Home | History | Annotate | Download | only in blas
      1       SUBROUTINE ZTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
      2 *     .. Scalar Arguments ..
      3       INTEGER INCX,N
      4       CHARACTER DIAG,TRANS,UPLO
      5 *     ..
      6 *     .. Array Arguments ..
      7       DOUBLE COMPLEX AP(*),X(*)
      8 *     ..
      9 *
     10 *  Purpose
     11 *  =======
     12 *
     13 *  ZTPMV  performs one of the matrix-vector operations
     14 *
     15 *     x := A*x,   or   x := A'*x,   or   x := conjg( A' )*x,
     16 *
     17 *  where x is an n element vector and  A is an n by n unit, or non-unit,
     18 *  upper or lower triangular matrix, supplied in packed form.
     19 *
     20 *  Arguments
     21 *  ==========
     22 *
     23 *  UPLO   - CHARACTER*1.
     24 *           On entry, UPLO specifies whether the matrix is an upper or
     25 *           lower triangular matrix as follows:
     26 *
     27 *              UPLO = 'U' or 'u'   A is an upper triangular matrix.
     28 *
     29 *              UPLO = 'L' or 'l'   A is a lower triangular matrix.
     30 *
     31 *           Unchanged on exit.
     32 *
     33 *  TRANS  - CHARACTER*1.
     34 *           On entry, TRANS specifies the operation to be performed as
     35 *           follows:
     36 *
     37 *              TRANS = 'N' or 'n'   x := A*x.
     38 *
     39 *              TRANS = 'T' or 't'   x := A'*x.
     40 *
     41 *              TRANS = 'C' or 'c'   x := conjg( A' )*x.
     42 *
     43 *           Unchanged on exit.
     44 *
     45 *  DIAG   - CHARACTER*1.
     46 *           On entry, DIAG specifies whether or not A is unit
     47 *           triangular as follows:
     48 *
     49 *              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
     50 *
     51 *              DIAG = 'N' or 'n'   A is not assumed to be unit
     52 *                                  triangular.
     53 *
     54 *           Unchanged on exit.
     55 *
     56 *  N      - INTEGER.
     57 *           On entry, N specifies the order of the matrix A.
     58 *           N must be at least zero.
     59 *           Unchanged on exit.
     60 *
     61 *  AP     - COMPLEX*16       array of DIMENSION at least
     62 *           ( ( n*( n + 1 ) )/2 ).
     63 *           Before entry with  UPLO = 'U' or 'u', the array AP must
     64 *           contain the upper triangular matrix packed sequentially,
     65 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     66 *           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
     67 *           respectively, and so on.
     68 *           Before entry with UPLO = 'L' or 'l', the array AP must
     69 *           contain the lower triangular matrix packed sequentially,
     70 *           column by column, so that AP( 1 ) contains a( 1, 1 ),
     71 *           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
     72 *           respectively, and so on.
     73 *           Note that when  DIAG = 'U' or 'u', the diagonal elements of
     74 *           A are not referenced, but are assumed to be unity.
     75 *           Unchanged on exit.
     76 *
     77 *  X      - COMPLEX*16       array of dimension at least
     78 *           ( 1 + ( n - 1 )*abs( INCX ) ).
     79 *           Before entry, the incremented array X must contain the n
     80 *           element vector x. On exit, X is overwritten with the
     81 *           tranformed vector x.
     82 *
     83 *  INCX   - INTEGER.
     84 *           On entry, INCX specifies the increment for the elements of
     85 *           X. INCX must not be zero.
     86 *           Unchanged on exit.
     87 *
     88 *  Further Details
     89 *  ===============
     90 *
     91 *  Level 2 Blas routine.
     92 *
     93 *  -- Written on 22-October-1986.
     94 *     Jack Dongarra, Argonne National Lab.
     95 *     Jeremy Du Croz, Nag Central Office.
     96 *     Sven Hammarling, Nag Central Office.
     97 *     Richard Hanson, Sandia National Labs.
     98 *
     99 *  =====================================================================
    100 *
    101 *     .. Parameters ..
    102       DOUBLE COMPLEX ZERO
    103       PARAMETER (ZERO= (0.0D+0,0.0D+0))
    104 *     ..
