Home | History | Annotate | Download | only in libtommath
      1 \documentclass[synpaper]{book}
      2 \usepackage{hyperref}
      3 \usepackage{makeidx}
      4 \usepackage{amssymb}
      5 \usepackage{color}
      6 \usepackage{alltt}
      7 \usepackage{graphicx}
      8 \usepackage{layout}
      9 \def\union{\cup}
     10 \def\intersect{\cap}
     11 \def\getsrandom{\stackrel{\rm R}{\gets}}
     12 \def\cross{\times}
     13 \def\cat{\hspace{0.5em} \| \hspace{0.5em}}
     14 \def\catn{$\|$}
     15 \def\divides{\hspace{0.3em} | \hspace{0.3em}}
     16 \def\nequiv{\not\equiv}
     17 \def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
     18 \def\lcm{{\rm lcm}}
     19 \def\gcd{{\rm gcd}}
     20 \def\log{{\rm log}}
     21 \def\ord{{\rm ord}}
     22 \def\abs{{\mathit abs}}
     23 \def\rep{{\mathit rep}}
     24 \def\mod{{\mathit\ mod\ }}
     25 \renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
     26 \newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
     27 \newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
     28 \def\Or{{\rm\ or\ }}
     29 \def\And{{\rm\ and\ }}
     30 \def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
     31 \def\implies{\Rightarrow}
     32 \def\undefined{{\rm ``undefined"}}
     33 \def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
     34 \let\oldphi\phi
     35 \def\phi{\varphi}
     36 \def\Pr{{\rm Pr}}
     37 \newcommand{\str}[1]{{\mathbf{#1}}}
     38 \def\F{{\mathbb F}}
     39 \def\N{{\mathbb N}}
     40 \def\Z{{\mathbb Z}}
     41 \def\R{{\mathbb R}}
     42 \def\C{{\mathbb C}}
     43 \def\Q{{\mathbb Q}}
     44 \definecolor{DGray}{gray}{0.5}
     45 \newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
     46 \def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
     47 \def\gap{\vspace{0.5ex}}
     48 \makeindex
     49 \begin{document}
     50 \frontmatter
     51 \pagestyle{empty}
     52 \title{LibTomMath User Manual \\ v0.40}
     53 \author{Tom St Denis \\ tomstdenis (a] gmail.com}
     54 \maketitle
     55 This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been 
     56 formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
     57 
     58 \vspace{10cm}
     59 
     60 \begin{flushright}Open Source.  Open Academia.  Open Minds.
     61 
     62 \mbox{ }
     63 
     64 Tom St Denis,
     65 
     66 Ontario, Canada
     67 \end{flushright}
     68 
     69 \tableofcontents
     70 \listoffigures
     71 \mainmatter
     72 \pagestyle{headings}
     73 \chapter{Introduction}
     74 \section{What is LibTomMath?}
     75 LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
     76 large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
     77 C compiler.  
     78 
     79 In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
     80 to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous 
     81 universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
     82 Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.  
     83 
     84 \section{License}
     85 As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
     86 release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
     87 release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
     88 algorithms used in the library.
     89 
     90 Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.  They are not required to use LibTomMath.} are in the 
     91 public domain everyone is entitled to do with them as they see fit.
     92 
     93 \section{Building LibTomMath}
     94 
     95 LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
     96 also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
     97 developer.  
     98 
     99 \subsection{Static Libraries}
    100 To build as a static library for GCC issue the following
    101 \begin{alltt}
    102 make
    103 \end{alltt}
    104 
    105 command.  This will build the library and archive the object files in ``libtommath.a''.  Now you link against 
    106 that and include ``tommath.h'' within your programs.  Alternatively to build with MSVC issue the following
    107 \begin{alltt}
    108 nmake -f makefile.msvc
    109 \end{alltt}
    110 
    111 This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC 
    112 version 6.00 with service pack 5.  
    113 
    114 \subsection{Shared Libraries}
    115 To build as a shared library for GCC issue the following
    116 \begin{alltt}
    117 make -f makefile.shared
    118 \end{alltt}
    119 This requires the ``libtool'' package (common on most Linux/BSD systems).  It will build LibTomMath as both shared
    120 and static then install (by default) into /usr/lib as well as install the header files in /usr/include.  The shared 
    121 library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''.  Generally 
    122 you use libtool to link your application against the shared object.  
    123 
    124 There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires 
    125 Cygwin to work with since it requires the auto-export/import functionality.  The resulting DLL and import library 
    126 ``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
    127 
    128 \subsection{Testing}
    129 To build the library and the test harness type
    130 
    131 \begin{alltt}
    132 make test
    133 \end{alltt}
    134 
    135 This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
    136 results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
    137 is included in the package}.  Simply pipe mtest into test using
    138 
    139 \begin{alltt}
    140 mtest/mtest | test
    141 \end{alltt}
    142 
    143 If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into 
    144 mtest.  For example, if your PRNG program is called ``myprng'' simply invoke
    145 
    146 \begin{alltt}
    147 myprng | mtest/mtest | test
    148 \end{alltt}
    149 
    150 This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
    151 that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
    152 will exit with a dump of the relevent numbers it was working with.
    153 
    154 \section{Build Configuration}
    155 LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.  
    156 Each phase changes how the library is built and they are applied one after another respectively.  
    157 
    158 To make the system more powerful you can tweak the build process.  Classes are defined in the file
    159 ``tommath\_superclass.h''.  By default, the symbol ``LTM\_ALL'' shall be defined which simply 
    160 instructs the system to build all of the functions.  This is how LibTomMath used to be packaged.  This will give you 
    161 access to every function LibTomMath offers.
    162 
    163 However, there are cases where such a build is not optional.  For instance, you want to perform RSA operations.  You 
    164 don't need the vast majority of the library to perform these operations.  Aside from LTM\_ALL there is 
    165 another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt.  Additional 
    166 classes can be defined base on the need of the user.
    167 
    168 \subsection{Build Depends}
    169 In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
    170 which further define symbols.  All of the symbols (technically they're macros $\ldots$) represent a given C source
    171 file.  For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''.  When a define has been enabled the
    172 function in the respective file will be compiled and linked into the library.  Accordingly when the define
    173 is absent the file will not be compiled and not contribute any size to the library.
    174 
    175 You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).  
    176 This is to help resolve as many dependencies as possible.  In the last pass the symbol LTM\_LAST will be defined.  
    177 This is useful for ``trims''.
    178 
    179 \subsection{Build Tweaks}
    180 A tweak is an algorithm ``alternative''.  For example, to provide tradeoffs (usually between size and space).
    181 They can be enabled at any pass of the configuration phase.
    182 
    183 \begin{small}
    184 \begin{center}
    185 \begin{tabular}{|l|l|}
    186 \hline \textbf{Define} & \textbf{Purpose} \\
    187 \hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
    188                           & functional mp\_div() function \\
    189 \hline
    190 \end{tabular}
    191 \end{center}
    192 \end{small}
    193 
    194 \subsection{Build Trims}
    195 A trim is a manner of removing functionality from a function that is not required.  For instance, to perform
    196 RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.  
    197 Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
    198 only if LTM\_LAST has been defined.
