Home | History | Annotate | Download | only in Eigen2Support
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra. Eigen itself is part of the KDE project.
      3 //
      4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN2_LEASTSQUARES_H
     11 #define EIGEN2_LEASTSQUARES_H
     12 
     13 namespace Eigen {
     14 
     15 /** \ingroup LeastSquares_Module
     16   *
     17   * \leastsquares_module
     18   *
     19   * For a set of points, this function tries to express
     20   * one of the coords as a linear (affine) function of the other coords.
     21   *
     22   * This is best explained by an example. This function works in full
     23   * generality, for points in a space of arbitrary dimension, and also over
     24   * the complex numbers, but for this example we will work in dimension 3
     25   * over the real numbers (doubles).
     26   *
     27   * So let us work with the following set of 5 points given by their
     28   * \f$(x,y,z)\f$ coordinates:
     29   * @code
     30     Vector3d points[5];
     31     points[0] = Vector3d( 3.02, 6.89, -4.32 );
     32     points[1] = Vector3d( 2.01, 5.39, -3.79 );
     33     points[2] = Vector3d( 2.41, 6.01, -4.01 );
     34     points[3] = Vector3d( 2.09, 5.55, -3.86 );
     35     points[4] = Vector3d( 2.58, 6.32, -4.10 );
     36   * @endcode
     37   * Suppose that we want to express the second coordinate (\f$y\f$) as a linear
     38   * expression in \f$x\f$ and \f$z\f$, that is,
     39   * \f[ y=ax+bz+c \f]
     40   * for some constants \f$a,b,c\f$. Thus, we want to find the best possible
     41   * constants \f$a,b,c\f$ so that the plane of equation \f$y=ax+bz+c\f$ fits
     42   * best the five above points. To do that, call this function as follows:
     43   * @code
     44     Vector3d coeffs; // will store the coefficients a, b, c
     45     linearRegression(
     46       5,
     47       &points,
     48       &coeffs,
     49       1 // the coord to express as a function of
     50         // the other ones. 0 means x, 1 means y, 2 means z.
     51     );
     52   * @endcode
     53   * Now the vector \a coeffs is approximately
     54   * \f$( 0.495 ,  -1.927 ,  -2.906 )\f$.
     55   * Thus, we get \f$a=0.495, b = -1.927, c = -2.906\f$. Let us check for
     56   * instance how near points[0] is from the plane of equation \f$y=ax+bz+c\f$.
     57   * Looking at the coords of points[0], we see that:
     58   * \f[ax+bz+c = 0.495 * 3.02 + (-1.927) * (-4.32) + (-2.906) = 6.91.\f]
     59   * On the other hand, we have \f$y=6.89\f$. We see that the values
     60   * \f$6.91\f$ and \f$6.89\f$
     61   * are near, so points[0] is very near the plane of equation \f$y=ax+bz+c\f$.
     62   *
     63   * Let's now describe precisely the parameters:
     64   * @param numPoints the number of points
     65   * @param points the array of pointers to the points on which to perform the linear regression
     66   * @param result pointer to the vector in which to store the result.
     67                   This vector must be of the same type and size as the
     68                   data points. The meaning of its coords is as follows.
     69                   For brevity, let \f$n=Size\f$,
     70                   \f$r_i=result[i]\f$,
     71                   and \f$f=funcOfOthers\f$. Denote by
     72                   \f$x_0,\ldots,x_{n-1}\f$
     73                   the n coordinates in the n-dimensional space.
     74                   Then the resulting equation is:
     75                   \f[ x_f = r_0 x_0 + \cdots + r_{f-1}x_{f-1}
     76                    + r_{f+1}x_{f+1} + \cdots + r_{n-1}x_{n-1} + r_n. \f]
     77   * @param funcOfOthers Determines which coord to express as a function of the
     78                         others. Coords are numbered starting from 0, so that a
     79                         value of 0 means \f$x\f$, 1 means \f$y\f$,
     80                         2 means \f$z\f$, ...
