Home | History | Annotate | Download | only in X86
      1 //===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the X86 machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "x86-emitter"
     16 #include "X86.h"
     17 #include "X86InstrInfo.h"
     18 #include "X86JITInfo.h"
     19 #include "X86Relocations.h"
     20 #include "X86Subtarget.h"
     21 #include "X86TargetMachine.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/CodeGen/JITCodeEmitter.h"
     24 #include "llvm/CodeGen/MachineFunctionPass.h"
     25 #include "llvm/CodeGen/MachineInstr.h"
     26 #include "llvm/CodeGen/MachineModuleInfo.h"
     27 #include "llvm/CodeGen/Passes.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/MC/MCCodeEmitter.h"
     30 #include "llvm/MC/MCExpr.h"
     31 #include "llvm/MC/MCInst.h"
     32 #include "llvm/PassManager.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetOptions.h"
     37 using namespace llvm;
     38 
     39 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     40 
     41 namespace {
     42   template<class CodeEmitter>
     43   class Emitter : public MachineFunctionPass {
     44     const X86InstrInfo  *II;
     45     const DataLayout    *TD;
     46     X86TargetMachine    &TM;
     47     CodeEmitter         &MCE;
     48     MachineModuleInfo   *MMI;
     49     intptr_t PICBaseOffset;
     50     bool Is64BitMode;
     51     bool IsPIC;
     52   public:
     53     static char ID;
     54     explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
     55       : MachineFunctionPass(ID), II(0), TD(0), TM(tm),
     56         MCE(mce), PICBaseOffset(0), Is64BitMode(false),
     57         IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
     58 
     59     bool runOnMachineFunction(MachineFunction &MF);
     60 
     61     virtual const char *getPassName() const {
     62       return "X86 Machine Code Emitter";
     63     }
     64 
     65     void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
     66                           const MachineInstr &MI,
     67                           const MCInstrDesc *Desc) const;
     68 
     69     void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
     70                              const MachineInstr &MI,
     71                              const MCInstrDesc *Desc) const;
     72 
     73     void emitSegmentOverridePrefix(uint64_t TSFlags,
     74                                    int MemOperand,
     75                                    const MachineInstr &MI) const;
     76 
     77     void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
     78 
     79     void getAnalysisUsage(AnalysisUsage &AU) const {
     80       AU.setPreservesAll();
     81       AU.addRequired<MachineModuleInfo>();
     82       MachineFunctionPass::getAnalysisUsage(AU);
     83     }
     84 
     85   private:
     86     void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
     87     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
     88                            intptr_t Disp = 0, intptr_t PCAdj = 0,
     89                            bool Indirect = false);
     90     void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
     91     void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
     92                               intptr_t PCAdj = 0);
     93     void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
     94                               intptr_t PCAdj = 0);
     95 
     96     void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
     97                                intptr_t Adj = 0, bool IsPCRel = true);
     98 
     99     void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
    100     void emitRegModRMByte(unsigned RegOpcodeField);
    101     void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
    102     void emitConstant(uint64_t Val, unsigned Size);
    103 
    104     void emitMemModRMByte(const MachineInstr &MI,
    105                           unsigned Op, unsigned RegOpcodeField,
    106                           intptr_t PCAdj = 0);
    107 
    108     unsigned getX86RegNum(unsigned RegNo) const {
    109       const TargetRegisterInfo *TRI = TM.getRegisterInfo();
    110       return TRI->getEncodingValue(RegNo) & 0x7;
    111     }
    112 
    113     unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
    114                                          unsigned OpNum) const;
    115   };
    116 
    117 template<class CodeEmitter>
    118   char Emitter<CodeEmitter>::ID = 0;
    119 } // end anonymous namespace.
    120 
    121 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
    122 /// to the specified JITCodeEmitter object.
    123 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
    124                                                 JITCodeEmitter &JCE) {
    125   return new Emitter<JITCodeEmitter>(TM, JCE);
    126 }
    127 
    128 template<class CodeEmitter>
    129 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
    130   MMI = &getAnalysis<MachineModuleInfo>();
    131   MCE.setModuleInfo(MMI);
    132 
    133   II = TM.getInstrInfo();
    134   TD = TM.getDataLayout();
    135   Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
    136   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    137 
    138   do {
    139     DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
    140     MCE.startFunction(MF);
    141     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    142          MBB != E; ++MBB) {
    143       MCE.StartMachineBasicBlock(MBB);
    144       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    145            I != E; ++I) {
    146         const MCInstrDesc &Desc = I->getDesc();
    147         emitInstruction(*I, &Desc);
    148         // MOVPC32r is basically a call plus a pop instruction.