    199 
    200 \subsubsection{Moduli Related}
    201 \begin{small}
    202 \begin{center}
    203 \begin{tabular}{|l|l|}
    204 \hline \textbf{Restriction} & \textbf{Undefine} \\
    205 \hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
    206                                            & BN\_MP\_REDUCE\_C \\
    207                                            & BN\_MP\_REDUCE\_SETUP\_C \\
    208                                            & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
    209                                            & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
    210 \hline Exponentiation with random odd moduli & (The above plus the following) \\
    211                                            & BN\_MP\_REDUCE\_2K\_C \\
    212                                            & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
    213                                            & BN\_MP\_REDUCE\_IS\_2K\_C \\
    214                                            & BN\_MP\_DR\_IS\_MODULUS\_C \\
    215                                            & BN\_MP\_DR\_REDUCE\_C \\
    216                                            & BN\_MP\_DR\_SETUP\_C \\
    217 \hline Modular inverse odd moduli only     & BN\_MP\_INVMOD\_SLOW\_C \\
    218 \hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
    219 \hline
    220 \end{tabular}
    221 \end{center}
    222 \end{small}
    223 
    224 \subsubsection{Operand Size Related}
    225 \begin{small}
    226 \begin{center}
    227 \begin{tabular}{|l|l|}
    228 \hline \textbf{Restriction} & \textbf{Undefine} \\
    229 \hline Moduli $\le 2560$ bits              & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
    230                                            & BN\_S\_MP\_MUL\_DIGS\_C \\
    231                                            & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
    232                                            & BN\_S\_MP\_SQR\_C \\
    233 \hline Polynomial Schmolynomial            & BN\_MP\_KARATSUBA\_MUL\_C \\
    234                                            & BN\_MP\_KARATSUBA\_SQR\_C \\
    235                                            & BN\_MP\_TOOM\_MUL\_C \\ 
    236                                            & BN\_MP\_TOOM\_SQR\_C \\
    237 
    238 \hline
    239 \end{tabular}
    240 \end{center}
    241 \end{small}
    242 
    243 
    244 \section{Purpose of LibTomMath}
    245 Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with 
    246 bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the 
    247 source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
    248 source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
    249 arithmetic techniques. 
    250 
    251 LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
    252 function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
    253 increase.
    254 
    255 Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
    256 the library (beat that!).
    257 
    258 So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
    259 are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
    260 
    261 \newpage\begin{figure}[here]
    262 \begin{small}
    263 \begin{center}
    264 \begin{tabular}{|l|c|c|l|}
    265 \hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
    266 \hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\
    267 \hline Commented function prototypes & X && GnuPG function names are cryptic. \\
    268 \hline Speed && X & LibTomMath is slower.  \\
    269 \hline Totally free & X & & GPL has unfavourable restrictions.\\
    270 \hline Large function base & X & & GnuPG is barebones. \\
    271 \hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
    272 \hline Portable & X & & GnuPG requires configuration to build. \\
    273 \hline
    274 \end{tabular}
    275 \end{center}
    276 \end{small}
    277 \caption{LibTomMath Valuation}
    278 \end{figure}
    279 
    280 It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. 
    281 However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
    282 would require when working with large integers.  
    283 
    284 So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
    285 own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
    286 not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
    287 exponentiations.  It depends largely on the processor, compiler and the moduli being used.
    288 
    289 Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However,
    290 on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
    291 that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can
    292 be performed with as little as 8KB of ram for data (again depending on build options).  
    293 
    294 \chapter{Getting Started with LibTomMath}
    295 \section{Building Programs}
    296 In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically 
    297 libtommath.a).  There is no library initialization required and the entire library is thread safe.
    298 
    299 \section{Return Codes}
    300 There are three possible return codes a function may return.
    301 
    302 \index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
    303 \begin{figure}[here!]
    304 \begin{center}
    305 \begin{small}
    306 \begin{tabular}{|l|l|}
    307 \hline \textbf{Code} & \textbf{Meaning} \\
    308 \hline MP\_OKAY & The function succeeded. \\
    309 \hline MP\_VAL  & The function input was invalid. \\
    310 \hline MP\_MEM  & Heap memory exhausted. \\
    311 \hline &\\
    312 \hline MP\_YES  & Response is yes. \\
    313 \hline MP\_NO   & Response is no. \\
    314 \hline
    315 \end{tabular}
    316 \end{small}
    317 \end{center}
    318 \caption{Return Codes}
    319 \end{figure}
    320 
    321 The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
    322 provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
    323 to a string use the following function.
    324 
    325 \index{mp\_error\_to\_string}
    326 \begin{alltt}
    327 char *mp_error_to_string(int code);
    328 \end{alltt}
    329 
    330 This will return a pointer to a string which describes the given error code.  It will not work for the return codes 
    331 MP\_YES and MP\_NO.  
    332 
    333 \section{Data Types}
    334 The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
    335 organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
    336 as the following.
    337 
    338 \index{mp\_int}
    339 \begin{alltt}
    340 typedef struct  \{
    341     int used, alloc, sign;
    342     mp_digit *dp;
    343 \} mp_int;
    344 \end{alltt}
    345 
    346 Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
    347 ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
    348 platforms by defining the appropriate macros.  
    349 
    350 All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
    351 hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
    352 done to use an mp\_int is that it must be initialized.
    353 
    354 \section{Function Organization}
    355 
    356 The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
    357 are passed on the left and the destination is on the right.  For instance,
    358 
    359 \begin{alltt}
    360 mp_add(&a, &b, &c);       /* c = a + b */
    361 mp_mul(&a, &a, &c);       /* c = a * a */
    362 mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
    363 \end{alltt}
    364 
    365 Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
    366 For instance,
    367 
    368 \begin{alltt}
    369 mp_add(&a, &b, &b);       /* b = a + b */
    370 mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
    371 \end{alltt}
    372 
    373 This allows operands to be re-used which can make programming simpler.
    374 
    375 \section{Initialization}
    376 \subsection{Single Initialization}
    377 A single mp\_int can be initialized with the ``mp\_init'' function. 
    378 
    379 \index{mp\_init}
    380 \begin{alltt}
    381 int mp_init (mp_int * a);
    382 \end{alltt}
    383 
    384 This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
    385 represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
    386 by the other LibTomMath functions.
    387 
    388 \begin{small} \begin{alltt}
    389 int main(void)
    390 \{
    391    mp_int number;
    392    int result;
    393 
    394    if ((result = mp_init(&number)) != MP_OKAY) \{
    395       printf("Error initializing the number.  \%s", 
    396              mp_error_to_string(result));
    397       return EXIT_FAILURE;
    398    \}
    399  
    400    /* use the number */
    401 
    402    return EXIT_SUCCESS;
    403 \}
    404 \end{alltt} \end{small}
    405 
    406 \subsection{Single Free}
    407 When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function 
    408 provides this functionality.
    409 
    410 \index{mp\_clear}
    411 \begin{alltt}
    412 void mp_clear (mp_int * a);
    413 \end{alltt}
    414 
    415 The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the 
    416 pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. 
    417 Is is legal to call mp\_clear() twice on the same mp\_int in a row.  
    418 
    419 \begin{small} \begin{alltt}
    420 int main(void)
    421 \{
    422    mp_int number;
    423    int result;
    424 
    425    if ((result = mp_init(&number)) != MP_OKAY) \{
    426       printf("Error initializing the number.  \%s", 
    427              mp_error_to_string(result));
    428       return EXIT_FAILURE;
    429    \}
    430  
    431    /* use the number */
    432 
    433    /* We're done with it. */
    434    mp_clear(&number);
    435 
    436    return EXIT_SUCCESS;
    437 \}
    438 \end{alltt} \end{small}
    439 
    440 \subsection{Multiple Initializations}
    441 Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
    442 variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
    443 not initialized.
    444 
    445 The  mp\_init\_multi() function provides this functionality.
    446 
    447 \index{mp\_init\_multi} \index{mp\_clear\_multi}
    448 \begin{alltt}
    449 int mp_init_multi(mp_int *mp, ...);
    450 \end{alltt}
    451 
    452 It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
    453 at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
    454 are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd 
    455 from the heap at the same time.  
