Home | History | Annotate | Download | only in blas
      1       SUBROUTINE SSPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
      2 *     .. Scalar Arguments ..
      3       REAL ALPHA
      4       INTEGER INCX,INCY,N
      5       CHARACTER UPLO
      6 *     ..
      7 *     .. Array Arguments ..
      8       REAL AP(*),X(*),Y(*)
      9 *     ..
     10 *
     11 *  Purpose
     12 *  =======
     13 *
     14 *  SSPR2  performs the symmetric rank 2 operation
     15 *
     16 *     A := alpha*x*y' + alpha*y*x' + A,
     17 *
     18 *  where alpha is a scalar, x and y are n element vectors and A is an
     19 *  n by n symmetric matrix, supplied in packed form.
     20 *
     21 *  Arguments
     22 *  ==========
     23 *
     24 *  UPLO   - CHARACTER*1.
     25 *           On entry, UPLO specifies whether the upper or lower
     26 *           triangular part of the matrix A is supplied in the packed
     27 *           array AP as follows:
     28 *
     29 *              UPLO = 'U' or 'u'   The upper triangular part of A is
     30 *                                  supplied in AP.
     31 *
     32 *              UPLO = 'L' or 'l'   The lower triangular part of A is
     33 *                                  supplied in AP.
     34 *
     35 *           Unchanged on exit.
     36 *
     37 *  N      - INTEGER.
     38 *           On entry, N specifies the order of the matrix A.
     39 *           N must be at least zero.
     40 *           Unchanged on exit.
     41 *
     42 *  ALPHA  - REAL            .
     43 *           On entry, ALPHA specifies the scalar alpha.
     44 *           Unchanged on exit.
     45 *
     46 *  X      - REAL             array of dimension at least
     47 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     48 *           Before entry, the incremented array X must contain the n
     49 *           element vector x.
     50 *           Unchanged on exit.
     51 *
     52 *  INCX   - INTEGER.
     53 *           On entry, INCX specifies the increment for the elements of
     54 *           X. INCX must not be zero.
     55 *           Unchanged on exit.
     56 *
     57 *  Y      - REAL             array of dimension at least
     58 *           ( 1 + ( n - 1 )*abs( INCY ) ).
     59 *           Before entry, the incremented array Y must contain the n
     60 *           element vector y.
     61 *           Unchanged on exit.
     62 *
     63 *  INCY   - INTEGER.
     64 *           On entry, INCY specifies the increment for the elements of
     65 *           Y. INCY must not be zero.
     66 *           Unchanged on exit.
     67 *
     68 *  AP     - REAL             array of DIMENSION at least
     69 *           ( ( n*( n + 1 ) )/2 ).
     70 *           Before entry with  UPLO = 'U' or 'u', the array AP must
     71 *           contain the upper triangular part of the symmetric matrix
     72 *           packed sequentially, column by column, so that AP( 1 )
     73 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
     74 *           and a( 2, 2 ) respectively, and so on. On exit, the array
     75 *           AP is overwritten by the upper triangular part of the
     76 *           updated matrix.
     77 *           Before entry with UPLO = 'L' or 'l', the array AP must
     78 *           contain the lower triangular part of the symmetric matrix
     79 *           packed sequentially, column by column, so that AP( 1 )
     80 *           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
     81 *           and a( 3, 1 ) respectively, and so on. On exit, the array
     82 *           AP is overwritten by the lower triangular part of the
     83 *           updated matrix.
     84 *
     85 *  Further Details
     86 *  ===============
     87 *
     88 *  Level 2 Blas routine.
     89 *
     90 *  -- Written on 22-October-1986.
     91 *     Jack Dongarra, Argonne National Lab.
     92 *     Jeremy Du Croz, Nag Central Office.
     93 *     Sven Hammarling, Nag Central Office.
     94 *     Richard Hanson, Sandia National Labs.
     95 *
     96 *  =====================================================================
     97 *
     98 *     .. Parameters ..
     99       REAL ZERO
    100       PARAMETER (ZERO=0.0E+0)
    101 *     ..