    149         if (Desc.getOpcode() == X86::MOVPC32r)
    150           emitInstruction(*I, &II->get(X86::POP32r));
    151         ++NumEmitted;  // Keep track of the # of mi's emitted
    152       }
    153     }
    154   } while (MCE.finishFunction(MF));
    155 
    156   return false;
    157 }
    158 
    159 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
    160 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    161 /// size, and 3) use of X86-64 extended registers.
    162 static unsigned determineREX(const MachineInstr &MI) {
    163   unsigned REX = 0;
    164   const MCInstrDesc &Desc = MI.getDesc();
    165 
    166   // Pseudo instructions do not need REX prefix byte.
    167   if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
    168     return 0;
    169   if (Desc.TSFlags & X86II::REX_W)
    170     REX |= 1 << 3;
    171 
    172   unsigned NumOps = Desc.getNumOperands();
    173   if (NumOps) {
    174     bool isTwoAddr = NumOps > 1 &&
    175       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
    176 
    177     // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    178     unsigned i = isTwoAddr ? 1 : 0;
    179     for (unsigned e = NumOps; i != e; ++i) {
    180       const MachineOperand& MO = MI.getOperand(i);
    181       if (MO.isReg()) {
    182         unsigned Reg = MO.getReg();
    183         if (X86II::isX86_64NonExtLowByteReg(Reg))
    184           REX |= 0x40;
    185       }
    186     }
    187 
    188     switch (Desc.TSFlags & X86II::FormMask) {
    189       case X86II::MRMInitReg:
    190         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    191           REX |= (1 << 0) | (1 << 2);
    192         break;
    193       case X86II::MRMSrcReg: {
    194         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    195           REX |= 1 << 2;
    196         i = isTwoAddr ? 2 : 1;
    197         for (unsigned e = NumOps; i != e; ++i) {
    198           const MachineOperand& MO = MI.getOperand(i);
    199           if (X86InstrInfo::isX86_64ExtendedReg(MO))
    200             REX |= 1 << 0;
    201         }
    202         break;
    203       }
    204       case X86II::MRMSrcMem: {
    205         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    206           REX |= 1 << 2;
    207         unsigned Bit = 0;
    208         i = isTwoAddr ? 2 : 1;
    209         for (; i != NumOps; ++i) {
    210           const MachineOperand& MO = MI.getOperand(i);
    211           if (MO.isReg()) {
    212             if (X86InstrInfo::isX86_64ExtendedReg(MO))
    213               REX |= 1 << Bit;
    214             Bit++;
    215           }
    216         }
    217         break;
    218       }
    219       case X86II::MRM0m: case X86II::MRM1m:
    220       case X86II::MRM2m: case X86II::MRM3m:
    221       case X86II::MRM4m: case X86II::MRM5m:
    222       case X86II::MRM6m: case X86II::MRM7m:
    223       case X86II::MRMDestMem: {
    224         unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    225         i = isTwoAddr ? 1 : 0;
    226         if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
    227           REX |= 1 << 2;
    228         unsigned Bit = 0;
    229         for (; i != e; ++i) {
    230           const MachineOperand& MO = MI.getOperand(i);
    231           if (MO.isReg()) {
    232             if (X86InstrInfo::isX86_64ExtendedReg(MO))
    233               REX |= 1 << Bit;
    234             Bit++;
    235           }
    236         }
    237         break;
    238       }
    239       default: {
    240         if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
    241           REX |= 1 << 0;
    242         i = isTwoAddr ? 2 : 1;
    243         for (unsigned e = NumOps; i != e; ++i) {
    244           const MachineOperand& MO = MI.getOperand(i);
    245           if (X86InstrInfo::isX86_64ExtendedReg(MO))
    246             REX |= 1 << 2;
    247         }
    248         break;
    249       }
    250     }
    251   }
    252   return REX;
    253 }
    254 
    255 
    256 /// emitPCRelativeBlockAddress - This method keeps track of the information
    257 /// necessary to resolve the address of this block later and emits a dummy
    258 /// value.