    456 
    457 \begin{small} \begin{alltt}
    458 int main(void)
    459 \{
    460    mp_int num1, num2, num3;
    461    int result;
    462 
    463    if ((result = mp_init_multi(&num1, 
    464                                &num2,
    465                                &num3, NULL)) != MP\_OKAY) \{      
    466       printf("Error initializing the numbers.  \%s", 
    467              mp_error_to_string(result));
    468       return EXIT_FAILURE;
    469    \}
    470  
    471    /* use the numbers */
    472 
    473    /* We're done with them. */
    474    mp_clear_multi(&num1, &num2, &num3, NULL);
    475 
    476    return EXIT_SUCCESS;
    477 \}
    478 \end{alltt} \end{small}
    479 
    480 \subsection{Other Initializers}
    481 To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.  
    482 
    483 \index{mp\_init\_copy}
    484 \begin{alltt}
    485 int mp_init_copy (mp_int * a, mp_int * b);
    486 \end{alltt}
    487 
    488 This function will initialize $a$ and make it a copy of $b$ if all goes well.
    489 
    490 \begin{small} \begin{alltt}
    491 int main(void)
    492 \{
    493    mp_int num1, num2;
    494    int result;
    495 
    496    /* initialize and do work on num1 ... */
    497 
    498    /* We want a copy of num1 in num2 now */
    499    if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
    500      printf("Error initializing the copy.  \%s", 
    501              mp_error_to_string(result));
    502       return EXIT_FAILURE;
    503    \}
    504  
    505    /* now num2 is ready and contains a copy of num1 */
    506 
    507    /* We're done with them. */
    508    mp_clear_multi(&num1, &num2, NULL);
    509 
    510    return EXIT_SUCCESS;
    511 \}
    512 \end{alltt} \end{small}
    513 
    514 Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
    515 default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
    516 you override this behaviour.
    517 
    518 \index{mp\_init\_size}
    519 \begin{alltt}
    520 int mp_init_size (mp_int * a, int size);
    521 \end{alltt}
    522 
    523 The $size$ parameter must be greater than zero.  If the function succeeds the mp\_int $a$ will be initialized
    524 to have $size$ digits (which are all initially zero).  
    525 
    526 \begin{small} \begin{alltt}
    527 int main(void)
    528 \{
    529    mp_int number;
    530    int result;
    531 
    532    /* we need a 60-digit number */
    533    if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
    534       printf("Error initializing the number.  \%s", 
    535              mp_error_to_string(result));
    536       return EXIT_FAILURE;
    537    \}
    538  
    539    /* use the number */
    540 
    541    return EXIT_SUCCESS;
    542 \}
    543 \end{alltt} \end{small}
    544 
    545 \section{Maintenance Functions}
    546 
    547 \subsection{Reducing Memory Usage}
    548 When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
    549 digits can be removed to return memory to the heap with the mp\_shrink() function.
    550 
    551 \index{mp\_shrink}
    552 \begin{alltt}
    553 int mp_shrink (mp_int * a);
    554 \end{alltt}
    555 
    556 This will remove excess digits of the mp\_int $a$.  If the operation fails the mp\_int should be intact without the
    557 excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
    558 will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
    559 modify in the system (unless you are seriously low on memory).  
    560 
    561 \begin{small} \begin{alltt}
    562 int main(void)
    563 \{
    564    mp_int number;
    565    int result;
    566 
    567    if ((result = mp_init(&number)) != MP_OKAY) \{
    568       printf("Error initializing the number.  \%s", 
    569              mp_error_to_string(result));
    570       return EXIT_FAILURE;
    571    \}
    572  
    573    /* use the number [e.g. pre-computation]  */
    574 
    575    /* We're done with it for now. */
    576    if ((result = mp_shrink(&number)) != MP_OKAY) \{
    577       printf("Error shrinking the number.  \%s", 
    578              mp_error_to_string(result));
    579       return EXIT_FAILURE;
    580    \}
    581 
    582    /* use it .... */
    583 
    584 
    585    /* we're done with it. */ 
    586    mp_clear(&number);
    587 
    588    return EXIT_SUCCESS;
    589 \}
    590 \end{alltt} \end{small}
    591 
    592 \subsection{Adding additional digits}
    593 
    594 Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
    595 the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
    596 contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
    597 the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
    598 your desired size.  
    599 
    600 \index{mp\_grow}
    601 \begin{alltt}
    602 int mp_grow (mp_int * a, int size);
    603 \end{alltt}
    604 
    605 This will grow the array of digits of $a$ to $size$.  If the \textit{alloc} parameter is already bigger than
    606 $size$ the function will not do anything.
    607 
    608 \begin{small} \begin{alltt}
    609 int main(void)
    610 \{
    611    mp_int number;
    612    int result;
    613 
    614    if ((result = mp_init(&number)) != MP_OKAY) \{
    615       printf("Error initializing the number.  \%s", 
    616              mp_error_to_string(result));
    617       return EXIT_FAILURE;
    618    \}
    619  
    620    /* use the number */
    621 
    622    /* We need to add 20 digits to the number  */
    623    if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
    624       printf("Error growing the number.  \%s", 
    625              mp_error_to_string(result));
    626       return EXIT_FAILURE;
    627    \}
    628 
    629 
    630    /* use the number */
    631 
    632    /* we're done with it. */ 
    633    mp_clear(&number);
    634 
    635    return EXIT_SUCCESS;
    636 \}
    637 \end{alltt} \end{small}
    638 
    639 \chapter{Basic Operations}
    640 \section{Small Constants}
    641 Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
    642 small constant assignment functions.  The first function is used to set a single digit constant while the second sets
    643 an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
    644 domain of a digit can change (it's always at least $0 \ldots 127$).  
    645 
    646 \subsection{Single Digit}
    647 
    648 Setting a single digit can be accomplished with the following function.
    649 
    650 \index{mp\_set}
    651 \begin{alltt}
    652 void mp_set (mp_int * a, mp_digit b);
    653 \end{alltt}
    654 
    655 This will zero the contents of $a$ and make it represent an integer equal to the value of $b$.  Note that this
    656 function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
    657 succeeded.
    658 
    659 \begin{small} \begin{alltt}
    660 int main(void)
    661 \{
    662    mp_int number;
    663    int result;
    664 
    665    if ((result = mp_init(&number)) != MP_OKAY) \{
    666       printf("Error initializing the number.  \%s", 
    667              mp_error_to_string(result));
    668       return EXIT_FAILURE;
    669    \}
    670  
    671    /* set the number to 5 */
    672    mp_set(&number, 5);
    673 
    674    /* we're done with it. */ 
    675    mp_clear(&number);
    676 
    677    return EXIT_SUCCESS;
    678 \}
    679 \end{alltt} \end{small}
    680 
    681 \subsection{Long Constants}
    682 
    683 To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function 
    684 can be used.
    685 
    686 \index{mp\_set\_int}
    687 \begin{alltt}
    688 int mp_set_int (mp_int * a, unsigned long b);
    689 \end{alltt}
    690 
    691 This will assign the value of the 32-bit variable $b$ to the mp\_int $a$.  Unlike mp\_set() this function will always
    692 accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits 
    693 this function can fail if it runs out of heap memory.
