Home | History | Annotate | Download | only in i18n
      1 /*
      2 ******************************************************************************
      3 *   Copyright (C) 1997-2011, International Business Machines
      4 *   Corporation and others.  All Rights Reserved.
      5 ******************************************************************************
      6 *   file name:  nfrule.cpp
      7 *   encoding:   US-ASCII
      8 *   tab size:   8 (not used)
      9 *   indentation:4
     10 *
     11 * Modification history
     12 * Date        Name      Comments
     13 * 10/11/2001  Doug      Ported from ICU4J
     14 */
     15 
     16 #include "nfrule.h"
     17 
     18 #if U_HAVE_RBNF
     19 
     20 #include "unicode/rbnf.h"
     21 #include "unicode/tblcoll.h"
     22 #include "unicode/coleitr.h"
     23 #include "unicode/uchar.h"
     24 #include "nfrs.h"
     25 #include "nfrlist.h"
     26 #include "nfsubs.h"
     27 #include "patternprops.h"
     28 
     29 U_NAMESPACE_BEGIN
     30 
     31 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
     32   : baseValue((int32_t)0)
     33   , radix(0)
     34   , exponent(0)
     35   , ruleText()
     36   , sub1(NULL)
     37   , sub2(NULL)
     38   , formatter(_rbnf)
     39 {
     40 }
     41 
     42 NFRule::~NFRule()
     43 {
     44   delete sub1;
     45   delete sub2;
     46 }
     47 
     48 static const UChar gLeftBracket = 0x005b;
     49 static const UChar gRightBracket = 0x005d;
     50 static const UChar gColon = 0x003a;
     51 static const UChar gZero = 0x0030;
     52 static const UChar gNine = 0x0039;
     53 static const UChar gSpace = 0x0020;
     54 static const UChar gSlash = 0x002f;
     55 static const UChar gGreaterThan = 0x003e;
     56 static const UChar gLessThan = 0x003c;
     57 static const UChar gComma = 0x002c;
     58 static const UChar gDot = 0x002e;
     59 static const UChar gTick = 0x0027;
     60 //static const UChar gMinus = 0x002d;
     61 static const UChar gSemicolon = 0x003b;
     62 
     63 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
     64 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
     65 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
     66 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
     67 
     68 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
     69 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
     70 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
     71 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
     72 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
     73 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
     74 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
     75 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
     76 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
     77 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
     78 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
     79 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
     80 
     81 static const UChar * const tokenStrings[] = {
     82     gLessLess, gLessPercent, gLessHash, gLessZero,
     83     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
     84     gEqualPercent, gEqualHash, gEqualZero, NULL
     85 };
     86 
     87 void
     88 NFRule::makeRules(UnicodeString& description,
     89                   const NFRuleSet *ruleSet,
     90                   const NFRule *predecessor,
     91                   const RuleBasedNumberFormat *rbnf,
     92                   NFRuleList& rules,
     93                   UErrorCode& status)
     94 {
     95     // we know we're making at least one rule, so go ahead and
     96     // new it up and initialize its basevalue and divisor
     97     // (this also strips the rule descriptor, if any, off the
     98     // descripton string)
     99     NFRule* rule1 = new NFRule(rbnf);
    100     /* test for NULL */
    101     if (rule1 == 0) {
    102         status = U_MEMORY_ALLOCATION_ERROR;
    103         return;
    104     }
    105     rule1->parseRuleDescriptor(description, status);
    106 
    107     // check the description to see whether there's text enclosed
    108     // in brackets
    109     int32_t brack1 = description.indexOf(gLeftBracket);
    110     int32_t brack2 = description.indexOf(gRightBracket);
    111 
    112     // if the description doesn't contain a matched pair of brackets,
    113     // or if it's of a type that doesn't recognize bracketed text,
    114     // then leave the description alone, initialize the rule's
    115     // rule text and substitutions, and return that rule
    116     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
    117         || rule1->getType() == kProperFractionRule
    118         || rule1->getType() == kNegativeNumberRule) {
    119         rule1->ruleText = description;
    120         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    121         rules.add(rule1);
    122     } else {
    123         // if the description does contain a matched pair of brackets,
    124         // then it's really shorthand for two rules (with one exception)
    125         NFRule* rule2 = NULL;
    126         UnicodeString sbuf;
    127 
    128         // we'll actually only split the rule into two rules if its
    129         // base value is an even multiple of its divisor (or it's one
    130         // of the special rules)
    131         if ((rule1->baseValue > 0
    132             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
    133             || rule1->getType() == kImproperFractionRule
    134             || rule1->getType() == kMasterRule) {
    135 
    136             // if it passes that test, new up the second rule.  If the
    137             // rule set both rules will belong to is a fraction rule
    138             // set, they both have the same base value; otherwise,
    139             // increment the original rule's base value ("rule1" actually
    140             // goes SECOND in the rule set's rule list)
    141             rule2 = new NFRule(rbnf);
    142             /* test for NULL */
    143             if (rule2 == 0) {
    144                 status = U_MEMORY_ALLOCATION_ERROR;
    145                 return;
    146             }
    147             if (rule1->baseValue >= 0) {
    148                 rule2->baseValue = rule1->baseValue;
    149                 if (!ruleSet->isFractionRuleSet()) {
    150                     ++rule1->baseValue;
    151                 }
    152             }
    153 
    154             // if the description began with "x.x" and contains bracketed
    155             // text, it describes both the improper fraction rule and
    156             // the proper fraction rule
    157             else if (rule1->getType() == kImproperFractionRule) {
    158                 rule2->setType(kProperFractionRule);
    159             }
    160 
    161             // if the description began with "x.0" and contains bracketed
    162             // text, it describes both the master rule and the
    163             // improper fraction rule
    164             else if (rule1->getType() == kMasterRule) {
    165                 rule2->baseValue = rule1->baseValue;
    166                 rule1->setType(kImproperFractionRule);
    167             }
    168 
    169             // both rules have the same radix and exponent (i.e., the
    170             // same divisor)
    171             rule2->radix = rule1->radix;
    172             rule2->exponent = rule1->exponent;
    173 
    174             // rule2's rule text omits the stuff in brackets: initalize
    175             // its rule text and substitutions accordingly
    176             sbuf.append(description, 0, brack1);
    177             if (brack2 + 1 < description.length()) {
    178                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
    179             }
    180             rule2->ruleText.setTo(sbuf);
    181             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    182         }
    183 
    184         // rule1's text includes the text in the brackets but omits
    185         // the brackets themselves: initialize _its_ rule text and
    186         // substitutions accordingly
    187         sbuf.setTo(description, 0, brack1);
    188         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
    189         if (brack2 + 1 < description.length()) {
    190             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
    191         }
    192         rule1->ruleText.setTo(sbuf);
    193         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
    194 
    195         // if we only have one rule, return it; if we have two, return
    196         // a two-element array containing them (notice that rule2 goes
    197         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
    198         // material in the brackets and rule1 INCLUDES the material
    199         // in the brackets)
    200         if (rule2 != NULL) {
    201             rules.add(rule2);
    202         }
    203         rules.add(rule1);
    204     }
    205 }
    206 
    207 /**
    208  * This function parses the rule's rule descriptor (i.e., the base
    209  * value and/or other tokens that precede the rule's rule text
    210  * in the description) and sets the rule's base value, radix, and
    211  * exponent according to the descriptor.  (If the description doesn't
    212  * include a rule descriptor, then this function sets everything to
    213  * default values and the rule set sets the rule's real base value).
