Home | History | Annotate | Download | only in ARM
      1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the ARM specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ARMSubtarget.h"
     15 #include "ARMBaseInstrInfo.h"
     16 #include "ARMBaseRegisterInfo.h"
     17 #include "llvm/IR/Attributes.h"
     18 #include "llvm/IR/GlobalValue.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "llvm/Target/TargetOptions.h"
     23 
     24 #define GET_SUBTARGETINFO_TARGET_DESC
     25 #define GET_SUBTARGETINFO_CTOR
     26 #include "ARMGenSubtargetInfo.inc"
     27 
     28 using namespace llvm;
     29 
     30 cl::opt<bool>
     31 ReserveR9("arm-reserve-r9", cl::Hidden,
     32           cl::desc("Reserve R9, making it unavailable as GPR"));
     33 
     34 static cl::opt<bool>
     35 DarwinUseMOVT("arm-darwin-use-movt", cl::init(true), cl::Hidden);
     36 
     37 static cl::opt<bool>
     38 UseFusedMulOps("arm-use-mulops",
     39                cl::init(true), cl::Hidden);
     40 
     41 enum AlignMode {
     42   DefaultAlign,
     43   StrictAlign,
     44   NoStrictAlign
     45 };
     46 
     47 static cl::opt<AlignMode>
     48 Align(cl::desc("Load/store alignment support"),
     49       cl::Hidden, cl::init(DefaultAlign),
     50       cl::values(
     51           clEnumValN(DefaultAlign,  "arm-default-align",
     52                      "Generate unaligned accesses only on hardware/OS "
     53                      "combinations that are known to support them"),
     54           clEnumValN(StrictAlign,   "arm-strict-align",
     55                      "Disallow all unaligned memory accesses"),
     56           clEnumValN(NoStrictAlign, "arm-no-strict-align",
     57                      "Allow unaligned memory accesses"),
     58           clEnumValEnd));
     59 
     60 ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
     61                            const std::string &FS, const TargetOptions &Options)
     62   : ARMGenSubtargetInfo(TT, CPU, FS)
     63   , ARMProcFamily(Others)
     64   , stackAlignment(4)
     65   , CPUString(CPU)
     66   , TargetTriple(TT)
     67   , Options(Options)
     68   , TargetABI(ARM_ABI_APCS) {
     69   initializeEnvironment();
     70   resetSubtargetFeatures(CPU, FS);
     71 }
     72 
     73 void ARMSubtarget::initializeEnvironment() {
     74   HasV4TOps = false;
     75   HasV5TOps = false;
     76   HasV5TEOps = false;
     77   HasV6Ops = false;
     78   HasV6T2Ops = false;
     79   HasV7Ops = false;
     80   HasV8Ops = false;
     81   HasVFPv2 = false;
     82   HasVFPv3 = false;
     83   HasVFPv4 = false;
     84   HasV8FP = false;
     85   HasNEON = false;
     86   UseNEONForSinglePrecisionFP = false;
     87   UseMulOps = UseFusedMulOps;
     88   SlowFPVMLx = false;
     89   HasVMLxForwarding = false;
     90   SlowFPBrcc = false;
     91   InThumbMode = false;
     92   HasThumb2 = false;
     93   IsMClass = false;
     94   NoARM = false;
     95   PostRAScheduler = false;
     96   IsR9Reserved = ReserveR9;
     97   UseMovt = false;
     98   SupportsTailCall = false;
     99   HasFP16 = false;
    100   HasD16 = false;
    101   HasHardwareDivide = false;
    102   HasHardwareDivideInARM = false;
    103   HasT2ExtractPack = false;
    104   HasDataBarrier = false;
    105   Pref32BitThumb = false;
    106   AvoidCPSRPartialUpdate = false;
    107   AvoidMOVsShifterOperand = false;
    108   HasRAS = false;
    109   HasMPExtension = false;
    110   FPOnlySP = false;
    111   HasPerfMon = false;
    112   HasTrustZone = false;
    113   AllowsUnalignedMem = false;
    114   Thumb2DSP = false;
    115   UseNaClTrap = false;
    116   UnsafeFPMath = false;
    117 }
    118 
    119 void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) {
    120   AttributeSet FnAttrs = MF->getFunction()->getAttributes();
    121   Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
    122                                            "target-cpu");
    123   Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex,
    124                                           "target-features");
    125   std::string CPU =
    126     !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : "";
    127   std::string FS =
    128     !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : "";
    129   if (!FS.empty()) {
    130     initializeEnvironment();
    131     resetSubtargetFeatures(CPU, FS);
    132   }
    133 }
    134 
    135 void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) {
    136   if (CPUString.empty())
    137     CPUString = "generic";
    138 
    139   // Insert the architecture feature derived from the target triple into the
    140   // feature string. This is important for setting features that are implied
    141   // based on the architecture version.
    142   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
    143                                               CPUString);
    144   if (!FS.empty()) {
    145     if (!ArchFS.empty())
    146       ArchFS = ArchFS + "," + FS.str();
    147     else
    148       ArchFS = FS;
    149   }
    150   ParseSubtargetFeatures(CPUString, ArchFS);
    151 
    152   // Thumb2 implies at least V6T2. FIXME: Fix tests to explicitly specify a
    153   // ARM version or CPU and then remove this.
