(Sel);
   2224 
   2225   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2226   if (Pos == MethodPool.end())
   2227     return 0;
   2228 
   2229   // Gather the non-hidden methods.
   2230   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2231   llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
   2232   for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
   2233     if (M->Method && !M->Method->isHidden()) {
   2234       // If we're not supposed to warn about mismatches, we're done.
   2235       if (!warn)
   2236         return M->Method;
   2237 
   2238       Methods.push_back(M->Method);
   2239     }
   2240   }
   2241 
   2242   // If there aren't any visible methods, we're done.
   2243   // FIXME: Recover if there are any known-but-hidden methods?
   2244   if (Methods.empty())
   2245     return 0;
   2246 
   2247   if (Methods.size() == 1)
   2248     return Methods[0];
   2249 
   2250   // We found multiple methods, so we may have to complain.
   2251   bool issueDiagnostic = false, issueError = false;
   2252 
   2253   // We support a warning which complains about *any* difference in
   2254   // method signature.
   2255   bool strictSelectorMatch =
   2256     (receiverIdOrClass && warn &&
   2257      (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   2258                                R.getBegin())
   2259         != DiagnosticsEngine::Ignored));
   2260   if (strictSelectorMatch) {
   2261     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2262       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
   2263         issueDiagnostic = true;
   2264         break;
   2265       }
   2266     }
   2267   }
   2268 
   2269   // If we didn't see any strict differences, we won't see any loose
   2270   // differences.  In ARC, however, we also need to check for loose
   2271   // mismatches, because most of them are errors.
   2272   if (!strictSelectorMatch ||
   2273       (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   2274     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2275       // This checks if the methods differ in type mismatch.
   2276       if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
   2277           !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
   2278         issueDiagnostic = true;
   2279         if (getLangOpts().ObjCAutoRefCount)
   2280           issueError = true;
   2281         break;
   2282       }
   2283     }
   2284 
   2285   if (issueDiagnostic) {
   2286     if (issueError)
   2287       Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2288     else if (strictSelectorMatch)
   2289       Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2290     else
   2291       Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2292 
   2293     Diag(Methods[0]->getLocStart(),
   2294          issueError ? diag::note_possibility : diag::note_using)
   2295       << Methods[0]->getSourceRange();
   2296     for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
   2297       Diag(Methods[I]->getLocStart(), diag::note_also_found)
   2298         << Methods[I]->getSourceRange();
   2299   }
   2300   }
   2301   return Methods[0];
   2302 }
   2303 
   2304 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2305   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2306   if (Pos == MethodPool.end())
   2307     return 0;
   2308 
   2309   GlobalMethods &Methods = Pos->second;
   2310 
   2311   if (Methods.first.Method && Methods.first.Method->isDefined())
   2312     return Methods.first.Method;
   2313   if (Methods.second.Method && Methods.second.Method->isDefined())
   2314     return Methods.second.Method;
   2315   return 0;
   2316 }
   2317 
   2318 static void
   2319 HelperSelectorsForTypoCorrection(
   2320                       SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
   2321                       StringRef Typo, const ObjCMethodDecl * Method) {
   2322   const unsigned MaxEditDistance = 1;
   2323   unsigned BestEditDistance = MaxEditDistance + 1;
   2324   std::string MethodName = Method->getSelector().getAsString();
   2325 
   2326   unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
   2327   if (MinPossibleEditDistance > 0 &&
   2328       Typo.size() / MinPossibleEditDistance < 1)
   2329     return;
   2330   unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
   2331   if (EditDistance > MaxEditDistance)
   2332     return;
   2333   if (EditDistance == BestEditDistance)
   2334     BestMethod.push_back(Method);
   2335   else if (EditDistance < BestEditDistance) {
   2336     BestMethod.clear();
   2337     BestMethod.push_back(Method);
   2338   }
   2339 }
   2340 
   2341 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
   2342                                      QualType ObjectType) {
   2343   if (ObjectType.isNull())
   2344     return true;
   2345   if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
   2346     return true;
   2347   return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) != 0;
   2348 }
   2349 
   2350 const ObjCMethodDecl *
   2351 Sema::SelectorsForTypoCorrection(Selector Sel,
   2352                                  QualType ObjectType) {
   2353   unsigned NumArgs = Sel.getNumArgs();
   2354   SmallVector<const ObjCMethodDecl *, 8> Methods;
   2355   bool ObjectIsId = true, ObjectIsClass = true;
   2356   if (ObjectType.isNull())
   2357     ObjectIsId = ObjectIsClass = false;
   2358   else if (!ObjectType->isObjCObjectPointerType())
   2359     return 0;
   2360   else if (const ObjCObjectPointerType *ObjCPtr =
   2361            ObjectType->getAsObjCInterfacePointerType()) {
   2362     ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
   2363     ObjectIsId = ObjectIsClass = false;
   2364   }
   2365   else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
   2366     ObjectIsClass = false;
   2367   else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
   2368     ObjectIsId = false;
   2369   else
   2370     return 0;
   2371 
   2372   for (GlobalMethodPool::iterator b = MethodPool.begin(),
   2373        e = MethodPool.end(); b != e; b++) {
   2374     // instance methods
   2375     for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