    214  * @param description The rule's description
    215  * @return If "description" included a rule descriptor, this is
    216  * "description" with the descriptor and any trailing whitespace
    217  * stripped off.  Otherwise; it's "descriptor" unchangd.
    218  */
    219 void
    220 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
    221 {
    222     // the description consists of a rule descriptor and a rule body,
    223     // separated by a colon.  The rule descriptor is optional.  If
    224     // it's omitted, just set the base value to 0.
    225     int32_t p = description.indexOf(gColon);
    226     if (p == -1) {
    227         setBaseValue((int32_t)0, status);
    228     } else {
    229         // copy the descriptor out into its own string and strip it,
    230         // along with any trailing whitespace, out of the original
    231         // description
    232         UnicodeString descriptor;
    233         descriptor.setTo(description, 0, p);
    234 
    235         ++p;
    236         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
    237             ++p;
    238         }
    239         description.removeBetween(0, p);
    240 
    241         // check first to see if the rule descriptor matches the token
    242         // for one of the special rules.  If it does, set the base
    243         // value to the correct identfier value
    244         if (0 == descriptor.compare(gMinusX, 2)) {
    245             setType(kNegativeNumberRule);
    246         }
    247         else if (0 == descriptor.compare(gXDotX, 3)) {
    248             setType(kImproperFractionRule);
    249         }
    250         else if (0 == descriptor.compare(gZeroDotX, 3)) {
    251             setType(kProperFractionRule);
    252         }
    253         else if (0 == descriptor.compare(gXDotZero, 3)) {
    254             setType(kMasterRule);
    255         }
    256 
    257         // if the rule descriptor begins with a digit, it's a descriptor
    258         // for a normal rule
    259         // since we don't have Long.parseLong, and this isn't much work anyway,
    260         // just build up the value as we encounter the digits.
    261         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
    262             int64_t val = 0;
    263             p = 0;
    264             UChar c = gSpace;
    265 
    266             // begin parsing the descriptor: copy digits
    267             // into "tempValue", skip periods, commas, and spaces,
    268             // stop on a slash or > sign (or at the end of the string),
    269             // and throw an exception on any other character
    270             int64_t ll_10 = 10;
    271             while (p < descriptor.length()) {
    272                 c = descriptor.charAt(p);
    273                 if (c >= gZero && c <= gNine) {
    274                     val = val * ll_10 + (int32_t)(c - gZero);
    275                 }
    276                 else if (c == gSlash || c == gGreaterThan) {
    277                     break;
    278                 }
    279                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
    280                 }
    281                 else {
    282                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
    283                     status = U_PARSE_ERROR;
    284                     return;
    285                 }
    286                 ++p;
    287             }
    288 
    289             // we have the base value, so set it
    290             setBaseValue(val, status);
    291 
    292             // if we stopped the previous loop on a slash, we're
    293             // now parsing the rule's radix.  Again, accumulate digits
    294             // in tempValue, skip punctuation, stop on a > mark, and
    295             // throw an exception on anything else
    296             if (c == gSlash) {
    297                 val = 0;
    298                 ++p;
    299                 int64_t ll_10 = 10;
    300                 while (p < descriptor.length()) {
    301                     c = descriptor.charAt(p);
    302                     if (c >= gZero && c <= gNine) {
    303                         val = val * ll_10 + (int32_t)(c - gZero);
    304                     }
    305                     else if (c == gGreaterThan) {
    306                         break;
    307                     }
    308                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
    309                     }
    310                     else {
    311                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
    312                         status = U_PARSE_ERROR;
    313                         return;
    314                     }
    315                     ++p;
    316                 }
    317 
    318                 // tempValue now contain's the rule's radix.  Set it
    319                 // accordingly, and recalculate the rule's exponent
    320                 radix = (int32_t)val;
    321                 if (radix == 0) {
    322                     // throw new IllegalArgumentException("Rule can't have radix of 0");
    323                     status = U_PARSE_ERROR;
    324                 }
    325 
    326                 exponent = expectedExponent();
    327             }
    328 
    329             // if we stopped the previous loop on a > sign, then continue
    330             // for as long as we still see > signs.  For each one,
    331             // decrement the exponent (unless the exponent is already 0).
    332             // If we see another character before reaching the end of
    333             // the descriptor, that's also a syntax error.
    334             if (c == gGreaterThan) {
    335                 while (p < descriptor.length()) {
    336                     c = descriptor.charAt(p);
    337                     if (c == gGreaterThan && exponent > 0) {
    338                         --exponent;
    339                     } else {
    340                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
    341                         status = U_PARSE_ERROR;
    342                         return;
    343                     }
    344                     ++p;
    345                 }
    346             }
    347         }
    348     }
    349 
    350     // finally, if the rule body begins with an apostrophe, strip it off
    351     // (this is generally used to put whitespace at the beginning of
    352     // a rule's rule text)
    353     if (description.length() > 0 && description.charAt(0) == gTick) {
    354         description.removeBetween(0, 1);
    355     }
    356 
    357     // return the description with all the stuff we've just waded through
    358     // stripped off the front.  It now contains just the rule body.
    359     // return description;
    360 }
    361 
    362 /**
    363 * Searches the rule's rule text for the substitution tokens,
    364 * creates the substitutions, and removes the substitution tokens
    365 * from the rule's rule text.
    366 * @param owner The rule set containing this rule
    367 * @param predecessor The rule preseding this one in "owners" rule list
    368 * @param ownersOwner The RuleBasedFormat that owns this rule
    369 */
    370 void
    371 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
    372                              const NFRule* predecessor,
    373                              const RuleBasedNumberFormat* rbnf,
    374                              UErrorCode& status)
    375 {
    376     if (U_SUCCESS(status)) {
    377         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
    378         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
    379     }
    380 }
    381 
    382 /**
    383 * Searches the rule's rule text for the first substitution token,
    384 * creates a substitution based on it, and removes the token from
    385 * the rule's rule text.
    386 * @param owner The rule set containing this rule
    387 * @param predecessor The rule preceding this one in the rule set's
    388 * rule list
    389 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
    390 * @return The newly-created substitution.  This is never null; if
    391 * the rule text doesn't contain any substitution tokens, this will
    392 * be a NullSubstitution.