    259 ///
    260 template<class CodeEmitter>
    261 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
    262   // Remember where this reference was and where it is to so we can
    263   // deal with it later.
    264   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    265                                              X86::reloc_pcrel_word, MBB));
    266   MCE.emitWordLE(0);
    267 }
    268 
    269 /// emitGlobalAddress - Emit the specified address to the code stream assuming
    270 /// this is part of a "take the address of a global" instruction.
    271 ///
    272 template<class CodeEmitter>
    273 void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
    274                                 unsigned Reloc,
    275                                 intptr_t Disp /* = 0 */,
    276                                 intptr_t PCAdj /* = 0 */,
    277                                 bool Indirect /* = false */) {
    278   intptr_t RelocCST = Disp;
    279   if (Reloc == X86::reloc_picrel_word)
    280     RelocCST = PICBaseOffset;
    281   else if (Reloc == X86::reloc_pcrel_word)
    282     RelocCST = PCAdj;
    283   MachineRelocation MR = Indirect
    284     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    285                                            const_cast<GlobalValue *>(GV),
    286                                            RelocCST, false)
    287     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    288                                const_cast<GlobalValue *>(GV), RelocCST, false);
    289   MCE.addRelocation(MR);
    290   // The relocated value will be added to the displacement
    291   if (Reloc == X86::reloc_absolute_dword)
    292     MCE.emitDWordLE(Disp);
    293   else
    294     MCE.emitWordLE((int32_t)Disp);
    295 }
    296 
    297 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    298 /// be emitted to the current location in the function, and allow it to be PC
    299 /// relative.
    300 template<class CodeEmitter>
    301 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
    302                                                      unsigned Reloc) {
    303   intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
    304 
    305   // X86 never needs stubs because instruction selection will always pick
    306   // an instruction sequence that is large enough to hold any address
    307   // to a symbol.
    308   // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
    309   bool NeedStub = false;
    310   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    311                                                  Reloc, ES, RelocCST,
    312                                                  0, NeedStub));
    313   if (Reloc == X86::reloc_absolute_dword)
    314     MCE.emitDWordLE(0);
    315   else
    316     MCE.emitWordLE(0);
    317 }
    318 
    319 /// emitConstPoolAddress - Arrange for the address of an constant pool
    320 /// to be emitted to the current location in the function, and allow it to be PC
    321 /// relative.
    322 template<class CodeEmitter>
    323 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
    324                                    intptr_t Disp /* = 0 */,
    325                                    intptr_t PCAdj /* = 0 */) {
    326   intptr_t RelocCST = 0;
    327   if (Reloc == X86::reloc_picrel_word)
    328     RelocCST = PICBaseOffset;
    329   else if (Reloc == X86::reloc_pcrel_word)
    330     RelocCST = PCAdj;
    331   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    332                                                     Reloc, CPI, RelocCST));
    333   // The relocated value will be added to the displacement
    334   if (Reloc == X86::reloc_absolute_dword)
    335     MCE.emitDWordLE(Disp);
    336   else
    337     MCE.emitWordLE((int32_t)Disp);
    338 }
    339 
    340 /// emitJumpTableAddress - Arrange for the address of a jump table to
    341 /// be emitted to the current location in the function, and allow it to be PC
    342 /// relative.
    343 template<class CodeEmitter>
    344 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
    345                                    intptr_t PCAdj /* = 0 */) {
    346   intptr_t RelocCST = 0;
    347   if (Reloc == X86::reloc_picrel_word)
    348     RelocCST = PICBaseOffset;
    349   else if (Reloc == X86::reloc_pcrel_word)
    350     RelocCST = PCAdj;
    351   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    352                                                     Reloc, JTI, RelocCST));
    353   // The relocated value will be added to the displacement
    354   if (Reloc == X86::reloc_absolute_dword)
    355     MCE.emitDWordLE(0);
    356   else
    357     MCE.emitWordLE(0);
    358 }
    359 
    360 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
    361                                       unsigned RM) {
    362   assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    363   return RM | (RegOpcode << 3) | (Mod << 6);
    364 }
    365 
    366 template<class CodeEmitter>
    367 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
    368                                             unsigned RegOpcodeFld){
    369   MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
    370 }
    371 
    372 template<class CodeEmitter>
    373 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
    374   MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
    375 }
    376 
    377 template<class CodeEmitter>
    378 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
    379                                        unsigned Index,
    380                                        unsigned Base) {
    381   // SIB byte is in the same format as the ModRMByte...