     81   *
     82   * \sa fitHyperplane()
     83   */
     84 template<typename VectorType>
     85 void linearRegression(int numPoints,
     86                       VectorType **points,
     87                       VectorType *result,
     88                       int funcOfOthers )
     89 {
     90   typedef typename VectorType::Scalar Scalar;
     91   typedef Hyperplane<Scalar, VectorType::SizeAtCompileTime> HyperplaneType;
     92   const int size = points[0]->size();
     93   result->resize(size);
     94   HyperplaneType h(size);
     95   fitHyperplane(numPoints, points, &h);
     96   for(int i = 0; i < funcOfOthers; i++)
     97     result->coeffRef(i) = - h.coeffs()[i] / h.coeffs()[funcOfOthers];
     98   for(int i = funcOfOthers; i < size; i++)
     99     result->coeffRef(i) = - h.coeffs()[i+1] / h.coeffs()[funcOfOthers];
    100 }
    101 
    102 /** \ingroup LeastSquares_Module
    103   *
    104   * \leastsquares_module
    105   *
    106   * This function is quite similar to linearRegression(), so we refer to the
    107   * documentation of this function and only list here the differences.
    108   *
    109   * The main difference from linearRegression() is that this function doesn't
    110   * take a \a funcOfOthers argument. Instead, it finds a general equation
    111   * of the form
    112   * \f[ r_0 x_0 + \cdots + r_{n-1}x_{n-1} + r_n = 0, \f]
    113   * where \f$n=Size\f$, \f$r_i=retCoefficients[i]\f$, and we denote by
    114   * \f$x_0,\ldots,x_{n-1}\f$ the n coordinates in the n-dimensional space.
    115   *
    116   * Thus, the vector \a retCoefficients has size \f$n+1\f$, which is another
    117   * difference from linearRegression().
    118   *
    119   * In practice, this function performs an hyper-plane fit in a total least square sense
    120   * via the following steps:
    121   *  1 - center the data to the mean
    122   *  2 - compute the covariance matrix
    123   *  3 - pick the eigenvector corresponding to the smallest eigenvalue of the covariance matrix
    124   * The ratio of the smallest eigenvalue and the second one gives us a hint about the relevance
    125   * of the solution. This value is optionally returned in \a soundness.
    126   *
    127   * \sa linearRegression()
    128   */
    129 template<typename VectorType, typename HyperplaneType>
    130 void fitHyperplane(int numPoints,
    131                    VectorType **points,
    132                    HyperplaneType *result,
    133                    typename NumTraits<typename VectorType::Scalar>::Real* soundness = 0)
    134 {
    135   typedef typename VectorType::Scalar Scalar;
    136   typedef Matrix<Scalar,VectorType::SizeAtCompileTime,VectorType::SizeAtCompileTime> CovMatrixType;
    137   EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType)
    138   ei_assert(numPoints >= 1);
    139   int size = points[0]->size();
    140   ei_assert(size+1 == result->coeffs().size());
    141 
    142   // compute the mean of the data
    143   VectorType mean = VectorType::Zero(size);
    144   for(int i = 0; i < numPoints; ++i)
    145     mean += *(points[i]);
    146   mean /= numPoints;
    147 
    148   // compute the covariance matrix
    149   CovMatrixType covMat = CovMatrixType::Zero(size, size);
    150   VectorType remean = VectorType::Zero(size);
    151   for(int i = 0; i < numPoints; ++i)
    152   {
    153     VectorType diff = (*(points[i]) - mean).conjugate();
    154     covMat += diff * diff.adjoint();
    155   }
    156 
    157   // now we just have to pick the eigen vector with smallest eigen value
    158   SelfAdjointEigenSolver<CovMatrixType> eig(covMat);
    159   result->normal() = eig.eigenvectors().col(0);
    160   if (soundness)
    161     *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
    162 
    163   // let's compute the constant coefficient such that the
    164   // plane pass trough the mean point:
    165   result->offset() = - (result->normal().cwise()* mean).sum();
    166 }
    167 
    168 } // end namespace Eigen
    169 
    170 #endif // EIGEN2_LEASTSQUARES_H
    171