Home | History | Annotate | Download | only in blas
      1       SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
      2 *     .. Scalar Arguments ..
      3       INTEGER INCX,N
      4       CHARACTER DIAG,TRANS,UPLO
      5 *     ..
      6 *     .. Array Arguments ..
      7       DOUBLE PRECISION AP(*),X(*)
      8 *     ..
      9 *
     10 *  Purpose
     11 *  =======
     12 *
     13 *  DTPMV  performs one of the matrix-vector operations
     14 *
     15 *     x := A*x,   or   x := A'*x,
     16 *
     17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
     18 *  upper or lower triangular matrix, supplied in packed form.
     19 *
     20 *  Arguments
     21 *  ==========
     22 *
     23 *  UPLO   - CHARACTER*1.
     24 *           On entry, UPLO specifies whether the matrix is an upper or
     25 *           lower triangular matrix as follows:
     26 *
     27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
     28 *
     29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
     30 *
     31 *           Unchanged on exit.
     32 *
     33 *  TRANS  - CHARACTER*1.
     34 *           On entry, TRANS specifies the operation to be performed as
     35 *           follows:
     36 *
     37 *              TRANS = 'N' or 'n'   x := A*x.
     38 *
     39 *              TRANS = 'T' or 't'   x := A'*x.
     40 *
     41 *              TRANS = 'C' or 'c'   x := A'*x.
     42 *
     43 *           Unchanged on exit.
     44 *
     45 *  DIAG   - CHARACTER*1.
     46 *           On entry, DIAG specifies whether or not A is unit
     47 *           triangular as follows:
     48 *
     49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
     50 *
     51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
     52 *                                  triangular.
     53 *
     54 *           Unchanged on exit.
     55 *
     56 *  N      - INTEGER.
     57 *           On entry, N specifies the order of the matrix A.
     58 *           N must be at least zero.
     59 *           Unchanged on exit.
     60 *
     61 *  AP     - DOUBLE PRECISION array of DIMENSION at least
     62 *           ( ( n*( n + 1 ) )/2 ).
     63 *           Before entry with  UPLO = 'U' or 'u', the array AP must
     64 *           contain the upper triangular matrix packed sequentially,
     65 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     66 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
     67 *           respectively, and so on.
     68 *           Before entry with UPLO = 'L' or 'l', the array AP must
     69 *           contain the lower triangular matrix packed sequentially,
     70 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     71 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
     72 *           respectively, and so on.
     73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
     74 *           A are not referenced, but are assumed to be unity.
     75 *           Unchanged on exit.
     76 *
     77 *  X      - DOUBLE PRECISION array of dimension at least
     78 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     79 *           Before entry, the incremented array X must contain the n
     80 *           element vector x. On exit, X is overwritten with the
     81 *           tranformed vector x.
     82 *
     83 *  INCX   - INTEGER.
     84 *           On entry, INCX specifies the increment for the elements of
     85 *           X. INCX must not be zero.
     86 *           Unchanged on exit.
     87 *
     88 *  Further Details
     89 *  ===============
     90 *
     91 *  Level 2 Blas routine.
     92 *
     93 *  -- Written on 22-October-1986.
     94 *     Jack Dongarra, Argonne National Lab.
     95 *     Jeremy Du Croz, Nag Central Office.
     96 *     Sven Hammarling, Nag Central Office.
     97 *     Richard Hanson, Sandia National Labs.
     98 *
     99 *  =====================================================================
    100 *
    101 *     .. Parameters ..
    102       DOUBLE PRECISION ZERO
    103       PARAMETER (ZERO=0.0D+0)
    104 *     ..
    105 *     .. Local Scalars ..
    106       DOUBLE PRECISION TEMP
    107       INTEGER I,INFO,IX,J,JX,K,KK,KX
    108       LOGICAL NOUNIT
    109 *     ..
    110 *     .. External Functions ..
    111       LOGICAL LSAME
    112       EXTERNAL LSAME
    113 *     ..
    114 *     .. External Subroutines ..
    115       EXTERNAL XERBLA
    116 *     ..
    117 *
    118 *     Test the input parameters.
    119 *
    120       INFO = 0
    121       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    122           INFO = 1
    123       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
    124      +         .NOT.LSAME(TRANS,'C')) THEN
    125           INFO = 2
    126       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    127           INFO = 3
    128       ELSE IF (N.LT.0) THEN
    129           INFO = 4
    130       ELSE IF (INCX.EQ.0) THEN
    131           INFO = 7
    132       END IF
    133       IF (INFO.NE.0) THEN
    134           CALL XERBLA('DTPMV ',INFO)
    135           RETURN
    136       END IF
    137 *
    138 *     Quick return if possible.
    139 *
    140       IF (N.EQ.0) RETURN
    141 *
    142       NOUNIT = LSAME(DIAG,'N')
    143 *
    144 *     Set up the start point in X if the increment is not unity. This
    145 *     will be  ( N - 1 )*INCX  too small for descending loops.
    146 *
    147       IF (INCX.LE.0) THEN
    148           KX = 1 - (N-1)*INCX
    149       ELSE IF (INCX.NE.1) THEN
    150           KX = 1
    151       END IF
    152 *
    153 *     Start the operations. In this version the elements of AP are
    154 *     accessed sequentially with one pass through AP.
