Home | History | Annotate | Download | only in common
      1 /*
      2  *****************************************************************************
      3  * Copyright (C) 1996-2011, International Business Machines Corporation and  *
      4  * others. All Rights Reserved.                                              *
      5  *****************************************************************************
      6  */
      7 
      8 #include "unicode/utypes.h"
      9 
     10 #if !UCONFIG_NO_NORMALIZATION
     11 
     12 #include "unicode/caniter.h"
     13 #include "unicode/normalizer2.h"
     14 #include "unicode/uchar.h"
     15 #include "unicode/uniset.h"
     16 #include "unicode/usetiter.h"
     17 #include "unicode/ustring.h"
     18 #include "unicode/utf16.h"
     19 #include "cmemory.h"
     20 #include "hash.h"
     21 #include "normalizer2impl.h"
     22 
     23 /**
     24  * This class allows one to iterate through all the strings that are canonically equivalent to a given
     25  * string. For example, here are some sample results:
     26 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     27 1: \u0041\u030A\u0064\u0307\u0327
     28  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     29 2: \u0041\u030A\u0064\u0327\u0307
     30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     31 3: \u0041\u030A\u1E0B\u0327
     32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     33 4: \u0041\u030A\u1E11\u0307
     34  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     35 5: \u00C5\u0064\u0307\u0327
     36  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     37 6: \u00C5\u0064\u0327\u0307
     38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     39 7: \u00C5\u1E0B\u0327
     40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     41 8: \u00C5\u1E11\u0307
     42  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     43 9: \u212B\u0064\u0307\u0327
     44  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     45 10: \u212B\u0064\u0327\u0307
     46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     47 11: \u212B\u1E0B\u0327
     48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     49 12: \u212B\u1E11\u0307
     50  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     51  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
     52  * since it has not been optimized for that situation.
     53  *@author M. Davis
     54  *@draft
     55  */
     56 
     57 // public
     58 
     59 U_NAMESPACE_BEGIN
     60 
     61 // TODO: add boilerplate methods.
     62 
     63 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
     64 
     65 /**
     66  *@param source string to get results for
     67  */
     68 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
     69     pieces(NULL),
     70     pieces_length(0),
     71     pieces_lengths(NULL),
     72     current(NULL),
     73     current_length(0),
     74     nfd(*Normalizer2Factory::getNFDInstance(status)),
     75     nfcImpl(*Normalizer2Factory::getNFCImpl(status))
     76 {
     77     if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
     78       setSource(sourceStr, status);
     79     }
     80 }
     81 
     82 CanonicalIterator::~CanonicalIterator() {
     83   cleanPieces();
     84 }
     85 
     86 void CanonicalIterator::cleanPieces() {
     87     int32_t i = 0;
     88     if(pieces != NULL) {
     89         for(i = 0; i < pieces_length; i++) {
     90             if(pieces[i] != NULL) {
     91                 delete[] pieces[i];
     92             }
     93         }
     94         uprv_free(pieces);
     95         pieces = NULL;
     96         pieces_length = 0;
     97     }
     98     if(pieces_lengths != NULL) {
     99         uprv_free(pieces_lengths);
    100         pieces_lengths = NULL;
    101     }
    102     if(current != NULL) {
    103         uprv_free(current);
    104         current = NULL;
    105         current_length = 0;
    106     }
    107 }
    108 
    109 /**
    110  *@return gets the source: NOTE: it is the NFD form of source
    111  */
    112 UnicodeString CanonicalIterator::getSource() {
    113   return source;
    114 }
    115 
    116 /**
    117  * Resets the iterator so that one can start again from the beginning.
    118  */
    119 void CanonicalIterator::reset() {
    120     done = FALSE;
    121     for (int i = 0; i < current_length; ++i) {
    122         current[i] = 0;
    123     }
    124 }
    125 
    126 /**
    127  *@return the next string that is canonically equivalent. The value null is returned when
    128  * the iteration is done.
    129  */
    130 UnicodeString CanonicalIterator::next() {
    131     int32_t i = 0;
    132 
    133     if (done) {
    134       buffer.setToBogus();
    135       return buffer;
    136     }
    137 
    138     // delete old contents
    139     buffer.remove();
    140 
    141     // construct return value
    142 
    143     for (i = 0; i < pieces_length; ++i) {
    144         buffer.append(pieces[i][current[i]]);
    145     }
    146     //String result = buffer.toString(); // not needed
    147 
    148     // find next value for next time
    149 
    150     for (i = current_length - 1; ; --i) {
    151         if (i < 0) {
    152             done = TRUE;
    153             break;
    154         }
    155         current[i]++;
    156         if (current[i] < pieces_lengths[i]) break; // got sequence
    157         current[i] = 0;
    158     }
    159     return buffer;
    160 }
    161 
    162 /**
    163  *@param set the source string to iterate against. This allows the same iterator to be used
    164  * while changing the source string, saving object creation.