    694 
    695 To get the ``unsigned long'' copy of an mp\_int the following function can be used.
    696 
    697 \index{mp\_get\_int}
    698 \begin{alltt}
    699 unsigned long mp_get_int (mp_int * a);
    700 \end{alltt}
    701 
    702 This will return the 32 least significant bits of the mp\_int $a$.  
    703 
    704 \begin{small} \begin{alltt}
    705 int main(void)
    706 \{
    707    mp_int number;
    708    int result;
    709 
    710    if ((result = mp_init(&number)) != MP_OKAY) \{
    711       printf("Error initializing the number.  \%s", 
    712              mp_error_to_string(result));
    713       return EXIT_FAILURE;
    714    \}
    715  
    716    /* set the number to 654321 (note this is bigger than 127) */
    717    if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
    718       printf("Error setting the value of the number.  \%s", 
    719              mp_error_to_string(result));
    720       return EXIT_FAILURE;
    721    \}
    722 
    723    printf("number == \%lu", mp_get_int(&number));
    724 
    725    /* we're done with it. */ 
    726    mp_clear(&number);
    727 
    728    return EXIT_SUCCESS;
    729 \}
    730 \end{alltt} \end{small}
    731 
    732 This should output the following if the program succeeds.
    733 
    734 \begin{alltt}
    735 number == 654321
    736 \end{alltt}
    737 
    738 \subsection{Initialize and Setting Constants}
    739 To both initialize and set small constants the following two functions are available.
    740 \index{mp\_init\_set} \index{mp\_init\_set\_int}
    741 \begin{alltt}
    742 int mp_init_set (mp_int * a, mp_digit b);
    743 int mp_init_set_int (mp_int * a, unsigned long b);
    744 \end{alltt}
    745 
    746 Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.  
    747 
    748 \begin{alltt}
    749 int main(void)
    750 \{
    751    mp_int number1, number2;
    752    int    result;
    753 
    754    /* initialize and set a single digit */
    755    if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
    756       printf("Error setting number1: \%s", 
    757              mp_error_to_string(result));
    758       return EXIT_FAILURE;
    759    \}             
    760 
    761    /* initialize and set a long */
    762    if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
    763       printf("Error setting number2: \%s", 
    764              mp_error_to_string(result));
    765       return EXIT_FAILURE;
    766    \}
    767 
    768    /* display */
    769    printf("Number1, Number2 == \%lu, \%lu",
    770           mp_get_int(&number1), mp_get_int(&number2));
    771 
    772    /* clear */
    773    mp_clear_multi(&number1, &number2, NULL);
    774 
    775    return EXIT_SUCCESS;
    776 \}
    777 \end{alltt}
    778 
    779 If this program succeeds it shall output.
    780 \begin{alltt}
    781 Number1, Number2 == 100, 1023
    782 \end{alltt}
    783 
    784 \section{Comparisons}
    785 
    786 Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
    787 for any comparison.
    788 
    789 \index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
    790 \begin{figure}[here]
    791 \begin{center}
    792 \begin{tabular}{|c|c|}
    793 \hline \textbf{Result Code} & \textbf{Meaning} \\
    794 \hline MP\_GT & $a > b$ \\
    795 \hline MP\_EQ & $a = b$ \\
    796 \hline MP\_LT & $a < b$ \\
    797 \hline
    798 \end{tabular}
    799 \end{center}
    800 \caption{Comparison Codes for $a, b$}
    801 \label{fig:CMP}
    802 \end{figure}
    803 
    804 In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of 
    805 $b$.  
    806 
    807 \subsection{Unsigned comparison}
    808 
    809 An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the 
    810 mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
    811 mp\_int variables based on their digits only. 
    812 
    813 \index{mp\_cmp\_mag}
    814 \begin{alltt}
    815 int mp_cmp_mag(mp_int * a, mp_int * b);
    816 \end{alltt}
    817 This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the
    818 three compare codes listed in figure \ref{fig:CMP}.
    819 
    820 \begin{small} \begin{alltt}
    821 int main(void)
    822 \{
    823    mp_int number1, number2;
    824    int result;
    825 
    826    if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
    827       printf("Error initializing the numbers.  \%s", 
    828              mp_error_to_string(result));
    829       return EXIT_FAILURE;
    830    \}
    831  
    832    /* set the number1 to 5 */
    833    mp_set(&number1, 5);
    834   
    835    /* set the number2 to -6 */
    836    mp_set(&number2, 6);
    837    if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
    838       printf("Error negating number2.  \%s", 
    839              mp_error_to_string(result));
    840       return EXIT_FAILURE;
    841    \}
    842 
    843    switch(mp_cmp_mag(&number1, &number2)) \{
    844        case MP_GT:  printf("|number1| > |number2|"); break;
    845        case MP_EQ:  printf("|number1| = |number2|"); break;
    846        case MP_LT:  printf("|number1| < |number2|"); break;
    847    \}
    848 
    849    /* we're done with it. */ 
    850    mp_clear_multi(&number1, &number2, NULL);
    851 
    852    return EXIT_SUCCESS;
    853 \}
    854 \end{alltt} \end{small}
    855 
    856 If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
    857 successfully it should print the following.
    858 
    859 \begin{alltt}
    860 |number1| < |number2|
    861 \end{alltt}
    862 
    863 This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
    864 
    865 \subsection{Signed comparison}
    866 
    867 To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
    868 
    869 \index{mp\_cmp}
    870 \begin{alltt}
    871 int mp_cmp(mp_int * a, mp_int * b);
    872 \end{alltt}
    873 
    874 This will compare $a$ to the left of $b$.  It will first compare the signs of the two mp\_int variables.  If they
    875 differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
    876 individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
    877 
    878 \begin{small} \begin{alltt}
    879 int main(void)
    880 \{
    881    mp_int number1, number2;
    882    int result;
    883 
    884    if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
    885       printf("Error initializing the numbers.  \%s", 
    886              mp_error_to_string(result));
    887       return EXIT_FAILURE;
    888    \}
    889  
    890    /* set the number1 to 5 */
    891    mp_set(&number1, 5);
    892   
    893    /* set the number2 to -6 */
    894    mp_set(&number2, 6);
    895    if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
    896       printf("Error negating number2.  \%s", 
    897              mp_error_to_string(result));
    898       return EXIT_FAILURE;
    899    \}
    900 
    901    switch(mp_cmp(&number1, &number2)) \{
    902        case MP_GT:  printf("number1 > number2"); break;
    903        case MP_EQ:  printf("number1 = number2"); break;
    904        case MP_LT:  printf("number1 < number2"); break;
    905    \}
    906 
    907    /* we're done with it. */ 
    908    mp_clear_multi(&number1, &number2, NULL);
    909 
    910    return EXIT_SUCCESS;
    911 \}
    912 \end{alltt} \end{small}
    913 
    914 If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
    915 successfully it should print the following.
    916 
    917 \begin{alltt}
    918 number1 > number2
    919 \end{alltt}
    920 
    921 \subsection{Single Digit}
    922 
    923 To compare a single digit against an mp\_int the following function has been provided.
    924 
    925 \index{mp\_cmp\_d}
    926 \begin{alltt}
    927 int mp_cmp_d(mp_int * a, mp_digit b);
    928 \end{alltt}
    929 
    930 This will compare $a$ to the left of $b$ using a signed comparison.  Note that it will always treat $b$ as 
    931 positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
    932 comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
    933 listed in figure \ref{fig:CMP}.