    393 */
    394 NFSubstitution *
    395 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
    396                             const NFRule* predecessor,
    397                             const RuleBasedNumberFormat* rbnf,
    398                             UErrorCode& status)
    399 {
    400     NFSubstitution* result = NULL;
    401 
    402     // search the rule's rule text for the first two characters of
    403     // a substitution token
    404     int32_t subStart = indexOfAny(tokenStrings);
    405     int32_t subEnd = subStart;
    406 
    407     // if we didn't find one, create a null substitution positioned
    408     // at the end of the rule text
    409     if (subStart == -1) {
    410         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
    411             ruleSet, rbnf, UnicodeString(), status);
    412     }
    413 
    414     // special-case the ">>>" token, since searching for the > at the
    415     // end will actually find the > in the middle
    416     if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
    417         subEnd = subStart + 2;
    418 
    419         // otherwise the substitution token ends with the same character
    420         // it began with
    421     } else {
    422         UChar c = ruleText.charAt(subStart);
    423         subEnd = ruleText.indexOf(c, subStart + 1);
    424         // special case for '<%foo<<'
    425         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
    426             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
    427             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
    428             // to get around this.  Having the duplicate at the front would cause problems with
    429             // rules like "<<%" to format, say, percents...
    430             ++subEnd;
    431         }
    432    }
    433 
    434     // if we don't find the end of the token (i.e., if we're on a single,
    435     // unmatched token character), create a null substitution positioned
    436     // at the end of the rule
    437     if (subEnd == -1) {
    438         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
    439             ruleSet, rbnf, UnicodeString(), status);
    440     }
    441 
    442     // if we get here, we have a real substitution token (or at least
    443     // some text bounded by substitution token characters).  Use
    444     // makeSubstitution() to create the right kind of substitution
    445     UnicodeString subToken;
    446     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
    447     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
    448         rbnf, subToken, status);
    449 
    450     // remove the substitution from the rule text
    451     ruleText.removeBetween(subStart, subEnd+1);
    452 
    453     return result;
    454 }
    455 
    456 /**
    457  * Sets the rule's base value, and causes the radix and exponent
    458  * to be recalculated.  This is used during construction when we
    459  * don't know the rule's base value until after it's been
    460  * constructed.  It should be used at any other time.
    461  * @param The new base value for the rule.
    462  */
    463 void
    464 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
    465 {
    466     // set the base value
    467     baseValue = newBaseValue;
    468 
    469     // if this isn't a special rule, recalculate the radix and exponent
    470     // (the radix always defaults to 10; if it's supposed to be something
    471     // else, it's cleaned up by the caller and the exponent is
    472     // recalculated again-- the only function that does this is
    473     // NFRule.parseRuleDescriptor() )
    474     if (baseValue >= 1) {
    475         radix = 10;
    476         exponent = expectedExponent();
    477 
    478         // this function gets called on a fully-constructed rule whose
    479         // description didn't specify a base value.  This means it
    480         // has substitutions, and some substitutions hold on to copies
    481         // of the rule's divisor.  Fix their copies of the divisor.
    482         if (sub1 != NULL) {
    483             sub1->setDivisor(radix, exponent, status);
    484         }
    485         if (sub2 != NULL) {
    486             sub2->setDivisor(radix, exponent, status);
    487         }
    488 
    489         // if this is a special rule, its radix and exponent are basically
    490         // ignored.  Set them to "safe" default values
    491     } else {
    492         radix = 10;
    493         exponent = 0;
    494     }
    495 }
    496 
    497 /**
    498 * This calculates the rule's exponent based on its radix and base
    499 * value.  This will be the highest power the radix can be raised to
    500 * and still produce a result less than or equal to the base value.
    501 */
    502 int16_t
    503 NFRule::expectedExponent() const
    504 {
    505     // since the log of 0, or the log base 0 of something, causes an
    506     // error, declare the exponent in these cases to be 0 (we also
    507     // deal with the special-rule identifiers here)
    508     if (radix == 0 || baseValue < 1) {
    509         return 0;
    510     }
    511 
    512     // we get rounding error in some cases-- for example, log 1000 / log 10
    513     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
    514     // that into account
    515     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
    516     int64_t temp = util64_pow(radix, tempResult + 1);
    517     if (temp <= baseValue) {
    518         tempResult += 1;
    519     }
    520     return tempResult;
    521 }
    522 
    523 /**
    524  * Searches the rule's rule text for any of the specified strings.
    525  * @param strings An array of strings to search the rule's rule
    526  * text for
    527  * @return The index of the first match in the rule's rule text
    528  * (i.e., the first substring in the rule's rule text that matches
    529  * _any_ of the strings in "strings").  If none of the strings in
    530  * "strings" is found in the rule's rule text, returns -1.
    531  */
    532 int32_t
    533 NFRule::indexOfAny(const UChar* const strings[]) const
    534 {
    535     int result = -1;
    536     for (int i = 0; strings[i]; i++) {
    537         int32_t pos = ruleText.indexOf(*strings[i]);
    538         if (pos != -1 && (result == -1 || pos < result)) {
    539             result = pos;
    540         }
    541     }
    542     return result;
    543 }
    544 
    545 //-----------------------------------------------------------------------
    546 // boilerplate
    547 //-----------------------------------------------------------------------
    548 
    549 /**
    550 * Tests two rules for equality.
    551 * @param that The rule to compare this one against
    552 * @return True is the two rules are functionally equivalent
    553 */
    554 UBool
    555 NFRule::operator==(const NFRule& rhs) const
    556 {
    557     return baseValue == rhs.baseValue
    558         && radix == rhs.radix
    559         && exponent == rhs.exponent
    560         && ruleText == rhs.ruleText
    561         && *sub1 == *rhs.sub1
    562         && *sub2 == *rhs.sub2;
    563 }
    564 
    565 /**
    566 * Returns a textual representation of the rule.  This won't
    567 * necessarily be the same as the description that this rule
    568 * was created with, but it will produce the same result.
    569 * @return A textual description of the rule
    570 */
    571 static void util_append64(UnicodeString& result, int64_t n)
    572 {
    573     UChar buffer[256];
    574     int32_t len = util64_tou(n, buffer, sizeof(buffer));
    575     UnicodeString temp(buffer, len);
    576     result.append(temp);
    577 }
    578 
    579 void
    580 NFRule::_appendRuleText(UnicodeString& result) const
    581 {
    582     switch (getType()) {
    583     case kNegativeNumberRule: result.append(gMinusX, 2); break;
    584     case kImproperFractionRule: result.append(gXDotX, 3); break;
    585     case kProperFractionRule: result.append(gZeroDotX, 3); break;
    586     case kMasterRule: result.append(gXDotZero, 3); break;
    587     default:
    588         // for a normal rule, write out its base value, and if the radix is
    589         // something other than 10, write out the radix (with the preceding
    590         // slash, of course).  Then calculate the expected exponent and if
    591         // if isn't the same as the actual exponent, write an appropriate
    592         // number of > signs.  Finally, terminate the whole thing with
    593         // a colon.