   2376       if (M->Method &&
   2377           (M->Method->getSelector().getNumArgs() == NumArgs) &&
   2378           (M->Method->getSelector() != Sel)) {
   2379         if (ObjectIsId)
   2380           Methods.push_back(M->Method);
   2381         else if (!ObjectIsClass &&
   2382                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
   2383           Methods.push_back(M->Method);
   2384       }
   2385     // class methods
   2386     for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
   2387       if (M->Method &&
   2388           (M->Method->getSelector().getNumArgs() == NumArgs) &&
   2389           (M->Method->getSelector() != Sel)) {
   2390         if (ObjectIsClass)
   2391           Methods.push_back(M->Method);
   2392         else if (!ObjectIsId &&
   2393                  HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
   2394           Methods.push_back(M->Method);
   2395       }
   2396   }
   2397 
   2398   SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
   2399   for (unsigned i = 0, e = Methods.size(); i < e; i++) {
   2400     HelperSelectorsForTypoCorrection(SelectedMethods,
   2401                                      Sel.getAsString(), Methods[i]);
   2402   }
   2403   return (SelectedMethods.size() == 1) ? SelectedMethods[0] : NULL;
   2404 }
   2405 
   2406 static void
   2407 HelperToDiagnoseMismatchedMethodsInGlobalPool(Sema &S,
   2408                                               ObjCMethodList &MethList) {
   2409   ObjCMethodList *M = &MethList;
   2410   ObjCMethodDecl *TargetMethod = M->Method;
   2411   while (TargetMethod &&
   2412          isa<ObjCImplDecl>(TargetMethod->getDeclContext())) {
   2413     M = M->getNext();
   2414     TargetMethod = M ? M->Method : 0;
   2415   }
   2416   if (!TargetMethod)
   2417     return;
   2418   bool FirstTime = true;
   2419   for (M = M->getNext(); M; M=M->getNext()) {
   2420     ObjCMethodDecl *MatchingMethodDecl = M->Method;
   2421     if (isa<ObjCImplDecl>(MatchingMethodDecl->getDeclContext()))
   2422       continue;
   2423     if (!S.MatchTwoMethodDeclarations(TargetMethod,
   2424                                       MatchingMethodDecl, Sema::MMS_loose)) {
   2425       if (FirstTime) {
   2426         FirstTime = false;
   2427         S.Diag(TargetMethod->getLocation(), diag::warning_multiple_selectors)
   2428         << TargetMethod->getSelector();
   2429       }
   2430       S.Diag(MatchingMethodDecl->getLocation(), diag::note_also_found);
   2431     }
   2432   }
   2433 }
   2434 
   2435 void Sema::DiagnoseMismatchedMethodsInGlobalPool() {
   2436   unsigned DIAG = diag::warning_multiple_selectors;
   2437   if (Diags.getDiagnosticLevel(DIAG, SourceLocation())
   2438       == DiagnosticsEngine::Ignored)
   2439     return;
   2440   for (GlobalMethodPool::iterator b = MethodPool.begin(),
   2441        e = MethodPool.end(); b != e; b++) {
   2442     // first, instance methods
   2443     ObjCMethodList &InstMethList = b->second.first;
   2444     HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, InstMethList);
   2445     // second, class methods
   2446     ObjCMethodList &ClsMethList = b->second.second;
   2447     HelperToDiagnoseMismatchedMethodsInGlobalPool(*this, ClsMethList);
   2448   }
   2449 }
   2450 
   2451 /// DiagnoseDuplicateIvars -
   2452 /// Check for duplicate ivars in the entire class at the start of
   2453 /// \@implementation. This becomes necesssary because class extension can
   2454 /// add ivars to a class in random order which will not be known until
   2455 /// class's \@implementation is seen.
   2456 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2457                                   ObjCInterfaceDecl *SID) {
   2458   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   2459        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   2460     ObjCIvarDecl* Ivar = *IVI;
   2461     if (Ivar->isInvalidDecl())
   2462       continue;
   2463     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2464       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2465       if (prevIvar) {
   2466         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2467         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2468         Ivar->setInvalidDecl();
   2469       }
   2470     }
   2471   }
   2472 }
   2473 
   2474 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   2475   switch (CurContext->getDeclKind()) {
   2476     case Decl::ObjCInterface:
   2477       return Sema::OCK_Interface;
   2478     case Decl::ObjCProtocol:
   2479       return Sema::OCK_Protocol;
   2480     case Decl::ObjCCategory:
   2481       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   2482         return Sema::OCK_ClassExtension;
   2483       else
   2484         return Sema::OCK_Category;
   2485     case Decl::ObjCImplementation:
   2486       return Sema::OCK_Implementation;
   2487     case Decl::ObjCCategoryImpl:
   2488       return Sema::OCK_CategoryImplementation;
   2489 
   2490     default:
   2491       return Sema::OCK_None;
   2492   }
   2493 }
   2494 
   2495 // Note: For class/category implementations, allMethods is always null.
   2496 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
   2497                        ArrayRef<DeclGroupPtrTy> allTUVars) {
   2498   if (getObjCContainerKind() == Sema::OCK_None)
   2499     return 0;
   2500 
   2501   assert(AtEnd.isValid() && "Invalid location for '@end'");
   2502 
   2503   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2504   Decl *ClassDecl = cast<Decl>(OCD);
   2505 
   2506   bool isInterfaceDeclKind =
   2507         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2508          || isa<ObjCProtocolDecl>(ClassDecl);
   2509   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2510 
   2511   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2512   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2513   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2514 
   2515   for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
   2516     ObjCMethodDecl *Method =
   2517       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2518 
   2519     if (!Method) continue;  // Already issued a diagnostic.