    165  */
    166 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
    167     int32_t list_length = 0;
    168     UChar32 cp = 0;
    169     int32_t start = 0;
    170     int32_t i = 0;
    171     UnicodeString *list = NULL;
    172 
    173     nfd.normalize(newSource, source, status);
    174     if(U_FAILURE(status)) {
    175       return;
    176     }
    177     done = FALSE;
    178 
    179     cleanPieces();
    180 
    181     // catch degenerate case
    182     if (newSource.length() == 0) {
    183         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
    184         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    185         pieces_length = 1;
    186         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    187         current_length = 1;
    188         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    189             status = U_MEMORY_ALLOCATION_ERROR;
    190             goto CleanPartialInitialization;
    191         }
    192         current[0] = 0;
    193         pieces[0] = new UnicodeString[1];
    194         pieces_lengths[0] = 1;
    195         if (pieces[0] == 0) {
    196             status = U_MEMORY_ALLOCATION_ERROR;
    197             goto CleanPartialInitialization;
    198         }
    199         return;
    200     }
    201 
    202 
    203     list = new UnicodeString[source.length()];
    204     if (list == 0) {
    205         status = U_MEMORY_ALLOCATION_ERROR;
    206         goto CleanPartialInitialization;
    207     }
    208 
    209     // i should initialy be the number of code units at the
    210     // start of the string
    211     i = U16_LENGTH(source.char32At(0));
    212     //int32_t i = 1;
    213     // find the segments
    214     // This code iterates through the source string and
    215     // extracts segments that end up on a codepoint that
    216     // doesn't start any decompositions. (Analysis is done
    217     // on the NFD form - see above).
    218     for (; i < source.length(); i += U16_LENGTH(cp)) {
    219         cp = source.char32At(i);
    220         if (nfcImpl.isCanonSegmentStarter(cp)) {
    221             source.extract(start, i-start, list[list_length++]); // add up to i
    222             start = i;
    223         }
    224     }
    225     source.extract(start, i-start, list[list_length++]); // add last one
    226 
    227 
    228     // allocate the arrays, and find the strings that are CE to each segment
    229     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
    230     pieces_length = list_length;
    231     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    232     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    233     current_length = list_length;
    234     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    235         status = U_MEMORY_ALLOCATION_ERROR;
    236         goto CleanPartialInitialization;
    237     }
    238 
    239     for (i = 0; i < current_length; i++) {
    240         current[i] = 0;
    241     }
    242     // for each segment, get all the combinations that can produce
    243     // it after NFD normalization
    244     for (i = 0; i < pieces_length; ++i) {
    245         //if (PROGRESS) printf("SEGMENT\n");
    246         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
    247     }
    248 
    249     delete[] list;
    250     return;
    251 // Common section to cleanup all local variables and reset object variables.
    252 CleanPartialInitialization:
    253     if (list != NULL) {
    254         delete[] list;
    255     }
    256     cleanPieces();
    257 }
    258 
    259 /**
    260  * Dumb recursive implementation of permutation.
    261  * TODO: optimize
    262  * @param source the string to find permutations for
    263  * @return the results in a set.
    264  */
    265 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
    266     if(U_FAILURE(status)) {
    267         return;
    268     }
    269     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
    270     int32_t i = 0;
    271 
    272     // optimization:
    273     // if zero or one character, just return a set with it
    274     // we check for length < 2 to keep from counting code points all the time
    275     if (source.length() <= 2 && source.countChar32() <= 1) {
    276         UnicodeString *toPut = new UnicodeString(source);
    277         /* test for NULL */
    278         if (toPut == 0) {
    279             status = U_MEMORY_ALLOCATION_ERROR;
    280             return;
    281         }
    282         result->put(source, toPut, status);
    283         return;
    284     }
    285 
    286     // otherwise iterate through the string, and recursively permute all the other characters
    287     UChar32 cp;
    288     Hashtable subpermute(status);
    289     if(U_FAILURE(status)) {
    290         return;
    291     }
    292     subpermute.setValueDeleter(uprv_deleteUObject);
    293 
    294     for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
    295         cp = source.char32At(i);
    296         const UHashElement *ne = NULL;
    297         int32_t el = -1;
    298         UnicodeString subPermuteString = source;
    299 
    300         // optimization:
    301         // if the character is canonical combining class zero,
    302         // don't permute it
    303         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
    304             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
    305             continue;
    306         }
    307 
    308         subpermute.removeAll();
    309 
    310         // see what the permutations of the characters before and after this one are
    311         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
    312         permute(subPermuteString.replace(i, U16_LENGTH(cp), NULL, 0), skipZeros, &subpermute, status);
    313         /* Test for buffer overflows */
    314         if(U_FAILURE(status)) {
    315             return;
    316         }
    317         // The upper replace is destructive. The question is do we have to make a copy, or we don't care about the contents
    318         // of source at this point.