    594         util_append64(result, baseValue);
    595         if (radix != 10) {
    596             result.append(gSlash);
    597             util_append64(result, radix);
    598         }
    599         int numCarets = expectedExponent() - exponent;
    600         for (int i = 0; i < numCarets; i++) {
    601             result.append(gGreaterThan);
    602         }
    603         break;
    604     }
    605     result.append(gColon);
    606     result.append(gSpace);
    607 
    608     // if the rule text begins with a space, write an apostrophe
    609     // (whitespace after the rule descriptor is ignored; the
    610     // apostrophe is used to make the whitespace significant)
    611     if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
    612         result.append(gTick);
    613     }
    614 
    615     // now, write the rule's rule text, inserting appropriate
    616     // substitution tokens in the appropriate places
    617     UnicodeString ruleTextCopy;
    618     ruleTextCopy.setTo(ruleText);
    619 
    620     UnicodeString temp;
    621     sub2->toString(temp);
    622     ruleTextCopy.insert(sub2->getPos(), temp);
    623     sub1->toString(temp);
    624     ruleTextCopy.insert(sub1->getPos(), temp);
    625 
    626     result.append(ruleTextCopy);
    627 
    628     // and finally, top the whole thing off with a semicolon and
    629     // return the result
    630     result.append(gSemicolon);
    631 }
    632 
    633 //-----------------------------------------------------------------------
    634 // formatting
    635 //-----------------------------------------------------------------------
    636 
    637 /**
    638 * Formats the number, and inserts the resulting text into
    639 * toInsertInto.
    640 * @param number The number being formatted
    641 * @param toInsertInto The string where the resultant text should
    642 * be inserted
    643 * @param pos The position in toInsertInto where the resultant text
    644 * should be inserted
    645 */
    646 void
    647 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
    648 {
    649     // first, insert the rule's rule text into toInsertInto at the
    650     // specified position, then insert the results of the substitutions
    651     // into the right places in toInsertInto (notice we do the
    652     // substitutions in reverse order so that the offsets don't get
    653     // messed up)
    654     toInsertInto.insert(pos, ruleText);
    655     sub2->doSubstitution(number, toInsertInto, pos);
    656     sub1->doSubstitution(number, toInsertInto, pos);
    657 }
    658 
    659 /**
    660 * Formats the number, and inserts the resulting text into
    661 * toInsertInto.
    662 * @param number The number being formatted
    663 * @param toInsertInto The string where the resultant text should
    664 * be inserted
    665 * @param pos The position in toInsertInto where the resultant text
    666 * should be inserted
    667 */
    668 void
    669 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
    670 {
    671     // first, insert the rule's rule text into toInsertInto at the
    672     // specified position, then insert the results of the substitutions
    673     // into the right places in toInsertInto
    674     // [again, we have two copies of this routine that do the same thing
    675     // so that we don't sacrifice precision in a long by casting it
    676     // to a double]
    677     toInsertInto.insert(pos, ruleText);
    678     sub2->doSubstitution(number, toInsertInto, pos);
    679     sub1->doSubstitution(number, toInsertInto, pos);
    680 }
    681 
    682 /**
    683 * Used by the owning rule set to determine whether to invoke the
    684 * rollback rule (i.e., whether this rule or the one that precedes
    685 * it in the rule set's list should be used to format the number)
    686 * @param The number being formatted
    687 * @return True if the rule set should use the rule that precedes
    688 * this one in its list; false if it should use this rule
    689 */
    690 UBool
    691 NFRule::shouldRollBack(double number) const
    692 {
    693     // we roll back if the rule contains a modulus substitution,
    694     // the number being formatted is an even multiple of the rule's
    695     // divisor, and the rule's base value is NOT an even multiple
    696     // of its divisor
    697     // In other words, if the original description had
    698     //    100: << hundred[ >>];
    699     // that expands into
    700     //    100: << hundred;
    701     //    101: << hundred >>;
    702     // internally.  But when we're formatting 200, if we use the rule
    703     // at 101, which would normally apply, we get "two hundred zero".
    704     // To prevent this, we roll back and use the rule at 100 instead.
    705     // This is the logic that makes this happen: the rule at 101 has
    706     // a modulus substitution, its base value isn't an even multiple
    707     // of 100, and the value we're trying to format _is_ an even
    708     // multiple of 100.  This is called the "rollback rule."
    709     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
    710         int64_t re = util64_pow(radix, exponent);
    711         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
    712     }
    713     return FALSE;
    714 }
    715 
    716 //-----------------------------------------------------------------------
    717 // parsing
    718 //-----------------------------------------------------------------------
    719 
    720 /**
    721 * Attempts to parse the string with this rule.
    722 * @param text The string being parsed
    723 * @param parsePosition On entry, the value is ignored and assumed to
    724 * be 0. On exit, this has been updated with the position of the first
    725 * character not consumed by matching the text against this rule
    726 * (if this rule doesn't match the text at all, the parse position
    727 * if left unchanged (presumably at 0) and the function returns
    728 * new Long(0)).
    729 * @param isFractionRule True if this rule is contained within a
    730 * fraction rule set.  This is only used if the rule has no
    731 * substitutions.
    732 * @return If this rule matched the text, this is the rule's base value
    733 * combined appropriately with the results of parsing the substitutions.
    734 * If nothing matched, this is new Long(0) and the parse position is
    735 * left unchanged.  The result will be an instance of Long if the
    736 * result is an integer and Double otherwise.  The result is never null.
    737 */
    738 #ifdef RBNF_DEBUG
    739 #include <stdio.h>
    740 
    741 static void dumpUS(FILE* f, const UnicodeString& us) {
    742   int len = us.length();
    743   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
    744   if (buf != NULL) {
    745 	  us.extract(0, len, buf);
    746 	  buf[len] = 0;
    747 	  fprintf(f, "%s", buf);
    748 	  uprv_free(buf); //delete[] buf;
    749   }
    750 }
    751 #endif
    752 
    753 UBool
    754 NFRule::doParse(const UnicodeString& text,
    755                 ParsePosition& parsePosition,
    756                 UBool isFractionRule,
    757                 double upperBound,
    758                 Formattable& resVal) const
    759 {
    760     // internally we operate on a copy of the string being parsed
    761     // (because we're going to change it) and use our own ParsePosition
    762     ParsePosition pp;
    763     UnicodeString workText(text);
    764 
    765     // check to see whether the text before the first substitution
    766     // matches the text at the beginning of the string being
    767     // parsed.  If it does, strip that off the front of workText;
    768     // otherwise, dump out with a mismatch
    769     UnicodeString prefix;
    770     prefix.setTo(ruleText, 0, sub1->getPos());
    771 
    772 #ifdef RBNF_DEBUG
    773     fprintf(stderr, "doParse %x ", this);
    774     {
    775         UnicodeString rt;
    776         _appendRuleText(rt);
    777         dumpUS(stderr, rt);
    778     }
    779 
    780     fprintf(stderr, " text: '", this);
    781     dumpUS(stderr, text);
    782     fprintf(stderr, "' prefix: '");
    783     dumpUS(stderr, prefix);
    784 #endif
    785     stripPrefix(workText, prefix, pp);
    786     int32_t prefixLength = text.length() - workText.length();
    787 
    788 #ifdef RBNF_DEBUG
    789     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
    790 #endif
    791 
    792     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
    793         // commented out because ParsePosition doesn't have error index in 1.1.x
    794         // restored for ICU4C port
    795         parsePosition.setErrorIndex(pp.getErrorIndex());
    796         resVal.setLong(0);
    797         return TRUE;
    798     }
    799 
    800     // this is the fun part.  The basic guts of the rule-matching
    801     // logic is matchToDelimiter(), which is called twice.  The first
    802     // time it searches the input string for the rule text BETWEEN
    803     // the substitutions and tries to match the intervening text
    804     // in the input string with the first substitution.  If that
    805     // succeeds, it then calls it again, this time to look for the
    806     // rule text after the second substitution and to match the
    807     // intervening input text against the second substitution.