    382   MCE.emitByte(ModRMByte(SS, Index, Base));
    383 }
    384 
    385 template<class CodeEmitter>
    386 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
    387   // Output the constant in little endian byte order...
    388   for (unsigned i = 0; i != Size; ++i) {
    389     MCE.emitByte(Val & 255);
    390     Val >>= 8;
    391   }
    392 }
    393 
    394 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    395 /// sign-extended field.
    396 static bool isDisp8(int Value) {
    397   return Value == (signed char)Value;
    398 }
    399 
    400 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
    401                               const TargetMachine &TM) {
    402   // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
    403   // mechanism as 32-bit mode.
    404   if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
    405       !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
    406     return false;
    407 
    408   // Return true if this is a reference to a stub containing the address of the
    409   // global, not the global itself.
    410   return isGlobalStubReference(GVOp.getTargetFlags());
    411 }
    412 
    413 template<class CodeEmitter>
    414 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
    415                                                  int DispVal,
    416                                                  intptr_t Adj /* = 0 */,
    417                                                  bool IsPCRel /* = true */) {
    418   // If this is a simple integer displacement that doesn't require a relocation,
    419   // emit it now.
    420   if (!RelocOp) {
    421     emitConstant(DispVal, 4);
    422     return;
    423   }
    424 
    425   // Otherwise, this is something that requires a relocation.  Emit it as such
    426   // now.
    427   unsigned RelocType = Is64BitMode ?
    428     (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
    429     : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
    430   if (RelocOp->isGlobal()) {
    431     // In 64-bit static small code model, we could potentially emit absolute.
    432     // But it's probably not beneficial. If the MCE supports using RIP directly
    433     // do it, otherwise fallback to absolute (this is determined by IsPCRel).
    434     //  89 05 00 00 00 00     mov    %eax,0(%rip)  # PC-relative
    435     //  89 04 25 00 00 00 00  mov    %eax,0x0      # Absolute
    436     bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
    437     emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
    438                       Adj, Indirect);
    439   } else if (RelocOp->isSymbol()) {
    440     emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
    441   } else if (RelocOp->isCPI()) {
    442     emitConstPoolAddress(RelocOp->getIndex(), RelocType,
    443                          RelocOp->getOffset(), Adj);
    444   } else {
    445     assert(RelocOp->isJTI() && "Unexpected machine operand!");
    446     emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
    447   }
    448 }
    449 
    450 template<class CodeEmitter>
    451 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
    452                                             unsigned Op,unsigned RegOpcodeField,
    453                                             intptr_t PCAdj) {
    454   const MachineOperand &Op3 = MI.getOperand(Op+3);
    455   int DispVal = 0;
    456   const MachineOperand *DispForReloc = 0;
    457 
    458   // Figure out what sort of displacement we have to handle here.
    459   if (Op3.isGlobal()) {
    460     DispForReloc = &Op3;
    461   } else if (Op3.isSymbol()) {
    462     DispForReloc = &Op3;
    463   } else if (Op3.isCPI()) {
    464     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
    465       DispForReloc = &Op3;
    466     } else {
    467       DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
    468       DispVal += Op3.getOffset();
    469     }
    470   } else if (Op3.isJTI()) {
    471     if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
    472       DispForReloc = &Op3;
    473     } else {
    474       DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
    475     }
    476   } else {
    477     DispVal = Op3.getImm();
    478   }
    479 
    480   const MachineOperand &Base     = MI.getOperand(Op);
    481   const MachineOperand &Scale    = MI.getOperand(Op+1);
    482   const MachineOperand &IndexReg = MI.getOperand(Op+2);
    483 
    484   unsigned BaseReg = Base.getReg();
    485 
    486   // Handle %rip relative addressing.