    934 
    935 
    936 \begin{small} \begin{alltt}
    937 int main(void)
    938 \{
    939    mp_int number;
    940    int result;
    941 
    942    if ((result = mp_init(&number)) != MP_OKAY) \{
    943       printf("Error initializing the number.  \%s", 
    944              mp_error_to_string(result));
    945       return EXIT_FAILURE;
    946    \}
    947  
    948    /* set the number to 5 */
    949    mp_set(&number, 5);
    950 
    951    switch(mp_cmp_d(&number, 7)) \{
    952        case MP_GT:  printf("number > 7"); break;
    953        case MP_EQ:  printf("number = 7"); break;
    954        case MP_LT:  printf("number < 7"); break;
    955    \}
    956 
    957    /* we're done with it. */ 
    958    mp_clear(&number);
    959 
    960    return EXIT_SUCCESS;
    961 \}
    962 \end{alltt} \end{small}
    963 
    964 If this program functions properly it will print out the following.
    965 
    966 \begin{alltt}
    967 number < 7
    968 \end{alltt}
    969 
    970 \section{Logical Operations}
    971 
    972 Logical operations are operations that can be performed either with simple shifts or boolean operators such as
    973 AND, XOR and OR directly.  These operations are very quick.
    974 
    975 \subsection{Multiplication by two}
    976 
    977 Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
    978 right depending on the operation.  
    979 
    980 When multiplying or dividing by two a special case routine can be used which are as follows.
    981 \index{mp\_mul\_2} \index{mp\_div\_2}
    982 \begin{alltt}
    983 int mp_mul_2(mp_int * a, mp_int * b);
    984 int mp_div_2(mp_int * a, mp_int * b);
    985 \end{alltt}
    986 
    987 The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$.  These functions are fast
    988 since the shift counts and maskes are hardcoded into the routines.
    989 
    990 \begin{small} \begin{alltt}
    991 int main(void)
    992 \{
    993    mp_int number;
    994    int result;
    995 
    996    if ((result = mp_init(&number)) != MP_OKAY) \{
    997       printf("Error initializing the number.  \%s", 
    998              mp_error_to_string(result));
    999       return EXIT_FAILURE;
   1000    \}
   1001  
   1002    /* set the number to 5 */
   1003    mp_set(&number, 5);
   1004 
   1005    /* multiply by two */
   1006    if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
   1007       printf("Error multiplying the number.  \%s", 
   1008              mp_error_to_string(result));
   1009       return EXIT_FAILURE;
   1010    \}
   1011    switch(mp_cmp_d(&number, 7)) \{
   1012        case MP_GT:  printf("2*number > 7"); break;
   1013        case MP_EQ:  printf("2*number = 7"); break;
   1014        case MP_LT:  printf("2*number < 7"); break;
   1015    \}
   1016 
   1017    /* now divide by two */
   1018    if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
   1019       printf("Error dividing the number.  \%s", 
   1020              mp_error_to_string(result));
   1021       return EXIT_FAILURE;
   1022    \}
   1023    switch(mp_cmp_d(&number, 7)) \{
   1024        case MP_GT:  printf("2*number/2 > 7"); break;
   1025        case MP_EQ:  printf("2*number/2 = 7"); break;
   1026        case MP_LT:  printf("2*number/2 < 7"); break;
   1027    \}
   1028 
   1029    /* we're done with it. */ 
   1030    mp_clear(&number);
   1031 
   1032    return EXIT_SUCCESS;
   1033 \}
   1034 \end{alltt} \end{small}
   1035 
   1036 If this program is successful it will print out the following text.
   1037 
   1038 \begin{alltt}
   1039 2*number > 7
   1040 2*number/2 < 7
   1041 \end{alltt}
   1042 
   1043 Since $10 > 7$ and $5 < 7$.  To multiply by a power of two the following function can be used.
   1044 
   1045 \index{mp\_mul\_2d}
   1046 \begin{alltt}
   1047 int mp_mul_2d(mp_int * a, int b, mp_int * c);
   1048 \end{alltt}
   1049 
   1050 This will multiply $a$ by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to 
   1051 zero the function will copy $a$ to ``c'' without performing any further actions.  
   1052 
   1053 To divide by a power of two use the following.
   1054 
   1055 \index{mp\_div\_2d}
   1056 \begin{alltt}
   1057 int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
   1058 \end{alltt}
   1059 Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
   1060 function simply copies $a$ over to ``c'' and zeroes $d$.  The variable $d$ may be passed as a \textbf{NULL}
   1061 value to signal that the remainder is not desired.
   1062 
   1063 \subsection{Polynomial Basis Operations}
   1064 
   1065 Strictly speaking the organization of the integers within the mp\_int structures is what is known as a 
   1066 ``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
   1067 $f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be 
   1068 the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.  
   1069 
   1070 To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
   1071 following function provides this operation.
   1072 
   1073 \index{mp\_lshd}
   1074 \begin{alltt}
   1075 int mp_lshd (mp_int * a, int b);
   1076 \end{alltt}
   1077 
   1078 This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
   1079 in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.
   1080 
   1081 \index{mp\_rshd}
   1082 \begin{alltt}
   1083 void mp_rshd (mp_int * a, int b)
   1084 \end{alltt}
   1085 This will divide $a$ in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
   1086 in place and no new digits are required to complete it.
   1087 
   1088 \subsection{AND, OR and XOR Operations}
   1089 
   1090 While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
   1091 three functions are prototyped as follows.
   1092 
   1093 \index{mp\_or} \index{mp\_and} \index{mp\_xor}
   1094 \begin{alltt}
   1095 int mp_or  (mp_int * a, mp_int * b, mp_int * c);
   1096 int mp_and (mp_int * a, mp_int * b, mp_int * c);
   1097 int mp_xor (mp_int * a, mp_int * b, mp_int * c);
   1098 \end{alltt}
   1099 
   1100 Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.  
   1101 
   1102 \section{Addition and Subtraction}
   1103 
   1104 To compute an addition or subtraction the following two functions can be used.
   1105 
   1106 \index{mp\_add} \index{mp\_sub}
   1107 \begin{alltt}
   1108 int mp_add (mp_int * a, mp_int * b, mp_int * c);
   1109 int mp_sub (mp_int * a, mp_int * b, mp_int * c)
   1110 \end{alltt}
   1111 
   1112 Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
   1113 aware.
   1114 
   1115 \section{Sign Manipulation}
   1116 \subsection{Negation}
   1117 \label{sec:NEG}
   1118 Simple integer negation can be performed with the following.
   1119 
   1120 \index{mp\_neg}
   1121 \begin{alltt}
   1122 int mp_neg (mp_int * a, mp_int * b);
   1123 \end{alltt}
   1124 
   1125 Which assigns $-a$ to $b$.  
   1126 
   1127 \subsection{Absolute}
   1128 Simple integer absolutes can be performed with the following.
   1129 
   1130 \index{mp\_neg}
   1131 \begin{alltt}
   1132 int mp_abs (mp_int * a, mp_int * b);
   1133 \end{alltt}
   1134 
   1135 Which assigns $\vert a \vert$ to $b$.  
   1136 
   1137 \section{Integer Division and Remainder}
   1138 To perform a complete and general integer division with remainder use the following function.
   1139 
   1140 \index{mp\_div}
   1141 \begin{alltt}
   1142 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
   1143 \end{alltt}
   1144                                                         
   1145 This divides $a$ by $b$ and stores the quotient in $c$ and $d$.  The signed quotient is computed such that 
   1146 $bc + d = a$.  Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required.  If 
   1147 $b$ is zero the function returns \textbf{MP\_VAL}.  
   1148 
   1149 
   1150 \chapter{Multiplication and Squaring}
   1151 \section{Multiplication}
   1152 A full signed integer multiplication can be performed with the following.
   1153 \index{mp\_mul}
   1154 \begin{alltt}
   1155 int mp_mul (mp_int * a, mp_int * b, mp_int * c);
   1156 \end{alltt}
   1157 Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are 
   1158 specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
   1159 should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
   1160 sized inputs.  Then followed by the Comba and baseline multipliers.