    155 *
    156       IF (LSAME(TRANS,'N')) THEN
    157 *
    158 *        Form  x:= A*x.
    159 *
    160           IF (LSAME(UPLO,'U')) THEN
    161               KK = 1
    162               IF (INCX.EQ.1) THEN
    163                   DO 20 J = 1,N
    164                       IF (X(J).NE.ZERO) THEN
    165                           TEMP = X(J)
    166                           K = KK
    167                           DO 10 I = 1,J - 1
    168                               X(I) = X(I) + TEMP*AP(K)
    169                               K = K + 1
    170    10                     CONTINUE
    171                           IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
    172                       END IF
    173                       KK = KK + J
    174    20             CONTINUE
    175               ELSE
    176                   JX = KX
    177                   DO 40 J = 1,N
    178                       IF (X(JX).NE.ZERO) THEN
    179                           TEMP = X(JX)
    180                           IX = KX
    181                           DO 30 K = KK,KK + J - 2
    182                               X(IX) = X(IX) + TEMP*AP(K)
    183                               IX = IX + INCX
    184    30                     CONTINUE
    185                           IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
    186                       END IF
    187                       JX = JX + INCX
    188                       KK = KK + J
    189    40             CONTINUE
    190               END IF
    191           ELSE
    192               KK = (N* (N+1))/2
    193               IF (INCX.EQ.1) THEN
    194                   DO 60 J = N,1,-1
    195                       IF (X(J).NE.ZERO) THEN
    196                           TEMP = X(J)
    197                           K = KK
    198                           DO 50 I = N,J + 1,-1
    199                               X(I) = X(I) + TEMP*AP(K)
    200                               K = K - 1
    201    50                     CONTINUE
    202                           IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
    203                       END IF
    204                       KK = KK - (N-J+1)
    205    60             CONTINUE
    206               ELSE
    207                   KX = KX + (N-1)*INCX
    208                   JX = KX
    209                   DO 80 J = N,1,-1
    210                       IF (X(JX).NE.ZERO) THEN
    211                           TEMP = X(JX)
    212                           IX = KX
    213                           DO 70 K = KK,KK - (N- (J+1)),-1
    214                               X(IX) = X(IX) + TEMP*AP(K)
    215                               IX = IX - INCX
    216    70                     CONTINUE
    217                           IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
    218                       END IF
    219                       JX = JX - INCX
    220                       KK = KK - (N-J+1)
    221    80             CONTINUE
    222               END IF
    223           END IF
    224       ELSE
    225 *
    226 *        Form  x := A'*x.
    227 *
    228           IF (LSAME(UPLO,'U')) THEN
    229               KK = (N* (N+1))/2
    230               IF (INCX.EQ.1) THEN
    231                   DO 100 J = N,1,-1
    232                       TEMP = X(J)
    233                       IF (NOUNIT) TEMP = TEMP*AP(KK)
    234                       K = KK - 1
    235                       DO 90 I = J - 1,1,-1
    236                           TEMP = TEMP + AP(K)*X(I)
    237                           K = K - 1
    238    90                 CONTINUE
    239                       X(J) = TEMP
    240                       KK = KK - J
    241   100             CONTINUE
    242               ELSE
    243                   JX = KX + (N-1)*INCX
    244                   DO 120 J = N,1,-1
    245                       TEMP = X(JX)
    246                       IX = JX
    247                       IF (NOUNIT) TEMP = TEMP*AP(KK)
    248                       DO 110 K = KK - 1,KK - J + 1,-1
    249                           IX = IX - INCX
    250                           TEMP = TEMP + AP(K)*X(IX)
    251   110                 CONTINUE
    252                       X(JX) = TEMP
    253                       JX = JX - INCX
    254                       KK = KK - J
    255   120             CONTINUE
    256               END IF
    257           ELSE
    258               KK = 1
    259               IF (INCX.EQ.1) THEN
    260                   DO 140 J = 1,N
    261                       TEMP = X(J)
    262                       IF (NOUNIT) TEMP = TEMP*AP(KK)
    263                       K = KK + 1
    264                       DO 130 I = J + 1,N
    265                           TEMP = TEMP + AP(K)*X(I)
    266                           K = K + 1
    267   130                 CONTINUE
    268                       X(J) = TEMP
    269                       KK = KK + (N-J+1)
    270   140             CONTINUE
    271               ELSE
    272                   JX = KX
    273                   DO 160 J = 1,N
    274                       TEMP = X(JX)
    275                       IX = JX
    276                       IF (NOUNIT) TEMP = TEMP*AP(KK)
    277                       DO 150 K = KK + 1,KK + N - J
    278                           IX = IX + INCX
    279                           TEMP = TEMP + AP(K)*X(IX)
    280   150                 CONTINUE
    281                       X(JX) = TEMP
    282                       JX = JX + INCX
    283                       KK = KK + (N-J+1)
    284   160             CONTINUE
    285               END IF
    286           END IF
    287       END IF
    288 *
    289       RETURN
    290 *
    291 *     End of DTPMV .
    292 *
    293       END
    294