    154   if (!HasV6T2Ops && hasThumb2())
    155     HasV4TOps = HasV5TOps = HasV5TEOps = HasV6Ops = HasV6T2Ops = true;
    156 
    157   // Keep a pointer to static instruction cost data for the specified CPU.
    158   SchedModel = getSchedModelForCPU(CPUString);
    159 
    160   // Initialize scheduling itinerary for the specified CPU.
    161   InstrItins = getInstrItineraryForCPU(CPUString);
    162 
    163   if ((TargetTriple.getTriple().find("eabi") != std::string::npos) ||
    164       (isTargetIOS() && isMClass()))
    165     // FIXME: We might want to separate AAPCS and EABI. Some systems, e.g.
    166     // Darwin-EABI conforms to AACPS but not the rest of EABI.
    167     TargetABI = ARM_ABI_AAPCS;
    168 
    169   if (isAAPCS_ABI())
    170     stackAlignment = 8;
    171 
    172   if (!isTargetIOS())
    173     UseMovt = hasV6T2Ops();
    174   else {
    175     IsR9Reserved = ReserveR9 | !HasV6Ops;
    176     UseMovt = DarwinUseMOVT && hasV6T2Ops();
    177     SupportsTailCall = !getTargetTriple().isOSVersionLT(5, 0);
    178   }
    179 
    180   if (!isThumb() || hasThumb2())
    181     PostRAScheduler = true;
    182 
    183   switch (Align) {
    184     case DefaultAlign:
    185       // Assume pre-ARMv6 doesn't support unaligned accesses.
    186       //
    187       // ARMv6 may or may not support unaligned accesses depending on the
    188       // SCTLR.U bit, which is architecture-specific. We assume ARMv6
    189       // Darwin targets support unaligned accesses, and others don't.
    190       //
    191       // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
    192       // which raises an alignment fault on unaligned accesses. Linux
    193       // defaults this bit to 0 and handles it as a system-wide (not
    194       // per-process) setting. It is therefore safe to assume that ARMv7+
    195       // Linux targets support unaligned accesses. The same goes for NaCl.
    196       //
    197       // The above behavior is consistent with GCC.
    198       AllowsUnalignedMem = (
    199           (hasV7Ops() && (isTargetLinux() || isTargetNaCl())) ||
    200           (hasV6Ops() && isTargetDarwin()));
    201       break;
    202     case StrictAlign:
    203       AllowsUnalignedMem = false;
    204       break;
    205     case NoStrictAlign:
    206       AllowsUnalignedMem = true;
    207       break;
    208   }
    209 
    210   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
    211   uint64_t Bits = getFeatureBits();
    212   if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
    213       (Options.UnsafeFPMath || isTargetDarwin()))
    214     UseNEONForSinglePrecisionFP = true;
    215 }
    216 
    217 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
    218 bool
    219 ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
    220                                  Reloc::Model RelocM) const {
    221   if (RelocM == Reloc::Static)
    222     return false;
    223 
    224   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
    225   // load from stub.
    226   bool isDecl = GV->hasAvailableExternallyLinkage();
    227   if (GV->isDeclaration() && !GV->isMaterializable())
    228     isDecl = true;
    229 
    230   if (!isTargetDarwin()) {
    231     // Extra load is needed for all externally visible.
    232     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
    233       return false;
    234     return true;
    235   } else {
    236     if (RelocM == Reloc::PIC_) {
    237       // If this is a strong reference to a definition, it is definitely not
    238       // through a stub.
    239       if (!isDecl && !GV->isWeakForLinker())
    240         return false;
    241 
    242       // Unless we have a symbol with hidden visibility, we have to go through a
    243       // normal $non_lazy_ptr stub because this symbol might be resolved late.
    244       if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    245         return true;
    246 
    247       // If symbol visibility is hidden, we have a stub for common symbol
    248       // references and external declarations.
    249       if (isDecl || GV->hasCommonLinkage())
    250         // Hidden $non_lazy_ptr reference.
    251         return true;
    252 
    253       return false;
    254     } else {
    255       // If this is a strong reference to a definition, it is definitely not
    256       // through a stub.
    257       if (!isDecl && !GV->isWeakForLinker())
    258         return false;
    259 
    260       // Unless we have a symbol with hidden visibility, we have to go through a
    261       // normal $non_lazy_ptr stub because this symbol might be resolved late.
    262       if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    263         return true;
    264     }
    265   }
    266 
    267   return false;
    268 }
    269 
    270 unsigned ARMSubtarget::getMispredictionPenalty() const {
    271   return SchedModel->MispredictPenalty;
    272 }
    273 
    274 bool ARMSubtarget::enablePostRAScheduler(
    275            CodeGenOpt::Level OptLevel,
    276            TargetSubtargetInfo::AntiDepBreakMode& Mode,
    277            RegClassVector& CriticalPathRCs) const {
    278   Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
    279   CriticalPathRCs.clear();
    280   CriticalPathRCs.push_back(&ARM::GPRRegClass);
    281   return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
    282 }
    283