    808     //
    809     // For example, say we have a rule that looks like this:
    810     //    first << middle >> last;
    811     // and input text that looks like this:
    812     //    first one middle two last
    813     // First we use stripPrefix() to match "first " in both places and
    814     // strip it off the front, leaving
    815     //    one middle two last
    816     // Then we use matchToDelimiter() to match " middle " and try to
    817     // match "one" against a substitution.  If it's successful, we now
    818     // have
    819     //    two last
    820     // We use matchToDelimiter() a second time to match " last" and
    821     // try to match "two" against a substitution.  If "two" matches
    822     // the substitution, we have a successful parse.
    823     //
    824     // Since it's possible in many cases to find multiple instances
    825     // of each of these pieces of rule text in the input string,
    826     // we need to try all the possible combinations of these
    827     // locations.  This prevents us from prematurely declaring a mismatch,
    828     // and makes sure we match as much input text as we can.
    829     int highWaterMark = 0;
    830     double result = 0;
    831     int start = 0;
    832     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
    833 
    834     UnicodeString temp;
    835     do {
    836         // our partial parse result starts out as this rule's base
    837         // value.  If it finds a successful match, matchToDelimiter()
    838         // will compose this in some way with what it gets back from
    839         // the substitution, giving us a new partial parse result
    840         pp.setIndex(0);
    841 
    842         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
    843         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
    844             temp, pp, sub1,
    845             upperBound);
    846 
    847         // if we got a successful match (or were trying to match a
    848         // null substitution), pp is now pointing at the first unmatched
    849         // character.  Take note of that, and try matchToDelimiter()
    850         // on the input text again
    851         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
    852             start = pp.getIndex();
    853 
    854             UnicodeString workText2;
    855             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
    856             ParsePosition pp2;
    857 
    858             // the second matchToDelimiter() will compose our previous
    859             // partial result with whatever it gets back from its
    860             // substitution if there's a successful match, giving us
    861             // a real result
    862             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
    863             partialResult = matchToDelimiter(workText2, 0, partialResult,
    864                 temp, pp2, sub2,
    865                 upperBound);
    866 
    867             // if we got a successful match on this second
    868             // matchToDelimiter() call, update the high-water mark
    869             // and result (if necessary)
    870             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
    871                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
    872                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
    873                     result = partialResult;
    874                 }
    875             }
    876             // commented out because ParsePosition doesn't have error index in 1.1.x
    877             // restored for ICU4C port
    878             else {
    879                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
    880                 if (temp> parsePosition.getErrorIndex()) {
    881                     parsePosition.setErrorIndex(temp);
    882                 }
    883             }
    884         }
    885         // commented out because ParsePosition doesn't have error index in 1.1.x
    886         // restored for ICU4C port
    887         else {
    888             int32_t temp = sub1->getPos() + pp.getErrorIndex();
    889             if (temp > parsePosition.getErrorIndex()) {
    890                 parsePosition.setErrorIndex(temp);
    891             }
    892         }
    893         // keep trying to match things until the outer matchToDelimiter()
    894         // call fails to make a match (each time, it picks up where it
    895         // left off the previous time)
    896     } while (sub1->getPos() != sub2->getPos()
    897         && pp.getIndex() > 0
    898         && pp.getIndex() < workText.length()
    899         && pp.getIndex() != start);
    900 
    901     // update the caller's ParsePosition with our high-water mark
    902     // (i.e., it now points at the first character this function
    903     // didn't match-- the ParsePosition is therefore unchanged if
    904     // we didn't match anything)
    905     parsePosition.setIndex(highWaterMark);
    906     // commented out because ParsePosition doesn't have error index in 1.1.x
    907     // restored for ICU4C port
    908     if (highWaterMark > 0) {
    909         parsePosition.setErrorIndex(0);
    910     }
    911 
    912     // this is a hack for one unusual condition: Normally, whether this
    913     // rule belong to a fraction rule set or not is handled by its
    914     // substitutions.  But if that rule HAS NO substitutions, then
    915     // we have to account for it here.  By definition, if the matching
    916     // rule in a fraction rule set has no substitutions, its numerator
    917     // is 1, and so the result is the reciprocal of its base value.
    918     if (isFractionRule &&
    919         highWaterMark > 0 &&
    920         sub1->isNullSubstitution()) {
    921         result = 1 / result;
    922     }
    923 
    924     resVal.setDouble(result);
    925     return TRUE; // ??? do we need to worry if it is a long or a double?
    926 }
    927 
    928 /**
    929 * This function is used by parse() to match the text being parsed
    930 * against a possible prefix string.  This function
    931 * matches characters from the beginning of the string being parsed
    932 * to characters from the prospective prefix.  If they match, pp is
    933 * updated to the first character not matched, and the result is
    934 * the unparsed part of the string.  If they don't match, the whole
    935 * string is returned, and pp is left unchanged.
    936 * @param text The string being parsed
    937 * @param prefix The text to match against
    938 * @param pp On entry, ignored and assumed to be 0.  On exit, points
    939 * to the first unmatched character (assuming the whole prefix matched),
    940 * or is unchanged (if the whole prefix didn't match).
    941 * @return If things match, this is the unparsed part of "text";
    942 * if they didn't match, this is "text".
    943 */
    944 void
    945 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
    946 {
    947     // if the prefix text is empty, dump out without doing anything
    948     if (prefix.length() != 0) {
    949     	UErrorCode status = U_ZERO_ERROR;
    950         // use prefixLength() to match the beginning of
    951         // "text" against "prefix".  This function returns the
    952         // number of characters from "text" that matched (or 0 if
    953         // we didn't match the whole prefix)
    954         int32_t pfl = prefixLength(text, prefix, status);
    955         if (U_FAILURE(status)) { // Memory allocation error.