    487   if (BaseReg == X86::RIP ||
    488       (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
    489     assert(IndexReg.getReg() == 0 && Is64BitMode &&
    490            "Invalid rip-relative address");
    491     MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    492     emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
    493     return;
    494   }
    495 
    496   // Indicate that the displacement will use an pcrel or absolute reference
    497   // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
    498   // while others, unless explicit asked to use RIP, use absolute references.
    499   bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
    500 
    501   // Is a SIB byte needed?
    502   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    503   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    504   // 2-7) and absolute references.
    505   unsigned BaseRegNo = -1U;
    506   if (BaseReg != 0 && BaseReg != X86::RIP)
    507     BaseRegNo = getX86RegNum(BaseReg);
    508 
    509   if (// The SIB byte must be used if there is an index register.
    510       IndexReg.getReg() == 0 &&
    511       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    512       // encode to an R/M value of 4, which indicates that a SIB byte is
    513       // present.
    514       BaseRegNo != N86::ESP &&
    515       // If there is no base register and we're in 64-bit mode, we need a SIB
    516       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    517       (!Is64BitMode || BaseReg != 0)) {
    518     if (BaseReg == 0 ||          // [disp32]     in X86-32 mode
    519         BaseReg == X86::RIP) {   // [disp32+RIP] in X86-64 mode
    520       MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
    521       emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
    522       return;
    523     }
    524 
    525     // If the base is not EBP/ESP and there is no displacement, use simple
    526     // indirect register encoding, this handles addresses like [EAX].  The
    527     // encoding for [EBP] with no displacement means [disp32] so we handle it
    528     // by emitting a displacement of 0 below.
    529     if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
    530       MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
    531       return;
    532     }
    533 
    534     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    535     if (!DispForReloc && isDisp8(DispVal)) {
    536       MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
    537       emitConstant(DispVal, 1);
    538       return;
    539     }
    540 
    541     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    542     MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
    543     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
    544     return;
    545   }
    546 
    547   // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
    548   assert(IndexReg.getReg() != X86::ESP &&
    549          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    550 
    551   bool ForceDisp32 = false;
    552   bool ForceDisp8  = false;
    553   if (BaseReg == 0) {
    554     // If there is no base register, we emit the special case SIB byte with
    555     // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
    556     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    557     ForceDisp32 = true;
    558   } else if (DispForReloc) {
    559     // Emit the normal disp32 encoding.
    560     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    561     ForceDisp32 = true;
    562   } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
    563     // Emit no displacement ModR/M byte
    564     MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
    565   } else if (isDisp8(DispVal)) {
    566     // Emit the disp8 encoding...
    567     MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
    568     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    569   } else {
    570     // Emit the normal disp32 encoding...
    571     MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
    572   }
    573 
    574   // Calculate what the SS field value should be...
    575   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    576   unsigned SS = SSTable[Scale.getImm()];
    577 
    578   if (BaseReg == 0) {
    579     // Handle the SIB byte for the case where there is no base, see Intel
    580     // Manual 2A, table 2-7. The displacement has already been output.
    581     unsigned IndexRegNo;
    582     if (IndexReg.getReg())
    583       IndexRegNo = getX86RegNum(IndexReg.getReg());
    584     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    585       IndexRegNo = 4;
    586     emitSIBByte(SS, IndexRegNo, 5);
    587   } else {
    588     unsigned BaseRegNo = getX86RegNum(BaseReg);
    589     unsigned IndexRegNo;
    590     if (IndexReg.getReg())
    591       IndexRegNo = getX86RegNum(IndexReg.getReg());
    592     else
    593       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    594     emitSIBByte(SS, IndexRegNo, BaseRegNo);
    595   }
    596 
    597   // Do we need to output a displacement?