   1161 
   1162 Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
   1163 will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
   1164 
   1165 \begin{alltt}
   1166 int main(void)
   1167 \{
   1168    mp_int number1, number2;
   1169    int result;
   1170 
   1171    /* Initialize the numbers */
   1172    if ((result = mp_init_multi(&number1, 
   1173                                &number2, NULL)) != MP_OKAY) \{
   1174       printf("Error initializing the numbers.  \%s", 
   1175              mp_error_to_string(result));
   1176       return EXIT_FAILURE;
   1177    \}
   1178 
   1179    /* set the terms */
   1180    if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
   1181       printf("Error setting number1.  \%s", 
   1182              mp_error_to_string(result));
   1183       return EXIT_FAILURE;
   1184    \}
   1185  
   1186    if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
   1187       printf("Error setting number2.  \%s", 
   1188              mp_error_to_string(result));
   1189       return EXIT_FAILURE;
   1190    \}
   1191 
   1192    /* multiply them */
   1193    if ((result = mp_mul(&number1, &number2,
   1194                         &number1)) != MP_OKAY) \{
   1195       printf("Error multiplying terms.  \%s", 
   1196              mp_error_to_string(result));
   1197       return EXIT_FAILURE;
   1198    \}
   1199 
   1200    /* display */
   1201    printf("number1 * number2 == \%lu", mp_get_int(&number1));
   1202 
   1203    /* free terms and return */
   1204    mp_clear_multi(&number1, &number2, NULL);
   1205 
   1206    return EXIT_SUCCESS;
   1207 \}
   1208 \end{alltt}   
   1209 
   1210 If this program succeeds it shall output the following.
   1211 
   1212 \begin{alltt}
   1213 number1 * number2 == 262911
   1214 \end{alltt}
   1215 
   1216 \section{Squaring}
   1217 Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
   1218 mp\_mul().
   1219 
   1220 \index{mp\_sqr}
   1221 \begin{alltt}
   1222 int mp_sqr (mp_int * a, mp_int * b);
   1223 \end{alltt}
   1224 
   1225 Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring
   1226 algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because
   1227 of the speed difference.  
   1228 
   1229 \section{Tuning Polynomial Basis Routines}
   1230 
   1231 Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
   1232 the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require 
   1233 considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision
   1234 multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
   1235 of 138).
   1236 
   1237 So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
   1238 actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration, 
   1239 GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at 
   1240 110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
   1241 
   1242 Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points 
   1243 exist and for the most part I just set the cutoff points very high to make sure they're not called.
   1244 
   1245 A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
   1246 can be built with GCC as follows
   1247 
   1248 \begin{alltt}
   1249 make XXX
   1250 \end{alltt}
   1251 Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
   1252 
   1253 \begin{figure}[here]
   1254 \begin{center}
   1255 \begin{small}
   1256 \begin{tabular}{|l|l|}
   1257 \hline \textbf{Value of XXX} & \textbf{Meaning} \\
   1258 \hline tune & Builds portable tuning application \\
   1259 \hline tune86 & Builds x86 (pentium and up) program for COFF \\
   1260 \hline tune86c & Builds x86 program for Cygwin \\
   1261 \hline tune86l & Builds x86 program for Linux (ELF format) \\
   1262 \hline
   1263 \end{tabular}
   1264 \end{small}
   1265 \end{center}
   1266 \caption{Build Names for Tuning Programs}
   1267 \label{fig:tuning}
   1268 \end{figure}
   1269 
   1270 When the program is running it will output a series of measurements for different cutoff points.  It will first find
   1271 good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
   1272 tuning takes a very long time as the cutoff points are likely to be very high.
   1273 
   1274 \chapter{Modular Reduction}
   1275 
   1276 Modular reduction is process of taking the remainder of one quantity divided by another.  Expressed 
   1277 as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.  
   1278 
   1279 \begin{equation}
   1280 a \equiv b \mbox{ (mod }c\mbox{)}
   1281 \label{eqn:mod}
   1282 \end{equation}
   1283 
   1284 Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly 
   1285 fast reduction algorithms can be written for the limited range.  
   1286 
   1287 Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
   1288 algorithm mp\_exptmod when an appropriate modulus is detected.  
   1289 
   1290 \section{Straight Division}
   1291 In order to effect an arbitrary modular reduction the following algorithm is provided.
   1292 
   1293 \index{mp\_mod}
   1294 \begin{alltt}
   1295 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
   1296 \end{alltt}
   1297 
   1298 This reduces $a$ modulo $b$ and stores the result in $c$.  The sign of $c$ shall agree with the sign 
   1299 of $b$.  This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
   1300 
   1301 \section{Barrett Reduction}
   1302 
   1303 Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
   1304 a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function.
   1305 
   1306 \index{mp\_reduce\_setup}
   1307 \begin{alltt}
   1308 int mp_reduce_setup(mp_int *a, mp_int *b);
   1309 \end{alltt}
   1310 
   1311 Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to
   1312 be computed once.  Modular reduction can now be performed with the following.
   1313 
   1314 \index{mp\_reduce}
   1315 \begin{alltt}
   1316 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
   1317 \end{alltt}
   1318 
   1319 This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range
   1320 $0 \le a < b^2$.
   1321 
   1322 \begin{alltt}
   1323 int main(void)
   1324 \{
   1325    mp_int   a, b, c, mu;
   1326    int      result;
   1327 
   1328    /* initialize a,b to desired values, mp_init mu, 
   1329     * c and set c to 1...we want to compute a^3 mod b 
   1330     */
   1331 
   1332    /* get mu value */
   1333    if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
   1334       printf("Error getting mu.  \%s", 
   1335              mp_error_to_string(result));
   1336       return EXIT_FAILURE;
   1337    \}
   1338 
   1339    /* square a to get c = a^2 */
   1340    if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
   1341       printf("Error squaring.  \%s", 
   1342              mp_error_to_string(result));
   1343       return EXIT_FAILURE;
   1344    \}
   1345 
   1346    /* now reduce `c' modulo b */
   1347    if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
   1348       printf("Error reducing.  \%s", 
   1349              mp_error_to_string(result));
   1350       return EXIT_FAILURE;
   1351    \}
   1352    
   1353    /* multiply a to get c = a^3 */
   1354    if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
   1355       printf("Error reducing.  \%s", 
   1356              mp_error_to_string(result));
   1357       return EXIT_FAILURE;
   1358    \}
   1359 
   1360    /* now reduce `c' modulo b  */
   1361    if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
   1362       printf("Error reducing.  \%s", 
   1363              mp_error_to_string(result));
   1364       return EXIT_FAILURE;
   1365    \}
   1366   
   1367    /* c now equals a^3 mod b */
   1368 
   1369    return EXIT_SUCCESS;
   1370 \}
   1371 \end{alltt} 
   1372 
   1373 This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.  
   1374 
   1375 \section{Montgomery Reduction}
   1376 
   1377 Montgomery is a specialized reduction algorithm for any odd moduli.  Like Barrett reduction a pre--computation
   1378 step is required.  This is accomplished with the following.
   1379 
   1380 \index{mp\_montgomery\_setup}
   1381 \begin{alltt}
   1382 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
   1383 \end{alltt}
   1384 
   1385 For the given odd moduli $a$ the precomputation value is placed in $mp$.  The reduction is computed with the 
   1386 following.
   1387 
   1388 \index{mp\_montgomery\_reduce}
   1389 \begin{alltt}
   1390 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
   1391 \end{alltt}
   1392 This reduces $a$ in place modulo $m$ with the pre--computed value $mp$.   $a$ must be in the range
   1393 $0 \le a < b^2$.
   1394 
   1395 Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit.  With the default
   1396 setup for instance, the limit is $127$ digits ($3556$--bits).   Note that this function is not limited to
   1397 $127$ digits just that it falls back to a baseline algorithm after that point.  