    956         	return;
    957         }
    958         if (pfl != 0) {
    959             // if we got a successful match, update the parse position
    960             // and strip the prefix off of "text"
    961             pp.setIndex(pp.getIndex() + pfl);
    962             text.remove(0, pfl);
    963         }
    964     }
    965 }
    966 
    967 /**
    968 * Used by parse() to match a substitution and any following text.
    969 * "text" is searched for instances of "delimiter".  For each instance
    970 * of delimiter, the intervening text is tested to see whether it
    971 * matches the substitution.  The longest match wins.
    972 * @param text The string being parsed
    973 * @param startPos The position in "text" where we should start looking
    974 * for "delimiter".
    975 * @param baseValue A partial parse result (often the rule's base value),
    976 * which is combined with the result from matching the substitution
    977 * @param delimiter The string to search "text" for.
    978 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
    979 * on exit this will point to the first unmatched character.
    980 * @param sub If we find "delimiter" in "text", this substitution is used
    981 * to match the text between the beginning of the string and the
    982 * position of "delimiter."  (If "delimiter" is the empty string, then
    983 * this function just matches against this substitution and updates
    984 * everything accordingly.)
    985 * @param upperBound When matching the substitution, it will only
    986 * consider rules with base values lower than this value.
    987 * @return If there's a match, this is the result of composing
    988 * baseValue with the result of matching the substitution.  Otherwise,
    989 * this is new Long(0).  It's never null.  If the result is an integer,
    990 * this will be an instance of Long; otherwise, it's an instance of
    991 * Double.
    992 *
    993 * !!! note {dlf} in point of fact, in the java code the caller always converts
    994 * the result to a double, so we might as well return one.
    995 */
    996 double
    997 NFRule::matchToDelimiter(const UnicodeString& text,
    998                          int32_t startPos,
    999                          double _baseValue,
   1000                          const UnicodeString& delimiter,
   1001                          ParsePosition& pp,
   1002                          const NFSubstitution* sub,
   1003                          double upperBound) const
   1004 {
   1005 	UErrorCode status = U_ZERO_ERROR;
   1006     // if "delimiter" contains real (i.e., non-ignorable) text, search
   1007     // it for "delimiter" beginning at "start".  If that succeeds, then
   1008     // use "sub"'s doParse() method to match the text before the
   1009     // instance of "delimiter" we just found.
   1010     if (!allIgnorable(delimiter, status)) {
   1011     	if (U_FAILURE(status)) { //Memory allocation error.
   1012     		return 0;
   1013     	}
   1014         ParsePosition tempPP;
   1015         Formattable result;
   1016 
   1017         // use findText() to search for "delimiter".  It returns a two-
   1018         // element array: element 0 is the position of the match, and
   1019         // element 1 is the number of characters that matched
   1020         // "delimiter".
   1021         int32_t dLen;
   1022         int32_t dPos = findText(text, delimiter, startPos, &dLen);
   1023 
   1024         // if findText() succeeded, isolate the text preceding the
   1025         // match, and use "sub" to match that text
   1026         while (dPos >= 0) {
   1027             UnicodeString subText;
   1028             subText.setTo(text, 0, dPos);
   1029             if (subText.length() > 0) {
   1030                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
   1031 #if UCONFIG_NO_COLLATION
   1032                     FALSE,
   1033 #else
   1034                     formatter->isLenient(),
   1035 #endif
   1036                     result);
   1037 
   1038                 // if the substitution could match all the text up to
   1039                 // where we found "delimiter", then this function has
   1040                 // a successful match.  Bump the caller's parse position
   1041                 // to point to the first character after the text
   1042                 // that matches "delimiter", and return the result
   1043                 // we got from parsing the substitution.
   1044                 if (success && tempPP.getIndex() == dPos) {
   1045                     pp.setIndex(dPos + dLen);
   1046                     return result.getDouble();
   1047                 }
   1048                 // commented out because ParsePosition doesn't have error index in 1.1.x
   1049                 // restored for ICU4C port
   1050                 else {
   1051                     if (tempPP.getErrorIndex() > 0) {
   1052                         pp.setErrorIndex(tempPP.getErrorIndex());
   1053                     } else {
   1054                         pp.setErrorIndex(tempPP.getIndex());
   1055                     }
   1056                 }
   1057             }
   1058 
   1059             // if we didn't match the substitution, search for another
   1060             // copy of "delimiter" in "text" and repeat the loop if
   1061             // we find it
   1062             tempPP.setIndex(0);
   1063             dPos = findText(text, delimiter, dPos + dLen, &dLen);
   1064         }
   1065         // if we make it here, this was an unsuccessful match, and we
   1066         // leave pp unchanged and return 0
   1067         pp.setIndex(0);
   1068         return 0;
   1069 
   1070         // if "delimiter" is empty, or consists only of ignorable characters
   1071         // (i.e., is semantically empty), thwe we obviously can't search
   1072         // for "delimiter".  Instead, just use "sub" to parse as much of
   1073         // "text" as possible.
   1074     } else {
   1075         ParsePosition tempPP;
   1076         Formattable result;
   1077 
   1078         // try to match the whole string against the substitution
   1079         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
   1080 #if UCONFIG_NO_COLLATION
   1081             FALSE,
   1082 #else
   1083             formatter->isLenient(),
   1084 #endif
   1085             result);
   1086         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
   1087             // if there's a successful match (or it's a null
   1088             // substitution), update pp to point to the first
   1089             // character we didn't match, and pass the result from
   1090             // sub.doParse() on through to the caller
   1091             pp.setIndex(tempPP.getIndex());
   1092             return result.getDouble();
   1093         }
   1094         // commented out because ParsePosition doesn't have error index in 1.1.x
   1095         // restored for ICU4C port
   1096         else {
   1097             pp.setErrorIndex(tempPP.getErrorIndex());
   1098         }
   1099 
   1100         // and if we get to here, then nothing matched, so we return
   1101         // 0 and leave pp alone
   1102         return 0;
   1103     }
   1104 }
   1105 
   1106 /**
   1107 * Used by stripPrefix() to match characters.  If lenient parse mode
   1108 * is off, this just calls startsWith().  If lenient parse mode is on,
   1109 * this function uses CollationElementIterators to match characters in
   1110 * the strings (only primary-order differences are significant in
   1111 * determining whether there's a match).
   1112 * @param str The string being tested
   1113 * @param prefix The text we're hoping to see at the beginning
   1114 * of "str"
   1115 * @return If "prefix" is found at the beginning of "str", this
   1116 * is the number of characters in "str" that were matched (this
   1117 * isn't necessarily the same as the length of "prefix" when matching
   1118 * text with a collator).  If there's no match, this is 0.
   1119 */
   1120 int32_t
   1121 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
   1122 {
   1123     // if we're looking for an empty prefix, it obviously matches
   1124     // zero characters.  Just go ahead and return 0.