    319 
    320         // prefix this character to all of them
    321         ne = subpermute.nextElement(el);
    322         while (ne != NULL) {
    323             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
    324             UnicodeString *chStr = new UnicodeString(cp);
    325             //test for  NULL
    326             if (chStr == NULL) {
    327                 status = U_MEMORY_ALLOCATION_ERROR;
    328                 return;
    329             }
    330             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
    331             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
    332             result->put(*chStr, chStr, status);
    333             ne = subpermute.nextElement(el);
    334         }
    335     }
    336     //return result;
    337 }
    338 
    339 // privates
    340 
    341 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
    342 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
    343     Hashtable result(status);
    344     Hashtable permutations(status);
    345     Hashtable basic(status);
    346     if (U_FAILURE(status)) {
    347         return 0;
    348     }
    349     result.setValueDeleter(uprv_deleteUObject);
    350     permutations.setValueDeleter(uprv_deleteUObject);
    351     basic.setValueDeleter(uprv_deleteUObject);
    352 
    353     UChar USeg[256];
    354     int32_t segLen = segment.extract(USeg, 256, status);
    355     getEquivalents2(&basic, USeg, segLen, status);
    356 
    357     // now get all the permutations
    358     // add only the ones that are canonically equivalent
    359     // TODO: optimize by not permuting any class zero.
    360 
    361     const UHashElement *ne = NULL;
    362     int32_t el = -1;
    363     //Iterator it = basic.iterator();
    364     ne = basic.nextElement(el);
    365     //while (it.hasNext())
    366     while (ne != NULL) {
    367         //String item = (String) it.next();
    368         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    369 
    370         permutations.removeAll();
    371         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
    372         const UHashElement *ne2 = NULL;
    373         int32_t el2 = -1;
    374         //Iterator it2 = permutations.iterator();
    375         ne2 = permutations.nextElement(el2);
    376         //while (it2.hasNext())
    377         while (ne2 != NULL) {
    378             //String possible = (String) it2.next();
    379             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
    380             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
    381             UnicodeString attempt;
    382             nfd.normalize(possible, attempt, status);
    383 
    384             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
    385             if (attempt==segment) {
    386                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
    387                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
    388                 result.put(possible, new UnicodeString(possible), status); //add(possible);
    389             } else {
    390                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
    391             }
    392 
    393             ne2 = permutations.nextElement(el2);
    394         }
    395         ne = basic.nextElement(el);
    396     }
    397 
    398     /* Test for buffer overflows */
    399     if(U_FAILURE(status)) {
    400         return 0;
    401     }
    402     // convert into a String[] to clean up storage
    403     //String[] finalResult = new String[result.size()];
    404     UnicodeString *finalResult = NULL;
    405     int32_t resultCount;
    406     if((resultCount = result.count())) {
    407         finalResult = new UnicodeString[resultCount];
    408         if (finalResult == 0) {
    409             status = U_MEMORY_ALLOCATION_ERROR;
    410             return NULL;
    411         }
    412     }
    413     else {
    414         status = U_ILLEGAL_ARGUMENT_ERROR;
    415         return NULL;
    416     }
    417     //result.toArray(finalResult);
    418     result_len = 0;
    419     el = -1;
    420     ne = result.nextElement(el);
    421     while(ne != NULL) {
    422         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
    423         ne = result.nextElement(el);
    424     }
    425 
    426 
    427     return finalResult;
    428 }
    429 
    430 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
    431 
    432     if (U_FAILURE(status)) {
    433         return NULL;
    434     }
    435 
    436     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
    437 
    438     UnicodeString toPut(segment, segLen);
    439 
    440     fillinResult->put(toPut, new UnicodeString(toPut), status);
    441 
    442     UnicodeSet starts;
    443 
    444     // cycle through all the characters
    445     UChar32 cp;
    446     for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
    447         // see if any character is at the start of some decomposition
    448         U16_GET(segment, 0, i, segLen, cp);
    449         if (!nfcImpl.getCanonStartSet(cp, starts)) {
    450             continue;
    451         }
    452         // if so, see which decompositions match
    453         UnicodeSetIterator iter(starts);
    454         while (iter.next()) {
    455             UChar32 cp2 = iter.getCodepoint();
    456             Hashtable remainder(status);
    457             remainder.setValueDeleter(uprv_deleteUObject);
    458             if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
    459                 continue;
    460             }
    461 
    462             // there were some matches, so add all the possibilities to the set.