   2520     if (Method->isInstanceMethod()) {
   2521       /// Check for instance method of the same name with incompatible types
   2522       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2523       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2524                               : false;
   2525       if ((isInterfaceDeclKind && PrevMethod && !match)
   2526           || (checkIdenticalMethods && match)) {
   2527           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2528             << Method->getDeclName();
   2529           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2530         Method->setInvalidDecl();
   2531       } else {
   2532         if (PrevMethod) {
   2533           Method->setAsRedeclaration(PrevMethod);
   2534           if (!Context.getSourceManager().isInSystemHeader(
   2535                  Method->getLocation()))
   2536             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2537               << Method->getDeclName();
   2538           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2539         }
   2540         InsMap[Method->getSelector()] = Method;
   2541         /// The following allows us to typecheck messages to "id".
   2542         AddInstanceMethodToGlobalPool(Method);
   2543       }
   2544     } else {
   2545       /// Check for class method of the same name with incompatible types
   2546       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2547       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2548                               : false;
   2549       if ((isInterfaceDeclKind && PrevMethod && !match)
   2550           || (checkIdenticalMethods && match)) {
   2551         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2552           << Method->getDeclName();
   2553         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2554         Method->setInvalidDecl();
   2555       } else {
   2556         if (PrevMethod) {
   2557           Method->setAsRedeclaration(PrevMethod);
   2558           if (!Context.getSourceManager().isInSystemHeader(
   2559                  Method->getLocation()))
   2560             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2561               << Method->getDeclName();
   2562           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2563         }
   2564         ClsMap[Method->getSelector()] = Method;
   2565         AddFactoryMethodToGlobalPool(Method);
   2566       }
   2567     }
   2568   }
   2569   if (isa<ObjCInterfaceDecl>(ClassDecl)) {
   2570     // Nothing to do here.
   2571   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2572     // Categories are used to extend the class by declaring new methods.
   2573     // By the same token, they are also used to add new properties. No
   2574     // need to compare the added property to those in the class.
   2575 
   2576     if (C->IsClassExtension()) {
   2577       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2578       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2579     }
   2580   }
   2581   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2582     if (CDecl->getIdentifier())
   2583       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2584       // user-defined setter/getter. It also synthesizes setter/getter methods
   2585       // and adds them to the DeclContext and global method pools.
   2586       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2587                                             E = CDecl->prop_end();
   2588            I != E; ++I)
   2589         ProcessPropertyDecl(*I, CDecl);
   2590     CDecl->setAtEndRange(AtEnd);
   2591   }
   2592   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2593     IC->setAtEndRange(AtEnd);
   2594     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2595       // Any property declared in a class extension might have user
   2596       // declared setter or getter in current class extension or one
   2597       // of the other class extensions. Mark them as synthesized as
   2598       // property will be synthesized when property with same name is
   2599       // seen in the @implementation.
   2600       for (ObjCInterfaceDecl::visible_extensions_iterator
   2601              Ext = IDecl->visible_extensions_begin(),
   2602              ExtEnd = IDecl->visible_extensions_end();
   2603            Ext != ExtEnd; ++Ext) {
   2604         for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
   2605              E = Ext->prop_end(); I != E; ++I) {
   2606           ObjCPropertyDecl *Property = *I;
   2607           // Skip over properties declared @dynamic
   2608           if (const ObjCPropertyImplDecl *PIDecl
   2609               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2610             if (PIDecl->getPropertyImplementation()
   2611                   == ObjCPropertyImplDecl::Dynamic)
   2612               continue;
   2613 
   2614           for (ObjCInterfaceDecl::visible_extensions_iterator
   2615                  Ext = IDecl->visible_extensions_begin(),
   2616                  ExtEnd = IDecl->visible_extensions_end();
   2617                Ext != ExtEnd; ++Ext) {
   2618             if (ObjCMethodDecl *GetterMethod
   2619                   = Ext->getInstanceMethod(Property->getGetterName()))
   2620               GetterMethod->setPropertyAccessor(true);
   2621             if (!Property->isReadOnly())
   2622               if (ObjCMethodDecl *SetterMethod
   2623                     = Ext->getInstanceMethod(Property->getSetterName()))
   2624                 SetterMethod->setPropertyAccessor(true);
   2625           }
   2626         }
   2627       }
   2628       ImplMethodsVsClassMethods(S, IC, IDecl);
   2629       AtomicPropertySetterGetterRules(IC, IDecl);
   2630       DiagnoseOwningPropertyGetterSynthesis(IC);
   2631 
   2632       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   2633       if (IDecl->getSuperClass() == NULL) {
   2634         // This class has no superclass, so check that it has been marked with
   2635         // __attribute((objc_root_class)).
   2636         if (!HasRootClassAttr) {
   2637           SourceLocation DeclLoc(IDecl->getLocation());
   2638           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
   2639           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   2640             << IDecl->getIdentifier();
   2641           // See if NSObject is in the current scope, and if it is, suggest
   2642           // adding " : NSObject " to the class declaration.
   2643           NamedDecl *IF = LookupSingleName(TUScope,
   2644                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   2645                                            DeclLoc, LookupOrdinaryName);
   2646           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   2647           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   2648             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   2649               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   2650           } else {
   2651             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   2652           }
   2653         }
   2654       } else if (HasRootClassAttr) {
   2655         // Complain that only root classes may have this attribute.
   2656         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   2657       }
   2658 
   2659       if (LangOpts.ObjCRuntime.isNonFragile()) {
   2660         while (IDecl->getSuperClass()) {
   2661           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2662           IDecl = IDecl->getSuperClass();
   2663         }
   2664       }
   2665     }
   2666     SetIvarInitializers(IC);
   2667   } else if (ObjCCategoryImplDecl* CatImplClass =
   2668                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2669     CatImplClass->setAtEndRange(AtEnd);
   2670 
   2671     // Find category interface decl and then check that all methods declared
   2672     // in this interface are implemented in the category @implementation.