   1125     if (prefix.length() == 0) {
   1126         return 0;
   1127     }
   1128 
   1129 #if !UCONFIG_NO_COLLATION
   1130     // go through all this grief if we're in lenient-parse mode
   1131     if (formatter->isLenient()) {
   1132         // get the formatter's collator and use it to create two
   1133         // collation element iterators, one over the target string
   1134         // and another over the prefix (right now, we'll throw an
   1135         // exception if the collator we get back from the formatter
   1136         // isn't a RuleBasedCollator, because RuleBasedCollator defines
   1137         // the CollationElementIterator protocol.  Hopefully, this
   1138         // will change someday.)
   1139         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
   1140         CollationElementIterator* strIter = collator->createCollationElementIterator(str);
   1141         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
   1142         // Check for memory allocation error.
   1143         if (collator == NULL || strIter == NULL || prefixIter == NULL) {
   1144         	delete collator;
   1145         	delete strIter;
   1146         	delete prefixIter;
   1147         	status = U_MEMORY_ALLOCATION_ERROR;
   1148         	return 0;
   1149         }
   1150 
   1151         UErrorCode err = U_ZERO_ERROR;
   1152 
   1153         // The original code was problematic.  Consider this match:
   1154         // prefix = "fifty-"
   1155         // string = " fifty-7"
   1156         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
   1157         // in the string.  Unfortunately, we were getting a match, and then computing where
   1158         // the match terminated by rematching the string.  The rematch code was using as an
   1159         // initial guess the substring of string between 0 and prefix.length.  Because of
   1160         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
   1161         // the position before the hyphen in the string.  Recursing down, we then parsed the
   1162         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
   1163         // This was not pretty, especially since the string "fifty-7" parsed just fine.
   1164         //
   1165         // We have newer APIs now, so we can use calls on the iterator to determine what we
   1166         // matched up to.  If we terminate because we hit the last element in the string,
   1167         // our match terminates at this length.  If we terminate because we hit the last element
   1168         // in the target, our match terminates at one before the element iterator position.
   1169 
   1170         // match collation elements between the strings
   1171         int32_t oStr = strIter->next(err);
   1172         int32_t oPrefix = prefixIter->next(err);
   1173 
   1174         while (oPrefix != CollationElementIterator::NULLORDER) {
   1175             // skip over ignorable characters in the target string
   1176             while (CollationElementIterator::primaryOrder(oStr) == 0
   1177                 && oStr != CollationElementIterator::NULLORDER) {
   1178                 oStr = strIter->next(err);
   1179             }
   1180 
   1181             // skip over ignorable characters in the prefix
   1182             while (CollationElementIterator::primaryOrder(oPrefix) == 0
   1183                 && oPrefix != CollationElementIterator::NULLORDER) {
   1184                 oPrefix = prefixIter->next(err);
   1185             }
   1186 
   1187             // dlf: move this above following test, if we consume the
   1188             // entire target, aren't we ok even if the source was also
   1189             // entirely consumed?
   1190 
   1191             // if skipping over ignorables brought to the end of
   1192             // the prefix, we DID match: drop out of the loop
   1193             if (oPrefix == CollationElementIterator::NULLORDER) {
   1194                 break;
   1195             }
   1196 
   1197             // if skipping over ignorables brought us to the end
   1198             // of the target string, we didn't match and return 0
   1199             if (oStr == CollationElementIterator::NULLORDER) {
   1200                 delete prefixIter;
   1201                 delete strIter;
   1202                 return 0;
   1203             }
   1204 
   1205             // match collation elements from the two strings
   1206             // (considering only primary differences).  If we
   1207             // get a mismatch, dump out and return 0
   1208             if (CollationElementIterator::primaryOrder(oStr)
   1209                 != CollationElementIterator::primaryOrder(oPrefix)) {
   1210                 delete prefixIter;
   1211                 delete strIter;
   1212                 return 0;
   1213 
   1214                 // otherwise, advance to the next character in each string
   1215                 // and loop (we drop out of the loop when we exhaust
   1216                 // collation elements in the prefix)
   1217             } else {
   1218                 oStr = strIter->next(err);
   1219                 oPrefix = prefixIter->next(err);
   1220             }
   1221         }
   1222 
   1223         int32_t result = strIter->getOffset();
   1224         if (oStr != CollationElementIterator::NULLORDER) {
   1225             --result; // back over character that we don't want to consume;
   1226         }
   1227 
   1228 #ifdef RBNF_DEBUG
   1229         fprintf(stderr, "prefix length: %d\n", result);
   1230 #endif
   1231         delete prefixIter;
   1232         delete strIter;
   1233 
   1234         return result;
   1235 #if 0
   1236         //----------------------------------------------------------------
   1237         // JDK 1.2-specific API call
   1238         // return strIter.getOffset();
   1239         //----------------------------------------------------------------
   1240         // JDK 1.1 HACK (take out for 1.2-specific code)
   1241 
   1242         // if we make it to here, we have a successful match.  Now we
   1243         // have to find out HOW MANY characters from the target string
   1244         // matched the prefix (there isn't necessarily a one-to-one
   1245         // mapping between collation elements and characters).
   1246         // In JDK 1.2, there's a simple getOffset() call we can use.
   1247         // In JDK 1.1, on the other hand, we have to go through some
   1248         // ugly contortions.  First, use the collator to compare the
   1249         // same number of characters from the prefix and target string.
   1250         // If they're equal, we're done.
   1251         collator->setStrength(Collator::PRIMARY);
   1252         if (str.length() >= prefix.length()) {
   1253             UnicodeString temp;
   1254             temp.setTo(str, 0, prefix.length());
   1255             if (collator->equals(temp, prefix)) {
   1256 #ifdef RBNF_DEBUG
   1257                 fprintf(stderr, "returning: %d\n", prefix.length());
   1258 #endif
   1259                 return prefix.length();
   1260             }
   1261         }
   1262 
   1263         // if they're not equal, then we have to compare successively
   1264         // larger and larger substrings of the target string until we
   1265         // get to one that matches the prefix.  At that point, we know
   1266         // how many characters matched the prefix, and we can return.
   1267         int32_t p = 1;
   1268         while (p <= str.length()) {
   1269             UnicodeString temp;
   1270             temp.setTo(str, 0, p);
   1271             if (collator->equals(temp, prefix)) {
   1272                 return p;
   1273             } else {
   1274                 ++p;
   1275             }
   1276         }
   1277 
   1278         // SHOULD NEVER GET HERE!!!
   1279         return 0;
   1280         //----------------------------------------------------------------
   1281 #endif
   1282 
   1283         // If lenient parsing is turned off, forget all that crap above.
   1284         // Just use String.startsWith() and be done with it.