    105 *     .. Local Scalars ..
    106       DOUBLE COMPLEX TEMP
    107       INTEGER I,INFO,IX,J,JX,K,KK,KX
    108       LOGICAL NOCONJ,NOUNIT
    109 *     ..
    110 *     .. External Functions ..
    111       LOGICAL LSAME
    112       EXTERNAL LSAME
    113 *     ..
    114 *     .. External Subroutines ..
    115       EXTERNAL XERBLA
    116 *     ..
    117 *     .. Intrinsic Functions ..
    118       INTRINSIC DCONJG
    119 *     ..
    120 *
    121 *     Test the input parameters.
    122 *
    123       INFO = 0
    124       IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    125           INFO = 1
    126       ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
    127      +         .NOT.LSAME(TRANS,'C')) THEN
    128           INFO = 2
    129       ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    130           INFO = 3
    131       ELSE IF (N.LT.0) THEN
    132           INFO = 4
    133       ELSE IF (INCX.EQ.0) THEN
    134           INFO = 7
    135       END IF
    136       IF (INFO.NE.0) THEN
    137           CALL XERBLA('ZTPMV ',INFO)
    138           RETURN
    139       END IF
    140 *
    141 *     Quick return if possible.
    142 *
    143       IF (N.EQ.0) RETURN
    144 *
    145       NOCONJ = LSAME(TRANS,'T')
    146       NOUNIT = LSAME(DIAG,'N')
    147 *
    148 *     Set up the start point in X if the increment is not unity. This
    149 *     will be  ( N - 1 )*INCX  too small for descending loops.
    150 *
    151       IF (INCX.LE.0) THEN
    152           KX = 1 - (N-1)*INCX
    153       ELSE IF (INCX.NE.1) THEN
    154           KX = 1
    155       END IF
    156 *
    157 *     Start the operations. In this version the elements of AP are
    158 *     accessed sequentially with one pass through AP.
    159 *
    160       IF (LSAME(TRANS,'N')) THEN
    161 *
    162 *        Form  x:= A*x.
    163 *
    164           IF (LSAME(UPLO,'U')) THEN
    165               KK = 1
    166               IF (INCX.EQ.1) THEN
    167                   DO 20 J = 1,N
    168                       IF (X(J).NE.ZERO) THEN
    169                           TEMP = X(J)
    170                           K = KK
    171                           DO 10 I = 1,J - 1
    172                               X(I) = X(I) + TEMP*AP(K)
    173                               K = K + 1
    174    10                     CONTINUE
    175                           IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
    176                       END IF
    177                       KK = KK + J
    178    20             CONTINUE
    179               ELSE
    180                   JX = KX
    181                   DO 40 J = 1,N
    182                       IF (X(JX).NE.ZERO) THEN
    183                           TEMP = X(JX)
    184                           IX = KX
    185                           DO 30 K = KK,KK + J - 2
    186                               X(IX) = X(IX) + TEMP*AP(K)
    187                               IX = IX + INCX
    188    30                     CONTINUE
    189                           IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
    190                       END IF
    191                       JX = JX + INCX
    192                       KK = KK + J
    193    40             CONTINUE
    194               END IF
    195           ELSE
    196               KK = (N* (N+1))/2
    197               IF (INCX.EQ.1) THEN
    198                   DO 60 J = N,1,-1
    199                       IF (X(J).NE.ZERO) THEN
    200                           TEMP = X(J)
    201                           K = KK
    202                           DO 50 I = N,J + 1,-1
    203                               X(I) = X(I) + TEMP*AP(K)
    204                               K = K - 1
    205    50                     CONTINUE
    206                           IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
    207                       END IF
    208                       KK = KK - (N-J+1)
    209    60             CONTINUE
    210               ELSE
    211                   KX = KX + (N-1)*INCX
    212                   JX = KX
    213                   DO 80 J = N,1,-1
    214                       IF (X(JX).NE.ZERO) THEN
    215                           TEMP = X(JX)
    216                           IX = KX
    217                           DO 70 K = KK,KK - (N- (J+1)),-1
    218                               X(IX) = X(IX) + TEMP*AP(K)
    219                               IX = IX - INCX
    220    70                     CONTINUE
    221                           IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
    222                       END IF
    223                       JX = JX - INCX
    224                       KK = KK - (N-J+1)
    225    80             CONTINUE
    226               END IF
    227           END IF
    228       ELSE
    229 *
    230 *        Form  x := A'*x  or  x := conjg( A' )*x.