    598   if (ForceDisp8) {
    599     emitConstant(DispVal, 1);
    600   } else if (DispVal != 0 || ForceDisp32) {
    601     emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
    602   }
    603 }
    604 
    605 static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
    606                                    unsigned Opcode) {
    607   const MCInstrDesc *Desc = &II->get(Opcode);
    608   MI.setDesc(*Desc);
    609   return Desc;
    610 }
    611 
    612 /// Is16BitMemOperand - Return true if the specified instruction has
    613 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
    614 static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
    615   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    616   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    617 
    618   if ((BaseReg.getReg() != 0 &&
    619        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
    620       (IndexReg.getReg() != 0 &&
    621        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
    622     return true;
    623   return false;
    624 }
    625 
    626 /// Is32BitMemOperand - Return true if the specified instruction has
    627 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    628 static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
    629   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    630   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    631 
    632   if ((BaseReg.getReg() != 0 &&
    633        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    634       (IndexReg.getReg() != 0 &&
    635        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    636     return true;
    637   return false;
    638 }
    639 
    640 /// Is64BitMemOperand - Return true if the specified instruction has
    641 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    642 #ifndef NDEBUG
    643 static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
    644   const MachineOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    645   const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    646 
    647   if ((BaseReg.getReg() != 0 &&
    648        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    649       (IndexReg.getReg() != 0 &&
    650        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    651     return true;
    652   return false;
    653 }
    654 #endif
    655 
    656 template<class CodeEmitter>
    657 void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
    658                                             int MemOperand,
    659                                             const MachineInstr &MI,
    660                                             const MCInstrDesc *Desc) const {
    661   // Emit the lock opcode prefix as needed.
    662   if (Desc->TSFlags & X86II::LOCK)
    663     MCE.emitByte(0xF0);
    664 
    665   // Emit segment override opcode prefix as needed.
    666   emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
    667 
    668   // Emit the repeat opcode prefix as needed.
    669   if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP)
    670     MCE.emitByte(0xF3);
    671 
    672   // Emit the address size opcode prefix as needed.
    673   bool need_address_override;
    674   if (TSFlags & X86II::AdSize) {
    675     need_address_override = true;
    676   } else if (MemOperand == -1) {
    677     need_address_override = false;
    678   } else if (Is64BitMode) {
    679     assert(!Is16BitMemOperand(MI, MemOperand));
    680     need_address_override = Is32BitMemOperand(MI, MemOperand);
    681   } else {
    682     assert(!Is64BitMemOperand(MI, MemOperand));
    683     need_address_override = Is16BitMemOperand(MI, MemOperand);
    684   }
    685 
    686   if (need_address_override)
    687     MCE.emitByte(0x67);
    688 
    689   // Emit the operand size opcode prefix as needed.
    690   if (TSFlags & X86II::OpSize)
    691     MCE.emitByte(0x66);
    692 
    693   bool Need0FPrefix = false;
    694   switch (Desc->TSFlags & X86II::Op0Mask) {
    695     case X86II::TB:  // Two-byte opcode prefix
    696     case X86II::T8:  // 0F 38
    697     case X86II::TA:  // 0F 3A
    698     case X86II::A6:  // 0F A6
    699     case X86II::A7:  // 0F A7
    700       Need0FPrefix = true;
    701       break;
    702     case X86II::REP: break; // already handled.
    703     case X86II::T8XS: // F3 0F 38
    704     case X86II::XS:   // F3 0F
    705       MCE.emitByte(0xF3);
    706       Need0FPrefix = true;
    707       break;
    708     case X86II::T8XD: // F2 0F 38
    709     case X86II::TAXD: // F2 0F 3A
    710     case X86II::XD:   // F2 0F
    711       MCE.emitByte(0xF2);
    712       Need0FPrefix = true;
    713       break;
    714     case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
    715     case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
    716       MCE.emitByte(0xD8+
    717                    (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8)
    718                     >> X86II::Op0Shift));
    719       break; // Two-byte opcode prefix
    720     default: llvm_unreachable("Invalid prefix!");
    721     case 0: break;  // No prefix!
    722   }
    723 
    724   // Handle REX prefix.
    725   if (Is64BitMode) {
    726     if (unsigned REX = determineREX(MI))
    727       MCE.emitByte(0x40 | REX);
    728   }
    729 
    730   // 0x0F escape code must be emitted just before the opcode.