   2673     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2674       if (ObjCCategoryDecl *Cat
   2675             = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
   2676         ImplMethodsVsClassMethods(S, CatImplClass, Cat);
   2677       }
   2678     }
   2679   }
   2680   if (isInterfaceDeclKind) {
   2681     // Reject invalid vardecls.
   2682     for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   2683       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2684       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2685         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2686           if (!VDecl->hasExternalStorage())
   2687             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2688         }
   2689     }
   2690   }
   2691   ActOnObjCContainerFinishDefinition();
   2692 
   2693   for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
   2694     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2695     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2696       (*I)->setTopLevelDeclInObjCContainer();
   2697     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2698   }
   2699 
   2700   ActOnDocumentableDecl(ClassDecl);
   2701   return ClassDecl;
   2702 }
   2703 
   2704 
   2705 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2706 /// objective-c's type qualifier from the parser version of the same info.
   2707 static Decl::ObjCDeclQualifier
   2708 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2709   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2710 }
   2711 
   2712 static inline
   2713 unsigned countAlignAttr(const AttrVec &A) {
   2714   unsigned count=0;
   2715   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
   2716     if ((*i)->getKind() == attr::Aligned)
   2717       ++count;
   2718   return count;
   2719 }
   2720 
   2721 static inline
   2722 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
   2723                                         const AttrVec &A) {
   2724   // If method is only declared in implementation (private method),
   2725   // No need to issue any diagnostics on method definition with attributes.
   2726   if (!IMD)
   2727     return false;
   2728 
   2729   // method declared in interface has no attribute.
   2730   // But implementation has attributes. This is invalid.
   2731   // Except when implementation has 'Align' attribute which is
   2732   // immaterial to method declared in interface.
   2733   if (!IMD->hasAttrs())
   2734     return (A.size() > countAlignAttr(A));
   2735 
   2736   const AttrVec &D = IMD->getAttrs();
   2737 
   2738   unsigned countAlignOnImpl = countAlignAttr(A);
   2739   if (!countAlignOnImpl && (A.size() != D.size()))
   2740     return true;
   2741   else if (countAlignOnImpl) {
   2742     unsigned countAlignOnDecl = countAlignAttr(D);
   2743     if (countAlignOnDecl && (A.size() != D.size()))
   2744       return true;
   2745     else if (!countAlignOnDecl &&
   2746              ((A.size()-countAlignOnImpl) != D.size()))
   2747       return true;
   2748   }
   2749 
   2750   // attributes on method declaration and definition must match exactly.
   2751   // Note that we have at most a couple of attributes on methods, so this
   2752   // n*n search is good enough.
   2753   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
   2754     if ((*i)->getKind() == attr::Aligned)
   2755       continue;
   2756     bool match = false;
   2757     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
   2758       if ((*i)->getKind() == (*i1)->getKind()) {
   2759         match = true;
   2760         break;
   2761       }
   2762     }
   2763     if (!match)
   2764       return true;
   2765   }
   2766 
   2767   return false;
   2768 }
   2769 
   2770 /// \brief Check whether the declared result type of the given Objective-C
   2771 /// method declaration is compatible with the method's class.
   2772 ///
   2773 static Sema::ResultTypeCompatibilityKind
   2774 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2775                                     ObjCInterfaceDecl *CurrentClass) {
   2776   QualType ResultType = Method->getResultType();
   2777 
   2778   // If an Objective-C method inherits its related result type, then its
   2779   // declared result type must be compatible with its own class type. The
   2780   // declared result type is compatible if:
   2781   if (const ObjCObjectPointerType *ResultObjectType
   2782                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2783     //   - it is id or qualified id, or
   2784     if (ResultObjectType->isObjCIdType() ||
   2785         ResultObjectType->isObjCQualifiedIdType())
   2786       return Sema::RTC_Compatible;
   2787 
   2788     if (CurrentClass) {
   2789       if (ObjCInterfaceDecl *ResultClass
   2790                                       = ResultObjectType->getInterfaceDecl()) {
   2791         //   - it is the same as the method's class type, or
   2792         if (declaresSameEntity(CurrentClass, ResultClass))
   2793           return Sema::RTC_Compatible;
   2794 
   2795         //   - it is a superclass of the method's class type
   2796         if (ResultClass->isSuperClassOf(CurrentClass))
   2797           return Sema::RTC_Compatible;
   2798       }
   2799     } else {
   2800       // Any Objective-C pointer type might be acceptable for a protocol
   2801       // method; we just don't know.
   2802       return Sema::RTC_Unknown;
   2803     }
   2804   }
   2805 
   2806   return Sema::RTC_Incompatible;
   2807 }
   2808 
   2809 namespace {
   2810 /// A helper class for searching for methods which a particular method
   2811 /// overrides.
   2812 class OverrideSearch {
   2813 public:
   2814   Sema &S;
   2815   ObjCMethodDecl *Method;
   2816   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   2817   bool Recursive;
   2818 
   2819 public:
   2820   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2821     Selector selector = method->getSelector();
   2822 
   2823     // Bypass this search if we've never seen an instance/class method
   2824     // with this selector before.