    102 *     .. Local Scalars ..
    103       REAL TEMP1,TEMP2
    104       INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
    105 *     ..
    106 *     .. External Functions ..
    107       LOGICAL LSAME
    108       EXTERNAL LSAME
    109 *     ..
    110 *     .. External Subroutines ..
    111       EXTERNAL XERBLA
    112 *     ..
    113 *
    114 *     Test the input parameters.
    115 *
    116       INFO = 0
    117       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    118           INFO = 1
    119       ELSE IF (N.LT.0) THEN
    120           INFO = 2
    121       ELSE IF (INCX.EQ.0) THEN
    122           INFO = 5
    123       ELSE IF (INCY.EQ.0) THEN
    124           INFO = 7
    125       END IF
    126       IF (INFO.NE.0) THEN
    127           CALL XERBLA('SSPR2 ',INFO)
    128           RETURN
    129       END IF
    130 *
    131 *     Quick return if possible.
    132 *
    133       IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
    134 *
    135 *     Set up the start points in X and Y if the increments are not both
    136 *     unity.
    137 *
    138       IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
    139           IF (INCX.GT.0) THEN
    140               KX = 1
    141           ELSE
    142               KX = 1 - (N-1)*INCX
    143           END IF
    144           IF (INCY.GT.0) THEN
    145               KY = 1
    146           ELSE
    147               KY = 1 - (N-1)*INCY
    148           END IF
    149           JX = KX
    150           JY = KY
    151       END IF
    152 *
    153 *     Start the operations. In this version the elements of the array AP
    154 *     are accessed sequentially with one pass through AP.
    155 *
    156       KK = 1
    157       IF (LSAME(UPLO,'U')) THEN
    158 *
    159 *        Form  A  when upper triangle is stored in AP.
    160 *
    161           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    162               DO 20 J = 1,N
    163                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
    164                       TEMP1 = ALPHA*Y(J)
    165                       TEMP2 = ALPHA*X(J)
    166                       K = KK
    167                       DO 10 I = 1,J
    168                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
    169                           K = K + 1
    170    10                 CONTINUE
    171                   END IF
    172                   KK = KK + J
    173    20         CONTINUE
    174           ELSE
    175               DO 40 J = 1,N
    176                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
    177                       TEMP1 = ALPHA*Y(JY)
    178                       TEMP2 = ALPHA*X(JX)
    179                       IX = KX
    180                       IY = KY
    181                       DO 30 K = KK,KK + J - 1
    182                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
    183                           IX = IX + INCX
    184                           IY = IY + INCY
    185    30                 CONTINUE
    186                   END IF
    187                   JX = JX + INCX
    188                   JY = JY + INCY
    189                   KK = KK + J
    190    40         CONTINUE
    191           END IF
    192       ELSE
    193 *
    194 *        Form  A  when lower triangle is stored in AP.
    195 *
    196           IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
    197               DO 60 J = 1,N
    198                   IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
    199                       TEMP1 = ALPHA*Y(J)
    200                       TEMP2 = ALPHA*X(J)
    201                       K = KK
    202                       DO 50 I = J,N
    203                           AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
    204                           K = K + 1
    205    50                 CONTINUE
    206                   END IF
    207                   KK = KK + N - J + 1
    208    60         CONTINUE
    209           ELSE
    210               DO 80 J = 1,N
    211                   IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
    212                       TEMP1 = ALPHA*Y(JY)
    213                       TEMP2 = ALPHA*X(JX)
    214                       IX = JX
    215                       IY = JY
    216                       DO 70 K = KK,KK + N - J
    217                           AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
    218                           IX = IX + INCX
    219                           IY = IY + INCY
    220    70                 CONTINUE
    221                   END IF
    222                   JX = JX + INCX
    223                   JY = JY + INCY
    224                   KK = KK + N - J + 1
    225    80         CONTINUE
    226           END IF
    227       END IF
    228 *
    229       RETURN
    230 *
    231 *     End of SSPR2 .
    232 *
    233       END
    234