    463             UnicodeString prefix(segment, i);
    464             prefix += cp2;
    465 
    466             int32_t el = -1;
    467             const UHashElement *ne = remainder.nextElement(el);
    468             while (ne != NULL) {
    469                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    470                 UnicodeString *toAdd = new UnicodeString(prefix);
    471                 /* test for NULL */
    472                 if (toAdd == 0) {
    473                     status = U_MEMORY_ALLOCATION_ERROR;
    474                     return NULL;
    475                 }
    476                 *toAdd += item;
    477                 fillinResult->put(*toAdd, toAdd, status);
    478 
    479                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
    480 
    481                 ne = remainder.nextElement(el);
    482             }
    483         }
    484     }
    485 
    486     /* Test for buffer overflows */
    487     if(U_FAILURE(status)) {
    488         return NULL;
    489     }
    490     return fillinResult;
    491 }
    492 
    493 /**
    494  * See if the decomposition of cp2 is at segment starting at segmentPos
    495  * (with canonical rearrangment!)
    496  * If so, take the remainder, and return the equivalents
    497  */
    498 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    499 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    500     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
    501     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
    502 
    503     if (U_FAILURE(status)) {
    504         return NULL;
    505     }
    506 
    507     UnicodeString temp(comp);
    508     int32_t inputLen=temp.length();
    509     UnicodeString decompString;
    510     nfd.normalize(temp, decompString, status);
    511     const UChar *decomp=decompString.getBuffer();
    512     int32_t decompLen=decompString.length();
    513 
    514     // See if it matches the start of segment (at segmentPos)
    515     UBool ok = FALSE;
    516     UChar32 cp;
    517     int32_t decompPos = 0;
    518     UChar32 decompCp;
    519     U16_NEXT(decomp, decompPos, decompLen, decompCp);
    520 
    521     int32_t i = segmentPos;
    522     while(i < segLen) {
    523         U16_NEXT(segment, i, segLen, cp);
    524 
    525         if (cp == decompCp) { // if equal, eat another cp from decomp
    526 
    527             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
    528 
    529             if (decompPos == decompLen) { // done, have all decomp characters!
    530                 temp.append(segment+i, segLen-i);
    531                 ok = TRUE;
    532                 break;
    533             }
    534             U16_NEXT(decomp, decompPos, decompLen, decompCp);
    535         } else {
    536             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
    537 
    538             // brute force approach
    539             temp.append(cp);
    540 
    541             /* TODO: optimize
    542             // since we know that the classes are monotonically increasing, after zero
    543             // e.g. 0 5 7 9 0 3
    544             // we can do an optimization
    545             // there are only a few cases that work: zero, less, same, greater
    546             // if both classes are the same, we fail
    547             // if the decomp class < the segment class, we fail
    548 
    549             segClass = getClass(cp);
    550             if (decompClass <= segClass) return null;
    551             */
    552         }
    553     }
    554     if (!ok)
    555         return NULL; // we failed, characters left over
    556 
    557     //if (PROGRESS) printf("Matches\n");
    558 
    559     if (inputLen == temp.length()) {
    560         fillinResult->put(UnicodeString(), new UnicodeString(), status);
    561         return fillinResult; // succeed, but no remainder
    562     }
    563 
    564     // brute force approach
    565     // check to make sure result is canonically equivalent
    566     UnicodeString trial;
    567     nfd.normalize(temp, trial, status);
    568     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
    569         return NULL;
    570     }
    571 
    572     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
    573 }
    574 
    575 U_NAMESPACE_END
    576 
    577 #endif /* #if !UCONFIG_NO_NORMALIZATION */
    578