Home | History | Annotate | Download | only in ecc
      1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis
      2  *
      3  * LibTomCrypt is a library that provides various cryptographic
      4  * algorithms in a highly modular and flexible manner.
      5  *
      6  * The library is free for all purposes without any express
      7  * guarantee it works.
      8  *
      9  * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com
     10  */
     11 
     12 /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b
     13  *
     14  * All curves taken from NIST recommendation paper of July 1999
     15  * Available at http://csrc.nist.gov/cryptval/dss.htm
     16  */
     17 #include "tomcrypt.h"
     18 
     19 /**
     20   @file ltc_ecc_projective_add_point.c
     21   ECC Crypto, Tom St Denis
     22 */
     23 
     24 #if defined(MECC) && (!defined(MECC_ACCEL) || defined(LTM_DESC))
     25 
     26 /**
     27    Add two ECC points
     28    @param P        The point to add
     29    @param Q        The point to add
     30    @param R        [out] The destination of the double
     31    @param modulus  The modulus of the field the ECC curve is in
     32    @param mp       The "b" value from montgomery_setup()
     33    @return CRYPT_OK on success
     34 */
     35 int ltc_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *mp)
     36 {
     37    void  *t1, *t2, *x, *y, *z;
     38    int    err;
     39 
     40    LTC_ARGCHK(P       != NULL);
     41    LTC_ARGCHK(Q       != NULL);
     42    LTC_ARGCHK(R       != NULL);
     43    LTC_ARGCHK(modulus != NULL);
     44    LTC_ARGCHK(mp      != NULL);
     45 
     46    if ((err = mp_init_multi(&t1, &t2, &x, &y, &z, NULL)) != CRYPT_OK) {
     47       return err;
     48    }
     49 
     50    /* should we dbl instead? */
     51    if ((err = mp_sub(modulus, Q->y, t1)) != CRYPT_OK)                          { goto done; }
     52 
     53    if ( (mp_cmp(P->x, Q->x) == LTC_MP_EQ) &&
     54         (Q->z != NULL && mp_cmp(P->z, Q->z) == LTC_MP_EQ) &&
     55         (mp_cmp(P->y, Q->y) == LTC_MP_EQ || mp_cmp(P->y, t1) == LTC_MP_EQ)) {
     56         mp_clear_multi(t1, t2, x, y, z, NULL);
     57         return ltc_ecc_projective_dbl_point(P, R, modulus, mp);
     58    }
     59 
     60    if ((err = mp_copy(P->x, x)) != CRYPT_OK)                                   { goto done; }
     61    if ((err = mp_copy(P->y, y)) != CRYPT_OK)                                   { goto done; }
     62    if ((err = mp_copy(P->z, z)) != CRYPT_OK)                                   { goto done; }
     63 
     64    /* if Z is one then these are no-operations */
     65    if (Q->z != NULL) {
     66       /* T1 = Z' * Z' */
     67       if ((err = mp_sqr(Q->z, t1)) != CRYPT_OK)                                { goto done; }
     68       if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
     69       /* X = X * T1 */
     70       if ((err = mp_mul(t1, x, x)) != CRYPT_OK)                                { goto done; }
     71       if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)            { goto done; }
     72       /* T1 = Z' * T1 */
     73       if ((err = mp_mul(Q->z, t1, t1)) != CRYPT_OK)                            { goto done; }
     74       if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)           { goto done; }
     75       /* Y = Y * T1 */
     76       if ((err = mp_mul(t1, y, y)) != CRYPT_OK)                                { goto done; }
     77       if ((err = mp_montgomery_reduce(y, modulus, mp)) != CRYPT_OK)            { goto done; }
     78    }
     79 
     80    /* T1 = Z*Z */
     81    if ((err = mp_sqr(z, t1)) != CRYPT_OK)                                      { goto done; }
     82    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
     83    /* T2 = X' * T1 */
     84    if ((err = mp_mul(Q->x, t1, t2)) != CRYPT_OK)                               { goto done; }
     85    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
     86    /* T1 = Z * T1 */
     87    if ((err = mp_mul(z, t1, t1)) != CRYPT_OK)                                  { goto done; }
     88    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
     89    /* T1 = Y' * T1 */
     90    if ((err = mp_mul(Q->y, t1, t1)) != CRYPT_OK)                               { goto done; }
     91    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
     92 
     93    /* Y = Y - T1 */
     94    if ((err = mp_sub(y, t1, y)) != CRYPT_OK)                                   { goto done; }
     95    if (mp_cmp_d(y, 0) == LTC_MP_LT) {
     96       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
     97    }
     98    /* T1 = 2T1 */
     99    if ((err = mp_add(t1, t1, t1)) != CRYPT_OK)                                 { goto done; }
    100    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
    101       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