   2825     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2826     if (it == S.MethodPool.end()) {
   2827       if (!S.getExternalSource()) return;
   2828       S.ReadMethodPool(selector);
   2829 
   2830       it = S.MethodPool.find(selector);
   2831       if (it == S.MethodPool.end())
   2832         return;
   2833     }
   2834     ObjCMethodList &list =
   2835       method->isInstanceMethod() ? it->second.first : it->second.second;
   2836     if (!list.Method) return;
   2837 
   2838     ObjCContainerDecl *container
   2839       = cast<ObjCContainerDecl>(method->getDeclContext());
   2840 
   2841     // Prevent the search from reaching this container again.  This is
   2842     // important with categories, which override methods from the
   2843     // interface and each other.
   2844     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   2845       searchFromContainer(container);
   2846       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   2847         searchFromContainer(Interface);
   2848     } else {
   2849       searchFromContainer(container);
   2850     }
   2851   }
   2852 
   2853   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   2854   iterator begin() const { return Overridden.begin(); }
   2855   iterator end() const { return Overridden.end(); }
   2856 
   2857 private:
   2858   void searchFromContainer(ObjCContainerDecl *container) {
   2859     if (container->isInvalidDecl()) return;
   2860 
   2861     switch (container->getDeclKind()) {
   2862 #define OBJCCONTAINER(type, base) \
   2863     case Decl::type: \
   2864       searchFrom(cast<type##Decl>(container)); \
   2865       break;
   2866 #define ABSTRACT_DECL(expansion)
   2867 #define DECL(type, base) \
   2868     case Decl::type:
   2869 #include "clang/AST/DeclNodes.inc"
   2870       llvm_unreachable("not an ObjC container!");
   2871     }
   2872   }
   2873 
   2874   void searchFrom(ObjCProtocolDecl *protocol) {
   2875     if (!protocol->hasDefinition())
   2876       return;
   2877 
   2878     // A method in a protocol declaration overrides declarations from
   2879     // referenced ("parent") protocols.
   2880     search(protocol->getReferencedProtocols());
   2881   }
   2882 
   2883   void searchFrom(ObjCCategoryDecl *category) {
   2884     // A method in a category declaration overrides declarations from
   2885     // the main class and from protocols the category references.
   2886     // The main class is handled in the constructor.
   2887     search(category->getReferencedProtocols());
   2888   }
   2889 
   2890   void searchFrom(ObjCCategoryImplDecl *impl) {
   2891     // A method in a category definition that has a category
   2892     // declaration overrides declarations from the category
   2893     // declaration.
   2894     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2895       search(category);
   2896       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   2897         search(Interface);
   2898 
   2899     // Otherwise it overrides declarations from the class.
   2900     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   2901       search(Interface);
   2902     }
   2903   }
   2904 
   2905   void searchFrom(ObjCInterfaceDecl *iface) {
   2906     // A method in a class declaration overrides declarations from
   2907     if (!iface->hasDefinition())
   2908       return;
   2909 
   2910     //   - categories,
   2911     for (ObjCInterfaceDecl::known_categories_iterator
   2912            cat = iface->known_categories_begin(),
   2913            catEnd = iface->known_categories_end();
   2914          cat != catEnd; ++cat) {
   2915       search(*cat);
   2916     }
   2917 
   2918     //   - the super class, and
   2919     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2920       search(super);
   2921 
   2922     //   - any referenced protocols.
   2923     search(iface->getReferencedProtocols());
   2924   }
   2925 
   2926   void searchFrom(ObjCImplementationDecl *impl) {
   2927     // A method in a class implementation overrides declarations from
   2928     // the class interface.
   2929     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   2930       search(Interface);
   2931   }
   2932 
   2933 
   2934   void search(const ObjCProtocolList &protocols) {
   2935     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2936          i != e; ++i)
   2937       search(*i);
   2938   }
   2939 
   2940   void search(ObjCContainerDecl *container) {
   2941     // Check for a method in this container which matches this selector.
   2942     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2943                                                 Method->isInstanceMethod(),
   2944                                                 /*AllowHidden=*/true);
   2945 
   2946     // If we find one, record it and bail out.
   2947     if (meth) {
   2948       Overridden.insert(meth);
   2949       return;
   2950     }
   2951 
   2952     // Otherwise, search for methods that a hypothetical method here
   2953     // would have overridden.
   2954 
   2955     // Note that we're now in a recursive case.
   2956     Recursive = true;
   2957 
   2958     searchFromContainer(container);
   2959   }
   2960 };
   2961 }
   2962 
   2963 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   2964                                     ObjCInterfaceDecl *CurrentClass,
   2965                                     ResultTypeCompatibilityKind RTC) {
   2966   // Search for overridden methods and merge information down from them.
   2967   OverrideSearch overrides(*this, ObjCMethod);
   2968   // Keep track if the method overrides any method in the class's base classes,
   2969   // its protocols, or its categories' protocols; we will keep that info
   2970   // in the ObjCMethodDecl.
   2971   // For this info, a method in an implementation is not considered as
   2972   // overriding the same method in the interface or its categories.
   2973   bool hasOverriddenMethodsInBaseOrProtocol = false;
   2974   for (OverrideSearch::iterator
   2975          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   2976     ObjCMethodDecl *overridden = *i;
   2977 
   2978     if (!hasOverriddenMethodsInBaseOrProtocol) {
   2979       if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   2980           CurrentClass != overridden->getClassInterface() ||
   2981           overridden->isOverriding()) {
   2982         hasOverriddenMethodsInBaseOrProtocol = true;
   2983 
   2984       } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
   2985         // OverrideSearch will return as "overridden" the same method in the
   2986         // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
   2987         // check whether a category of a base class introduced a method with the
   2988         // same selector, after the interface method declaration.
   2989         // To avoid unnecessary lookups in the majority of cases, we use the
   2990         // extra info bits in GlobalMethodPool to check whether there were any
   2991         // category methods with this selector.