   1398 
   1399 An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$ 
   1400 where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).  
   1401 
   1402 To quickly calculate $R$ the following function was provided.
   1403 
   1404 \index{mp\_montgomery\_calc\_normalization}
   1405 \begin{alltt}
   1406 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
   1407 \end{alltt}
   1408 Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.  
   1409 
   1410 The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system.  For
   1411 example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
   1412 multiplying it by $R$.  Consider the following code snippet.
   1413 
   1414 \begin{alltt}
   1415 int main(void)
   1416 \{
   1417    mp_int   a, b, c, R;
   1418    mp_digit mp;
   1419    int      result;
   1420 
   1421    /* initialize a,b to desired values, 
   1422     * mp_init R, c and set c to 1.... 
   1423     */
   1424 
   1425    /* get normalization */
   1426    if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
   1427       printf("Error getting norm.  \%s", 
   1428              mp_error_to_string(result));
   1429       return EXIT_FAILURE;
   1430    \}
   1431 
   1432    /* get mp value */
   1433    if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
   1434       printf("Error setting up montgomery.  \%s", 
   1435              mp_error_to_string(result));
   1436       return EXIT_FAILURE;
   1437    \}
   1438 
   1439    /* normalize `a' so now a is equal to aR */
   1440    if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
   1441       printf("Error computing aR.  \%s", 
   1442              mp_error_to_string(result));
   1443       return EXIT_FAILURE;
   1444    \}
   1445 
   1446    /* square a to get c = a^2R^2 */
   1447    if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
   1448       printf("Error squaring.  \%s", 
   1449              mp_error_to_string(result));
   1450       return EXIT_FAILURE;
   1451    \}
   1452 
   1453    /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
   1454    if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
   1455       printf("Error reducing.  \%s", 
   1456              mp_error_to_string(result));
   1457       return EXIT_FAILURE;
   1458    \}
   1459    
   1460    /* multiply a to get c = a^3R^2 */
   1461    if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
   1462       printf("Error reducing.  \%s", 
   1463              mp_error_to_string(result));
   1464       return EXIT_FAILURE;
   1465    \}
   1466 
   1467    /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
   1468    if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
   1469       printf("Error reducing.  \%s", 
   1470              mp_error_to_string(result));
   1471       return EXIT_FAILURE;
   1472    \}
   1473    
   1474    /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
   1475    if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
   1476       printf("Error reducing.  \%s", 
   1477              mp_error_to_string(result));
   1478       return EXIT_FAILURE;
   1479    \}
   1480 
   1481    /* c now equals a^3 mod b */
   1482 
   1483    return EXIT_SUCCESS;
   1484 \}
   1485 \end{alltt} 
   1486 
   1487 This particular example does not look too efficient but it demonstrates the point of the algorithm.  By 
   1488 normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$.  This allows
   1489 a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
   1490 
   1491 For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
   1492 
   1493 \section{Restricted Dimminished Radix}
   1494 
   1495 ``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
   1496 digit shifting and small multiplications.  In this case the ``restricted'' variant refers to moduli of the
   1497 form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).  
   1498 
   1499 As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
   1500 
   1501 \index{mp\_dr\_setup}
   1502 \begin{alltt}
   1503 void mp_dr_setup(mp_int *a, mp_digit *d);
   1504 \end{alltt}
   1505 
   1506 This computes the value required for the modulus $a$ and stores it in $d$.  This function cannot fail
   1507 and does not return any error codes.  After the pre--computation a reduction can be performed with the
   1508 following.
   1509 
   1510 \index{mp\_dr\_reduce}
   1511 \begin{alltt}
   1512 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
   1513 \end{alltt}
   1514 
   1515 This reduces $a$ in place modulo $b$ with the pre--computed value $mp$.  $b$ must be of a restricted
   1516 dimminished radix form and $a$ must be in the range $0 \le a < b^2$.  Dimminished radix reductions are 
   1517 much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.  
   1518 
   1519 Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
   1520 BBS cryptographic purposes.  This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
   1521 primes are acceptable.  
   1522 
   1523 Note that unlike Montgomery reduction there is no normalization process.  The result of this function is
   1524 equal to the correct residue.
   1525 
   1526 \section{Unrestricted Dimminshed Radix}
   1527 
   1528 Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the 
   1529 form $2^k - p$ for $0 < p < \beta$.  In this sense the unrestricted reductions are more flexible as they 
   1530 can be applied to a wider range of numbers.  
   1531 
   1532 \index{mp\_reduce\_2k\_setup}
   1533 \begin{alltt}
   1534 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
   1535 \end{alltt}
   1536 
   1537 This will compute the required $d$ value for the given moduli $a$.  
   1538 
   1539 \index{mp\_reduce\_2k}
   1540 \begin{alltt}
   1541 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
   1542 \end{alltt}
   1543 
   1544 This will reduce $a$ in place modulo $n$ with the pre--computed value $d$.  From my experience this routine is 
   1545 slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.  
   1546 
   1547 \chapter{Exponentiation}
   1548 \section{Single Digit Exponentiation}
   1549 \index{mp\_expt\_d}
   1550 \begin{alltt}
   1551 int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
   1552 \end{alltt}
   1553 This computes $c = a^b$ using a simple binary left-to-right algorithm.  It is faster than repeated multiplications by 
   1554 $a$ for all values of $b$ greater than three.  
   1555 
   1556 \section{Modular Exponentiation}
   1557 \index{mp\_exptmod}
   1558 \begin{alltt}
   1559 int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
   1560 \end{alltt}
   1561 This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
   1562 will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of 
   1563 $X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that 
   1564 $gcd(G, P) = 1$.
   1565 
   1566 This function is actually a shell around the two internal exponentiation functions.  This routine will automatically
   1567 detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used.  Generally
   1568 moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations.  Followed by Montgomery
   1569 and the other two algorithms.
   1570 
   1571 \section{Root Finding}
   1572 \index{mp\_n\_root}
   1573 \begin{alltt}
   1574 int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
   1575 \end{alltt}
   1576 This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not 
   1577 ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
   1578 numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
   1579 a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ 
   1580 will return $-2$.  
   1581 
   1582 This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since
   1583 the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
   1584 values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example,
   1585 $a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply 
   1586 $\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
   1587 
   1588 \chapter{Prime Numbers}
   1589 \section{Trial Division}
   1590 \index{mp\_prime\_is\_divisible}
   1591 \begin{alltt}
   1592 int mp_prime_is_divisible (mp_int * a, int *result)
   1593 \end{alltt}
   1594 This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the 
   1595 outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that 
   1596 if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
   1597 the default is to set it to zero first.}.
   1598 
   1599 \section{Fermat Test}
   1600 \index{mp\_prime\_fermat}
   1601 \begin{alltt}
   1602 int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
   1603 \end{alltt}
   1604 Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
   1605 equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
   1606 is set to zero.
   1607 
   1608 \section{Miller-Rabin Test}
   1609 \index{mp\_prime\_miller\_rabin}
   1610 \begin{alltt}
   1611 int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   1612 \end{alltt}
   1613 Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
   1614 fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.  
   1615 Otherwise $result$ is set to zero.  
   1616 
   1617 Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of 
   1618 Miller-Rabin are a subset of the failures of the Fermat test.
   1619 
   1620 \subsection{Required Number of Tests}
   1621 Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
   1622 or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
   1623 This is why a simple function has been provided to help out.
   1624 
   1625 \index{mp\_prime\_rabin\_miller\_trials}
   1626 \begin{alltt}
   1627 int mp_prime_rabin_miller_trials(int size)
   1628 \end{alltt}
   1629 This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
   1630 in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
   1631 require ten tests whereas a 1024-bit number would only require four tests. 