    731   if (Need0FPrefix)
    732     MCE.emitByte(0x0F);
    733 
    734   switch (Desc->TSFlags & X86II::Op0Mask) {
    735     case X86II::T8XD:  // F2 0F 38
    736     case X86II::T8XS:  // F3 0F 38
    737     case X86II::T8:    // 0F 38
    738       MCE.emitByte(0x38);
    739       break;
    740     case X86II::TAXD:  // F2 0F 38
    741     case X86II::TA:    // 0F 3A
    742       MCE.emitByte(0x3A);
    743       break;
    744     case X86II::A6:    // 0F A6
    745       MCE.emitByte(0xA6);
    746       break;
    747     case X86II::A7:    // 0F A7
    748       MCE.emitByte(0xA7);
    749       break;
    750   }
    751 }
    752 
    753 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
    754 // 0-7 and the difference between the 2 groups is given by the REX prefix.
    755 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
    756 // in 1's complement form, example:
    757 //
    758 //  ModRM field => XMM9 => 1
    759 //  VEX.VVVV    => XMM9 => ~9
    760 //
    761 // See table 4-35 of Intel AVX Programming Reference for details.
    762 template<class CodeEmitter>
    763 unsigned char
    764 Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
    765                                              unsigned OpNum) const {
    766   unsigned SrcReg = MI.getOperand(OpNum).getReg();
    767   unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
    768   if (X86II::isX86_64ExtendedReg(SrcReg))
    769     SrcRegNum |= 8;
    770 
    771   // The registers represented through VEX_VVVV should
    772   // be encoded in 1's complement form.
    773   return (~SrcRegNum) & 0xf;
    774 }
    775 
    776 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
    777 template<class CodeEmitter>
    778 void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
    779                                                  int MemOperand,
    780                                                  const MachineInstr &MI) const {
    781   switch (TSFlags & X86II::SegOvrMask) {
    782     default: llvm_unreachable("Invalid segment!");
    783     case 0:
    784       // No segment override, check for explicit one on memory operand.
    785       if (MemOperand != -1) {   // If the instruction has a memory operand.
    786         switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
    787           default: llvm_unreachable("Unknown segment register!");
    788           case 0: break;
    789           case X86::CS: MCE.emitByte(0x2E); break;
    790           case X86::SS: MCE.emitByte(0x36); break;
    791           case X86::DS: MCE.emitByte(0x3E); break;
    792           case X86::ES: MCE.emitByte(0x26); break;
    793           case X86::FS: MCE.emitByte(0x64); break;
    794           case X86::GS: MCE.emitByte(0x65); break;
    795         }
    796       }
    797       break;
    798     case X86II::FS:
    799       MCE.emitByte(0x64);
    800       break;
    801     case X86II::GS:
    802       MCE.emitByte(0x65);
    803       break;
    804   }
    805 }
    806 
    807 template<class CodeEmitter>
    808 void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
    809                                                int MemOperand,
    810                                                const MachineInstr &MI,
    811                                                const MCInstrDesc *Desc) const {
    812   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    813   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
    814   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    815 
    816   // VEX_R: opcode externsion equivalent to REX.R in
    817   // 1's complement (inverted) form
    818   //
    819   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    820   //  0: Same as REX_R=1 (64 bit mode only)
    821   //
    822   unsigned char VEX_R = 0x1;
    823 
    824   // VEX_X: equivalent to REX.X, only used when a
    825   // register is used for index in SIB Byte.
    826   //
    827   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    828   //  0: Same as REX.X=1 (64-bit mode only)
    829   unsigned char VEX_X = 0x1;
    830 
    831   // VEX_B:
    832   //
    833   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    834   //  0: Same as REX_B=1 (64 bit mode only)
    835   //
    836   unsigned char VEX_B = 0x1;
    837 
    838   // VEX_W: opcode specific (use like REX.W, or used for
    839   // opcode extension, or ignored, depending on the opcode byte)
    840   unsigned char VEX_W = 0;
    841 
    842   // XOP: Use XOP prefix byte 0x8f instead of VEX.
    843   unsigned char XOP = 0;
    844 
    845   // VEX_5M (VEX m-mmmmm field):
    846   //
    847   //  0b00000: Reserved for future use
    848   //  0b00001: implied 0F leading opcode
    849   //  0b00010: implied 0F 38 leading opcode bytes
    850   //  0b00011: implied 0F 3A leading opcode bytes
    851   //  0b00100-0b11111: Reserved for future use
    852   //  0b01000: XOP map select - 08h instructions with imm byte
    853   //  0b10001: XOP map select - 09h instructions with no imm byte
    854   unsigned char VEX_5M = 0x1;
    855 
    856   // VEX_4V (VEX vvvv field): a register specifier
    857   // (in 1's complement form) or 1111 if unused.