   2992         GlobalMethodPool::iterator It =
   2993             MethodPool.find(ObjCMethod->getSelector());
   2994         if (It != MethodPool.end()) {
   2995           ObjCMethodList &List =
   2996             ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
   2997           unsigned CategCount = List.getBits();
   2998           if (CategCount > 0) {
   2999             // If the method is in a category we'll do lookup if there were at
   3000             // least 2 category methods recorded, otherwise only one will do.
   3001             if (CategCount > 1 ||
   3002                 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
   3003               OverrideSearch overrides(*this, overridden);
   3004               for (OverrideSearch::iterator
   3005                      OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
   3006                 ObjCMethodDecl *SuperOverridden = *OI;
   3007                 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
   3008                     CurrentClass != SuperOverridden->getClassInterface()) {
   3009                   hasOverriddenMethodsInBaseOrProtocol = true;
   3010                   overridden->setOverriding(true);
   3011                   break;
   3012                 }
   3013               }
   3014             }
   3015           }
   3016         }
   3017       }
   3018     }
   3019 
   3020     // Propagate down the 'related result type' bit from overridden methods.
   3021     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   3022       ObjCMethod->SetRelatedResultType();
   3023 
   3024     // Then merge the declarations.
   3025     mergeObjCMethodDecls(ObjCMethod, overridden);
   3026 
   3027     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   3028       continue; // Conflicting properties are detected elsewhere.
   3029 
   3030     // Check for overriding methods
   3031     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   3032         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   3033       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   3034               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   3035 
   3036     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   3037         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   3038         !overridden->isImplicit() /* not meant for properties */) {
   3039       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   3040                                           E = ObjCMethod->param_end();
   3041       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   3042                                      PrevE = overridden->param_end();
   3043       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   3044         assert(PrevI != overridden->param_end() && "Param mismatch");
   3045         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   3046         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   3047         // If type of argument of method in this class does not match its
   3048         // respective argument type in the super class method, issue warning;
   3049         if (!Context.typesAreCompatible(T1, T2)) {
   3050           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   3051             << T1 << T2;
   3052           Diag(overridden->getLocation(), diag::note_previous_declaration);
   3053           break;
   3054         }
   3055       }
   3056     }
   3057   }
   3058 
   3059   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   3060 }
   3061 
   3062 Decl *Sema::ActOnMethodDeclaration(
   3063     Scope *S,
   3064     SourceLocation MethodLoc, SourceLocation EndLoc,
   3065     tok::TokenKind MethodType,
   3066     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   3067     ArrayRef<SourceLocation> SelectorLocs,
   3068     Selector Sel,
   3069     // optional arguments. The number of types/arguments is obtained
   3070     // from the Sel.getNumArgs().
   3071     ObjCArgInfo *ArgInfo,
   3072     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   3073     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   3074     bool isVariadic, bool MethodDefinition) {
   3075   // Make sure we can establish a context for the method.
   3076   if (!CurContext->isObjCContainer()) {
   3077     Diag(MethodLoc, diag::error_missing_method_context);
   3078     return 0;
   3079   }
   3080   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   3081   Decl *ClassDecl = cast<Decl>(OCD);
   3082   QualType resultDeclType;
   3083 
   3084   bool HasRelatedResultType = false;
   3085   TypeSourceInfo *ResultTInfo = 0;
   3086   if (ReturnType) {
   3087     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   3088 
   3089     if (CheckFunctionReturnType(resultDeclType, MethodLoc))
   3090       return 0;
   3091 
   3092     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   3093   } else { // get the type for "id".
   3094     resultDeclType = Context.getObjCIdType();
   3095     Diag(MethodLoc, diag::warn_missing_method_return_type)
   3096       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   3097   }
   3098 
   3099   ObjCMethodDecl* ObjCMethod =
   3100     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
   3101                            resultDeclType,
   3102                            ResultTInfo,
   3103                            CurContext,
   3104                            MethodType == tok::minus, isVariadic,
   3105                            /*isPropertyAccessor=*/false,
   3106                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   3107                            MethodDeclKind == tok::objc_optional
   3108                              ? ObjCMethodDecl::Optional
   3109                              : ObjCMethodDecl::Required,
   3110                            HasRelatedResultType);
   3111 
   3112   SmallVector<ParmVarDecl*, 16> Params;
   3113 
   3114   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   3115     QualType ArgType;
   3116     TypeSourceInfo *DI;
   3117 
   3118     if (!ArgInfo[i].Type) {
   3119       ArgType = Context.getObjCIdType();
   3120       DI = 0;
   3121     } else {
   3122       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   3123     }
   3124 
   3125     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   3126                    LookupOrdinaryName, ForRedeclaration);
   3127     LookupName(R, S);
   3128     if (R.isSingleResult()) {
   3129       NamedDecl *PrevDecl = R.getFoundDecl();
   3130       if (S->isDeclScope(PrevDecl)) {
   3131         Diag(ArgInfo[i].NameLoc,
   3132              (MethodDefinition ? diag::warn_method_param_redefinition
   3133                                : diag::warn_method_param_declaration))
   3134           << ArgInfo[i].Name;
   3135         Diag(PrevDecl->getLocation(),
   3136              diag::note_previous_declaration);
   3137       }
   3138     }
   3139 
   3140     SourceLocation StartLoc = DI
   3141       ? DI->getTypeLoc().getBeginLoc()
   3142       : ArgInfo[i].NameLoc;
   3143 
   3144     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   3145                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   3146                                         ArgType, DI, SC_None);
   3147 
   3148     Param->setObjCMethodScopeInfo(i);
   3149 
   3150     Param->setObjCDeclQualifier(
   3151       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   3152 
   3153     // Apply the attributes to the parameter.