   1285   } else
   1286 #endif
   1287   {
   1288       if (str.startsWith(prefix)) {
   1289           return prefix.length();
   1290       } else {
   1291           return 0;
   1292       }
   1293   }
   1294 }
   1295 
   1296 /**
   1297 * Searches a string for another string.  If lenient parsing is off,
   1298 * this just calls indexOf().  If lenient parsing is on, this function
   1299 * uses CollationElementIterator to match characters, and only
   1300 * primary-order differences are significant in determining whether
   1301 * there's a match.
   1302 * @param str The string to search
   1303 * @param key The string to search "str" for
   1304 * @param startingAt The index into "str" where the search is to
   1305 * begin
   1306 * @return A two-element array of ints.  Element 0 is the position
   1307 * of the match, or -1 if there was no match.  Element 1 is the
   1308 * number of characters in "str" that matched (which isn't necessarily
   1309 * the same as the length of "key")
   1310 */
   1311 int32_t
   1312 NFRule::findText(const UnicodeString& str,
   1313                  const UnicodeString& key,
   1314                  int32_t startingAt,
   1315                  int32_t* length) const
   1316 {
   1317 #if !UCONFIG_NO_COLLATION
   1318     // if lenient parsing is turned off, this is easy: just call
   1319     // String.indexOf() and we're done
   1320     if (!formatter->isLenient()) {
   1321         *length = key.length();
   1322         return str.indexOf(key, startingAt);
   1323 
   1324         // but if lenient parsing is turned ON, we've got some work
   1325         // ahead of us
   1326     } else
   1327 #endif
   1328     {
   1329         //----------------------------------------------------------------
   1330         // JDK 1.1 HACK (take out of 1.2-specific code)
   1331 
   1332         // in JDK 1.2, CollationElementIterator provides us with an
   1333         // API to map between character offsets and collation elements
   1334         // and we can do this by marching through the string comparing
   1335         // collation elements.  We can't do that in JDK 1.1.  Insted,
   1336         // we have to go through this horrible slow mess:
   1337         int32_t p = startingAt;
   1338         int32_t keyLen = 0;
   1339 
   1340         // basically just isolate smaller and smaller substrings of
   1341         // the target string (each running to the end of the string,
   1342         // and with the first one running from startingAt to the end)
   1343         // and then use prefixLength() to see if the search key is at
   1344         // the beginning of each substring.  This is excruciatingly
   1345         // slow, but it will locate the key and tell use how long the
   1346         // matching text was.
   1347         UnicodeString temp;
   1348         UErrorCode status = U_ZERO_ERROR;
   1349         while (p < str.length() && keyLen == 0) {
   1350             temp.setTo(str, p, str.length() - p);
   1351             keyLen = prefixLength(temp, key, status);
   1352             if (U_FAILURE(status)) {
   1353             	break;
   1354             }
   1355             if (keyLen != 0) {
   1356                 *length = keyLen;
   1357                 return p;
   1358             }
   1359             ++p;
   1360         }
   1361         // if we make it to here, we didn't find it.  Return -1 for the
   1362         // location.  The length should be ignored, but set it to 0,
   1363         // which should be "safe"
   1364         *length = 0;
   1365         return -1;
   1366 
   1367         //----------------------------------------------------------------
   1368         // JDK 1.2 version of this routine
   1369         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
   1370         //
   1371         //CollationElementIterator strIter = collator.getCollationElementIterator(str);
   1372         //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
   1373         //
   1374         //int keyStart = -1;
   1375         //
   1376         //str.setOffset(startingAt);
   1377         //
   1378         //int oStr = strIter.next();
   1379         //int oKey = keyIter.next();
   1380         //while (oKey != CollationElementIterator.NULLORDER) {
   1381         //    while (oStr != CollationElementIterator.NULLORDER &&
   1382         //                CollationElementIterator.primaryOrder(oStr) == 0)
   1383         //        oStr = strIter.next();
   1384         //
   1385         //    while (oKey != CollationElementIterator.NULLORDER &&
   1386         //                CollationElementIterator.primaryOrder(oKey) == 0)
   1387         //        oKey = keyIter.next();
   1388         //
   1389         //    if (oStr == CollationElementIterator.NULLORDER) {
   1390         //        return new int[] { -1, 0 };
   1391         //    }
   1392         //
   1393         //    if (oKey == CollationElementIterator.NULLORDER) {
   1394         //        break;
   1395         //    }
   1396         //
   1397         //    if (CollationElementIterator.primaryOrder(oStr) ==
   1398         //            CollationElementIterator.primaryOrder(oKey)) {
   1399         //        keyStart = strIter.getOffset();
   1400         //        oStr = strIter.next();
   1401         //        oKey = keyIter.next();
   1402         //    } else {
   1403         //        if (keyStart != -1) {
   1404         //            keyStart = -1;
   1405         //            keyIter.reset();
   1406         //        } else {
   1407         //            oStr = strIter.next();
   1408         //        }
   1409         //    }
   1410         //}
   1411         //
   1412         //if (oKey == CollationElementIterator.NULLORDER) {
   1413         //    return new int[] { keyStart, strIter.getOffset() - keyStart };
   1414         //} else {
   1415         //    return new int[] { -1, 0 };
   1416         //}
   1417     }
   1418 }
   1419 
   1420 /**
   1421 * Checks to see whether a string consists entirely of ignorable
   1422 * characters.
   1423 * @param str The string to test.
   1424 * @return true if the string is empty of consists entirely of
   1425 * characters that the number formatter's collator says are
   1426 * ignorable at the primary-order level.  false otherwise.
   1427 */
   1428 UBool
   1429 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
   1430 {
   1431     // if the string is empty, we can just return true
   1432     if (str.length() == 0) {
   1433         return TRUE;
   1434     }
   1435 
   1436 #if !UCONFIG_NO_COLLATION
   1437     // if lenient parsing is turned on, walk through the string with
   1438     // a collation element iterator and make sure each collation
   1439     // element is 0 (ignorable) at the primary level
   1440     if (formatter->isLenient()) {
   1441         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
   1442         CollationElementIterator* iter = collator->createCollationElementIterator(str);
   1443 
   1444         // Memory allocation error check.
   1445         if (collator == NULL || iter == NULL) {
   1446         	delete collator;
   1447         	delete iter;
   1448         	status = U_MEMORY_ALLOCATION_ERROR;
   1449         	return FALSE;
   1450         }
   1451 
   1452         UErrorCode err = U_ZERO_ERROR;
   1453         int32_t o = iter->next(err);
   1454         while (o != CollationElementIterator::NULLORDER
   1455             && CollationElementIterator::primaryOrder(o) == 0) {
   1456             o = iter->next(err);
   1457         }
   1458 
   1459         delete iter;
   1460         return o == CollationElementIterator::NULLORDER;
   1461     }
   1462 #endif
   1463 
   1464     // if lenient parsing is turned off, there is no such thing as
   1465     // an ignorable character: return true only if the string is empty
   1466     return FALSE;
   1467 }
   1468 
   1469 U_NAMESPACE_END
   1470 
   1471 /* U_HAVE_RBNF */
   1472 #endif
   1473 
   1474 
   1475