    231 *
    232           IF (LSAME(UPLO,'U')) THEN
    233               KK = (N* (N+1))/2
    234               IF (INCX.EQ.1) THEN
    235                   DO 110 J = N,1,-1
    236                       TEMP = X(J)
    237                       K = KK - 1
    238                       IF (NOCONJ) THEN
    239                           IF (NOUNIT) TEMP = TEMP*AP(KK)
    240                           DO 90 I = J - 1,1,-1
    241                               TEMP = TEMP + AP(K)*X(I)
    242                               K = K - 1
    243    90                     CONTINUE
    244                       ELSE
    245                           IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
    246                           DO 100 I = J - 1,1,-1
    247                               TEMP = TEMP + DCONJG(AP(K))*X(I)
    248                               K = K - 1
    249   100                     CONTINUE
    250                       END IF
    251                       X(J) = TEMP
    252                       KK = KK - J
    253   110             CONTINUE
    254               ELSE
    255                   JX = KX + (N-1)*INCX
    256                   DO 140 J = N,1,-1
    257                       TEMP = X(JX)
    258                       IX = JX
    259                       IF (NOCONJ) THEN
    260                           IF (NOUNIT) TEMP = TEMP*AP(KK)
    261                           DO 120 K = KK - 1,KK - J + 1,-1
    262                               IX = IX - INCX
    263                               TEMP = TEMP + AP(K)*X(IX)
    264   120                     CONTINUE
    265                       ELSE
    266                           IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
    267                           DO 130 K = KK - 1,KK - J + 1,-1
    268                               IX = IX - INCX
    269                               TEMP = TEMP + DCONJG(AP(K))*X(IX)
    270   130                     CONTINUE
    271                       END IF
    272                       X(JX) = TEMP
    273                       JX = JX - INCX
    274                       KK = KK - J
    275   140             CONTINUE
    276               END IF
    277           ELSE
    278               KK = 1
    279               IF (INCX.EQ.1) THEN
    280                   DO 170 J = 1,N
    281                       TEMP = X(J)
    282                       K = KK + 1
    283                       IF (NOCONJ) THEN
    284                           IF (NOUNIT) TEMP = TEMP*AP(KK)
    285                           DO 150 I = J + 1,N
    286                               TEMP = TEMP + AP(K)*X(I)
    287                               K = K + 1
    288   150                     CONTINUE
    289                       ELSE
    290                           IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
    291                           DO 160 I = J + 1,N
    292                               TEMP = TEMP + DCONJG(AP(K))*X(I)
    293                               K = K + 1
    294   160                     CONTINUE
    295                       END IF
    296                       X(J) = TEMP
    297                       KK = KK + (N-J+1)
    298   170             CONTINUE
    299               ELSE
    300                   JX = KX
    301                   DO 200 J = 1,N
    302                       TEMP = X(JX)
    303                       IX = JX
    304                       IF (NOCONJ) THEN
    305                           IF (NOUNIT) TEMP = TEMP*AP(KK)
    306                           DO 180 K = KK + 1,KK + N - J
    307                               IX = IX + INCX
    308                               TEMP = TEMP + AP(K)*X(IX)
    309   180                     CONTINUE
    310                       ELSE
    311                           IF (NOUNIT) TEMP = TEMP*DCONJG(AP(KK))
    312                           DO 190 K = KK + 1,KK + N - J
    313                               IX = IX + INCX
    314                               TEMP = TEMP + DCONJG(AP(K))*X(IX)
    315   190                     CONTINUE
    316                       END IF
    317                       X(JX) = TEMP
    318                       JX = JX + INCX
    319                       KK = KK + (N-J+1)
    320   200             CONTINUE
    321               END IF
    322           END IF
    323       END IF
    324 *
    325       RETURN
    326 *
    327 *     End of ZTPMV .
    328 *
    329       END
    330