    102    }
    103    /* T1 = Y + T1 */
    104    if ((err = mp_add(t1, y, t1)) != CRYPT_OK)                                  { goto done; }
    105    if (mp_cmp(t1, modulus) != LTC_MP_LT) {
    106       if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK)                         { goto done; }
    107    }
    108    /* X = X - T2 */
    109    if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
    110    if (mp_cmp_d(x, 0) == LTC_MP_LT) {
    111       if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
    112    }
    113    /* T2 = 2T2 */
    114    if ((err = mp_add(t2, t2, t2)) != CRYPT_OK)                                 { goto done; }
    115    if (mp_cmp(t2, modulus) != LTC_MP_LT) {
    116       if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
    117    }
    118    /* T2 = X + T2 */
    119    if ((err = mp_add(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
    120    if (mp_cmp(t2, modulus) != LTC_MP_LT) {
    121       if ((err = mp_sub(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
    122    }
    123 
    124    /* if Z' != 1 */
    125    if (Q->z != NULL) {
    126       /* Z = Z * Z' */
    127       if ((err = mp_mul(z, Q->z, z)) != CRYPT_OK)                              { goto done; }
    128       if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)            { goto done; }
    129    }
    130 
    131    /* Z = Z * X */
    132    if ((err = mp_mul(z, x, z)) != CRYPT_OK)                                    { goto done; }
    133    if ((err = mp_montgomery_reduce(z, modulus, mp)) != CRYPT_OK)               { goto done; }
    134 
    135    /* T1 = T1 * X  */
    136    if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
    137    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
    138    /* X = X * X */
    139    if ((err = mp_sqr(x, x)) != CRYPT_OK)                                       { goto done; }
    140    if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
    141    /* T2 = T2 * x */
    142    if ((err = mp_mul(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
    143    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
    144    /* T1 = T1 * X  */
    145    if ((err = mp_mul(t1, x, t1)) != CRYPT_OK)                                  { goto done; }
    146    if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK)              { goto done; }
    147 
    148    /* X = Y*Y */
    149    if ((err = mp_sqr(y, x)) != CRYPT_OK)                                       { goto done; }
    150    if ((err = mp_montgomery_reduce(x, modulus, mp)) != CRYPT_OK)               { goto done; }
    151    /* X = X - T2 */
    152    if ((err = mp_sub(x, t2, x)) != CRYPT_OK)                                   { goto done; }
    153    if (mp_cmp_d(x, 0) == LTC_MP_LT) {
    154       if ((err = mp_add(x, modulus, x)) != CRYPT_OK)                           { goto done; }
    155    }
    156 
    157    /* T2 = T2 - X */
    158    if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
    159    if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
    160       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
    161    }
    162    /* T2 = T2 - X */
    163    if ((err = mp_sub(t2, x, t2)) != CRYPT_OK)                                  { goto done; }
    164    if (mp_cmp_d(t2, 0) == LTC_MP_LT) {
    165       if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK)                         { goto done; }
    166    }
    167    /* T2 = T2 * Y */
    168    if ((err = mp_mul(t2, y, t2)) != CRYPT_OK)                                  { goto done; }
    169    if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK)              { goto done; }
    170    /* Y = T2 - T1 */
    171    if ((err = mp_sub(t2, t1, y)) != CRYPT_OK)                                  { goto done; }
    172    if (mp_cmp_d(y, 0) == LTC_MP_LT) {
    173       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
    174    }
    175    /* Y = Y/2 */
    176    if (mp_isodd(y)) {
    177       if ((err = mp_add(y, modulus, y)) != CRYPT_OK)                           { goto done; }
    178    }
    179    if ((err = mp_div_2(y, y)) != CRYPT_OK)                                     { goto done; }
    180 
    181    if ((err = mp_copy(x, R->x)) != CRYPT_OK)                                   { goto done; }
    182    if ((err = mp_copy(y, R->y)) != CRYPT_OK)                                   { goto done; }
    183    if ((err = mp_copy(z, R->z)) != CRYPT_OK)                                   { goto done; }
    184 
    185    err = CRYPT_OK;
    186 done:
    187    mp_clear_multi(t1, t2, x, y, z, NULL);
    188    return err;
    189 }
    190 
    191 #endif
    192 
    193 /* $Source: /cvs/libtom/libtomcrypt/src/pk/ecc/ltc_ecc_projective_add_point.c,v $ */
    194 /* $Revision: 1.13 $ */
    195 /* $Date: 2006/12/04 05:07:59 $ */
    196 
    197