   3154     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   3155 
   3156     if (Param->hasAttr<BlocksAttr>()) {
   3157       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   3158       Param->setInvalidDecl();
   3159     }
   3160     S->AddDecl(Param);
   3161     IdResolver.AddDecl(Param);
   3162 
   3163     Params.push_back(Param);
   3164   }
   3165 
   3166   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   3167     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   3168     QualType ArgType = Param->getType();
   3169     if (ArgType.isNull())
   3170       ArgType = Context.getObjCIdType();
   3171     else
   3172       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   3173       ArgType = Context.getAdjustedParameterType(ArgType);
   3174 
   3175     Param->setDeclContext(ObjCMethod);
   3176     Params.push_back(Param);
   3177   }
   3178 
   3179   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   3180   ObjCMethod->setObjCDeclQualifier(
   3181     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   3182 
   3183   if (AttrList)
   3184     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   3185 
   3186   // Add the method now.
   3187   const ObjCMethodDecl *PrevMethod = 0;
   3188   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   3189     if (MethodType == tok::minus) {
   3190       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   3191       ImpDecl->addInstanceMethod(ObjCMethod);
   3192     } else {
   3193       PrevMethod = ImpDecl->getClassMethod(Sel);
   3194       ImpDecl->addClassMethod(ObjCMethod);
   3195     }
   3196 
   3197     ObjCMethodDecl *IMD = 0;
   3198     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
   3199       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   3200                                 ObjCMethod->isInstanceMethod());
   3201     if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
   3202         !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
   3203       // merge the attribute into implementation.
   3204       ObjCMethod->addAttr(
   3205         new (Context) ObjCRequiresSuperAttr(ObjCMethod->getLocation(), Context));
   3206     }
   3207     if (ObjCMethod->hasAttrs() &&
   3208         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
   3209       SourceLocation MethodLoc = IMD->getLocation();
   3210       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
   3211         Diag(EndLoc, diag::warn_attribute_method_def);
   3212         Diag(MethodLoc, diag::note_method_declared_at)
   3213           << ObjCMethod->getDeclName();
   3214       }
   3215     }
   3216   } else {
   3217     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   3218   }
   3219 
   3220   if (PrevMethod) {
   3221     // You can never have two method definitions with the same name.
   3222     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   3223       << ObjCMethod->getDeclName();
   3224     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   3225     ObjCMethod->setInvalidDecl();
   3226     return ObjCMethod;
   3227   }
   3228 
   3229   // If this Objective-C method does not have a related result type, but we
   3230   // are allowed to infer related result types, try to do so based on the
   3231   // method family.
   3232   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   3233   if (!CurrentClass) {
   3234     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   3235       CurrentClass = Cat->getClassInterface();
   3236     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   3237       CurrentClass = Impl->getClassInterface();
   3238     else if (ObjCCategoryImplDecl *CatImpl
   3239                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   3240       CurrentClass = CatImpl->getClassInterface();
   3241   }
   3242 
   3243   ResultTypeCompatibilityKind RTC
   3244     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   3245 
   3246   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   3247 
   3248   bool ARCError = false;
   3249   if (getLangOpts().ObjCAutoRefCount)
   3250     ARCError = CheckARCMethodDecl(ObjCMethod);
   3251 
   3252   // Infer the related result type when possible.
   3253   if (!ARCError && RTC == Sema::RTC_Compatible &&
   3254       !ObjCMethod->hasRelatedResultType() &&
   3255       LangOpts.ObjCInferRelatedResultType) {
   3256     bool InferRelatedResultType = false;
   3257     switch (ObjCMethod->getMethodFamily()) {
   3258     case OMF_None:
   3259     case OMF_copy:
   3260     case OMF_dealloc:
   3261     case OMF_finalize:
   3262     case OMF_mutableCopy:
   3263     case OMF_release:
   3264     case OMF_retainCount:
   3265     case OMF_performSelector:
   3266       break;
   3267 
   3268     case OMF_alloc:
   3269     case OMF_new:
   3270       InferRelatedResultType = ObjCMethod->isClassMethod();
   3271       break;
   3272 
   3273     case OMF_init:
   3274     case OMF_autorelease:
   3275     case OMF_retain:
   3276     case OMF_self:
   3277       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   3278       break;
   3279     }
   3280 
   3281     if (InferRelatedResultType)
   3282       ObjCMethod->SetRelatedResultType();
   3283   }
   3284 
   3285   ActOnDocumentableDecl(ObjCMethod);
   3286 
   3287   return ObjCMethod;
   3288 }
   3289 
   3290 bool Sema::CheckObjCDeclScope(Decl *D) {
   3291   // Following is also an error. But it is caused by a missing @end
   3292   // and diagnostic is issued elsewhere.
   3293   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   3294     return false;
   3295 
   3296   // If we switched context to translation unit while we are still lexically in
   3297   // an objc container, it means the parser missed emitting an error.
   3298   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   3299     return false;
   3300 
   3301   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   3302   D->setInvalidDecl();
   3303 
   3304   return true;
   3305 }
   3306 
   3307 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   3308 /// instance variables of ClassName into Decls.