   1632 
   1633 You should always still perform a trial division before a Miller-Rabin test though.
   1634 
   1635 \section{Primality Testing}
   1636 \index{mp\_prime\_is\_prime}
   1637 \begin{alltt}
   1638 int mp_prime_is_prime (mp_int * a, int t, int *result)
   1639 \end{alltt}
   1640 This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.  
   1641 If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by 
   1642 $1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
   1643 
   1644 \section{Next Prime}
   1645 \index{mp\_prime\_next\_prime}
   1646 \begin{alltt}
   1647 int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
   1648 \end{alltt}
   1649 This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you 
   1650 want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.  
   1651 
   1652 \section{Random Primes}
   1653 \index{mp\_prime\_random}
   1654 \begin{alltt}
   1655 int mp_prime_random(mp_int *a, int t, int size, int bbs, 
   1656                     ltm_prime_callback cb, void *dat)
   1657 \end{alltt}
   1658 This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
   1659 $t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for 
   1660 
   1661 \begin{alltt}
   1662 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
   1663 \end{alltt}
   1664 
   1665 Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
   1666 copied from the original input.  It can be used to pass RNG context data to the callback.  The function 
   1667 mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there 
   1668 is no skew on the least significant bits.
   1669 
   1670 \textit{Note:}  As of v0.30 of the LibTomMath library this function has been deprecated.  It is still available
   1671 but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
   1672 
   1673 \subsection{Extended Generation}
   1674 \index{mp\_prime\_random\_ex}
   1675 \begin{alltt}
   1676 int mp_prime_random_ex(mp_int *a,    int t, 
   1677                        int     size, int flags, 
   1678                        ltm_prime_callback cb, void *dat);
   1679 \end{alltt}
   1680 This will generate a prime in $a$ using $t$ tests of the primality testing algorithms.  The variable $size$
   1681 specifies the bit length of the prime desired.  The variable $flags$ specifies one of several options available
   1682 (see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in 
   1683 mp\_prime\_random().
   1684 
   1685 \begin{figure}[here]
   1686 \begin{center}
   1687 \begin{small}
   1688 \begin{tabular}{|r|l|}
   1689 \hline \textbf{Flag}         & \textbf{Meaning} \\
   1690 \hline LTM\_PRIME\_BBS       & Make the prime congruent to $3$ modulo $4$ \\
   1691 \hline LTM\_PRIME\_SAFE      & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
   1692                              & This option implies LTM\_PRIME\_BBS as well. \\
   1693 \hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
   1694                              & Is forced to zero.  \\
   1695 \hline LTM\_PRIME\_2MSB\_ON  & Makes sure that the bit adjacent to the most significant bit \\
   1696                              & Is forced to one. \\
   1697 \hline
   1698 \end{tabular}
   1699 \end{small}
   1700 \end{center}
   1701 \caption{Primality Generation Options}
   1702 \label{fig:primeopts}
   1703 \end{figure}
   1704 
   1705 \chapter{Input and Output}
   1706 \section{ASCII Conversions}
   1707 \subsection{To ASCII}
   1708 \index{mp\_toradix}
   1709 \begin{alltt}
   1710 int mp_toradix (mp_int * a, char *str, int radix);
   1711 \end{alltt}
   1712 This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars.  This function appends a NUL character
   1713 to terminate the string.  Valid values of ``radix'' line in the range $[2, 64]$.  To determine the size (exact) required
   1714 by the conversion before storing any data use the following function.
   1715 
   1716 \index{mp\_radix\_size}
   1717 \begin{alltt}
   1718 int mp_radix_size (mp_int * a, int radix, int *size)
   1719 \end{alltt}
   1720 This stores in ``size'' the number of characters (including space for the NUL terminator) required.  Upon error this 
   1721 function returns an error code and ``size'' will be zero.  
   1722 
   1723 \subsection{From ASCII}
   1724 \index{mp\_read\_radix}
   1725 \begin{alltt}
   1726 int mp_read_radix (mp_int * a, char *str, int radix);
   1727 \end{alltt}
   1728 This will read the base-``radix'' NUL terminated string from ``str'' into $a$.  It will stop reading when it reads a
   1729 character it does not recognize (which happens to include th NUL char... imagine that...).  A single leading $-$ sign
   1730 can be used to denote a negative number.
   1731 
   1732 \section{Binary Conversions}
   1733 
   1734 Converting an mp\_int to and from binary is another keen idea.
   1735 
   1736 \index{mp\_unsigned\_bin\_size}
   1737 \begin{alltt}
   1738 int mp_unsigned_bin_size(mp_int *a);
   1739 \end{alltt}
   1740 
   1741 This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
   1742 
   1743 \index{mp\_to\_unsigned\_bin}
   1744 \begin{alltt}
   1745 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
   1746 \end{alltt}
   1747 This will store $a$ into the buffer $b$ in big--endian format.  Fortunately this is exactly what DER (or is it ASN?)
   1748 requires.  It does not store the sign of the integer.
   1749 
   1750 \index{mp\_read\_unsigned\_bin}
   1751 \begin{alltt}
   1752 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
   1753 \end{alltt}
   1754 This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$.  The resulting
   1755 integer $a$ will always be positive.
   1756 
   1757 For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
   1758 previous functions.
   1759 
   1760 \begin{alltt}
   1761 int mp_signed_bin_size(mp_int *a);
   1762 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
   1763 int mp_to_signed_bin(mp_int *a, unsigned char *b);
   1764 \end{alltt}
   1765 They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
   1766 byte depending on the sign.  If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
   1767 is non--zero.  
   1768 
   1769 \chapter{Algebraic Functions}
   1770 \section{Extended Euclidean Algorithm}
   1771 \index{mp\_exteuclid}
   1772 \begin{alltt}
   1773 int mp_exteuclid(mp_int *a, mp_int *b, 
   1774                  mp_int *U1, mp_int *U2, mp_int *U3);
   1775 \end{alltt}
   1776 
   1777 This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
   1778 
   1779 \begin{equation}
   1780 a \cdot U1 + b \cdot U2 = U3
   1781 \end{equation}
   1782 
   1783 Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.  
   1784 
   1785 \section{Greatest Common Divisor}
   1786 \index{mp\_gcd}
   1787 \begin{alltt}
   1788 int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
   1789 \end{alltt}
   1790 This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
   1791 
   1792 \section{Least Common Multiple}
   1793 \index{mp\_lcm}
   1794 \begin{alltt}
   1795 int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
   1796 \end{alltt}
   1797 This will compute the least common multiple of $a$ and $b$ and store it in $c$.
   1798 
   1799 \section{Jacobi Symbol}
   1800 \index{mp\_jacobi}
   1801 \begin{alltt}
   1802 int mp_jacobi (mp_int * a, mp_int * p, int *c)
   1803 \end{alltt}
   1804 This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
   1805 symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
   1806 then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
   1807 and the result will be $1$ if $a$ is a quadratic residue modulo $p$.  
   1808 
   1809 \section{Modular Inverse}
   1810 \index{mp\_invmod}
   1811 \begin{alltt}
   1812 int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
   1813 \end{alltt}
   1814 Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
   1815 
   1816 \section{Single Digit Functions}
   1817 
   1818 For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
   1819 
   1820 \index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
   1821 \begin{alltt}
   1822 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
   1823 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
   1824 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
   1825 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
   1826 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
   1827 \end{alltt}
   1828 
   1829 These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit.  These
   1830 functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
   1831 an entire mp\_int to store a number like $1$ or $2$.
   1832 
   1833 \input{bn.ind}
   1834 
   1835 \end{document}
   1836