   3309 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   3310                      IdentifierInfo *ClassName,
   3311                      SmallVectorImpl<Decl*> &Decls) {
   3312   // Check that ClassName is a valid class
   3313   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   3314   if (!Class) {
   3315     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   3316     return;
   3317   }
   3318   if (LangOpts.ObjCRuntime.isNonFragile()) {
   3319     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   3320     return;
   3321   }
   3322 
   3323   // Collect the instance variables
   3324   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   3325   Context.DeepCollectObjCIvars(Class, true, Ivars);
   3326   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   3327   for (unsigned i = 0; i < Ivars.size(); i++) {
   3328     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   3329     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   3330     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   3331                                            /*FIXME: StartL=*/ID->getLocation(),
   3332                                            ID->getLocation(),
   3333                                            ID->getIdentifier(), ID->getType(),
   3334                                            ID->getBitWidth());
   3335     Decls.push_back(FD);
   3336   }
   3337 
   3338   // Introduce all of these fields into the appropriate scope.
   3339   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   3340        D != Decls.end(); ++D) {
   3341     FieldDecl *FD = cast<FieldDecl>(*D);
   3342     if (getLangOpts().CPlusPlus)
   3343       PushOnScopeChains(cast<FieldDecl>(FD), S);
   3344     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   3345       Record->addDecl(FD);
   3346   }
   3347 }
   3348 
   3349 /// \brief Build a type-check a new Objective-C exception variable declaration.
   3350 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   3351                                       SourceLocation StartLoc,
   3352                                       SourceLocation IdLoc,
   3353                                       IdentifierInfo *Id,
   3354                                       bool Invalid) {
   3355   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   3356   // duration shall not be qualified by an address-space qualifier."
   3357   // Since all parameters have automatic store duration, they can not have
   3358   // an address space.
   3359   if (T.getAddressSpace() != 0) {
   3360     Diag(IdLoc, diag::err_arg_with_address_space);
   3361     Invalid = true;
   3362   }
   3363 
   3364   // An @catch parameter must be an unqualified object pointer type;
   3365   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   3366   if (Invalid) {
   3367     // Don't do any further checking.
   3368   } else if (T->isDependentType()) {
   3369     // Okay: we don't know what this type will instantiate to.
   3370   } else if (!T->isObjCObjectPointerType()) {
   3371     Invalid = true;
   3372     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   3373   } else if (T->isObjCQualifiedIdType()) {
   3374     Invalid = true;
   3375     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   3376   }
   3377 
   3378   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   3379                                  T, TInfo, SC_None);
   3380   New->setExceptionVariable(true);
   3381 
   3382   // In ARC, infer 'retaining' for variables of retainable type.
   3383   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   3384     Invalid = true;
   3385 
   3386   if (Invalid)
   3387     New->setInvalidDecl();
   3388   return New;
   3389 }
   3390 
   3391 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   3392   const DeclSpec &DS = D.getDeclSpec();
   3393 
   3394   // We allow the "register" storage class on exception variables because
   3395   // GCC did, but we drop it completely. Any other storage class is an error.
   3396   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   3397     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   3398       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   3399   } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
   3400     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   3401       << DeclSpec::getSpecifierName(SCS);
   3402   }
   3403   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
   3404     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
   3405          diag::err_invalid_thread)
   3406      << DeclSpec::getSpecifierName(TSCS);
   3407   D.getMutableDeclSpec().ClearStorageClassSpecs();
   3408 
   3409   DiagnoseFunctionSpecifiers(D.getDeclSpec());
   3410 
   3411   // Check that there are no default arguments inside the type of this
   3412   // exception object (C++ only).
   3413   if (getLangOpts().CPlusPlus)
   3414     CheckExtraCXXDefaultArguments(D);
   3415 
   3416   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3417   QualType ExceptionType = TInfo->getType();
   3418 
   3419   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   3420                                         D.getSourceRange().getBegin(),
   3421                                         D.getIdentifierLoc(),
   3422                                         D.getIdentifier(),
   3423                                         D.isInvalidType());
   3424 
   3425   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   3426   if (D.getCXXScopeSpec().isSet()) {
   3427     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   3428       << D.getCXXScopeSpec().getRange();
   3429     New->setInvalidDecl();
   3430   }
   3431 
   3432   // Add the parameter declaration into this scope.
   3433   S->AddDecl(New);
   3434   if (D.getIdentifier())
   3435     IdResolver.AddDecl(New);
   3436 
   3437   ProcessDeclAttributes(S, New, D);
   3438 
   3439   if (New->hasAttr<BlocksAttr>())
   3440     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   3441   return New;
   3442 }
   3443 
   3444 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   3445 /// initialization.
   3446 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   3447                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   3448   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   3449        Iv= Iv->getNextIvar()) {
   3450     QualType QT = Context.getBaseElementType(Iv->getType());
   3451     if (QT->isRecordType())
   3452       Ivars.push_back(Iv);
   3453   }
   3454 }
   3455 
   3456 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   3457   // Load referenced selectors from the external source.
   3458   if (ExternalSource) {
   3459     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   3460     ExternalSource->ReadReferencedSelectors(Sels);
   3461     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   3462       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   3463   }
   3464 
   3465   DiagnoseMismatchedMethodsInGlobalPool();
   3466 
   3467   // Warning will be issued only when selector table is
   3468   // generated (which means there is at lease one implementation
   3469   // in the TU). This is to match gcc's behavior.
   3470   if (ReferencedSelectors.empty() ||
   3471       !Context.AnyObjCImplementation())
   3472     return;
   3473   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   3474         ReferencedSelectors.begin(),
   3475        E = ReferencedSelectors.end(); S != E; ++S) {
   3476     Selector Sel = (*S).first;
   3477     if (!LookupImplementedMethodInGlobalPool(Sel))
   3478       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   3479   }
   3480   return;
   3481 }
   3482