    858   unsigned char VEX_4V = 0xf;
    859 
    860   // VEX_L (Vector Length):
    861   //
    862   //  0: scalar or 128-bit vector
    863   //  1: 256-bit vector
    864   //
    865   unsigned char VEX_L = 0;
    866 
    867   // VEX_PP: opcode extension providing equivalent
    868   // functionality of a SIMD prefix
    869   //
    870   //  0b00: None
    871   //  0b01: 66
    872   //  0b10: F3
    873   //  0b11: F2
    874   //
    875   unsigned char VEX_PP = 0;
    876 
    877   // Encode the operand size opcode prefix as needed.
    878   if (TSFlags & X86II::OpSize)
    879     VEX_PP = 0x01;
    880 
    881   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
    882     VEX_W = 1;
    883 
    884   if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
    885     XOP = 1;
    886 
    887   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
    888     VEX_L = 1;
    889 
    890   switch (TSFlags & X86II::Op0Mask) {
    891     default: llvm_unreachable("Invalid prefix!");
    892     case X86II::T8:  // 0F 38
    893       VEX_5M = 0x2;
    894       break;
    895     case X86II::TA:  // 0F 3A
    896       VEX_5M = 0x3;
    897       break;
    898     case X86II::T8XS: // F3 0F 38
    899       VEX_PP = 0x2;
    900       VEX_5M = 0x2;
    901       break;
    902     case X86II::T8XD: // F2 0F 38
    903       VEX_PP = 0x3;
    904       VEX_5M = 0x2;
    905       break;
    906     case X86II::TAXD: // F2 0F 3A
    907       VEX_PP = 0x3;
    908       VEX_5M = 0x3;
    909       break;
    910     case X86II::XS:  // F3 0F
    911       VEX_PP = 0x2;
    912       break;
    913     case X86II::XD:  // F2 0F
    914       VEX_PP = 0x3;
    915       break;
    916     case X86II::XOP8:
    917       VEX_5M = 0x8;
    918       break;
    919     case X86II::XOP9:
    920       VEX_5M = 0x9;
    921       break;
    922     case X86II::A6:  // Bypass: Not used by VEX
    923     case X86II::A7:  // Bypass: Not used by VEX
    924     case X86II::TB:  // Bypass: Not used by VEX
    925     case 0:
    926       break;  // No prefix!
    927   }
    928 
    929 
    930   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    931   unsigned NumOps = Desc->getNumOperands();
    932   unsigned CurOp = 0;
    933   if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
    934     ++CurOp;
    935   else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    936     assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    937     // Special case for GATHER with 2 TIED_TO operands
    938     // Skip the first 2 operands: dst, mask_wb
    939     CurOp += 2;
    940   }
    941 
    942   switch (TSFlags & X86II::FormMask) {
    943     case X86II::MRMInitReg:
    944       // Duplicate register.
    945       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    946         VEX_R = 0x0;
    947 
    948       if (HasVEX_4V)
    949         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    950       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    951         VEX_B = 0x0;
    952       if (HasVEX_4VOp3)
    953         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    954       break;
    955     case X86II::MRMDestMem: {
    956       // MRMDestMem instructions forms:
    957       //  MemAddr, src1(ModR/M)
    958       //  MemAddr, src1(VEX_4V), src2(ModR/M)
    959       //  MemAddr, src1(ModR/M), imm8
    960       //
    961       if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
    962         VEX_B = 0x0;
    963       if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
    964         VEX_X = 0x0;
    965 
    966       CurOp = X86::AddrNumOperands;
    967       if (HasVEX_4V)
    968         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    969 
    970       const MachineOperand &MO = MI.getOperand(CurOp);
    971       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    972         VEX_R = 0x0;
    973       break;
    974     }
    975     case X86II::MRMSrcMem:
    976       // MRMSrcMem instructions forms:
    977       //  src1(ModR/M), MemAddr
    978       //  src1(ModR/M), src2(VEX_4V), MemAddr
    979       //  src1(ModR/M), MemAddr, imm8
    980       //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
    981       //
    982       //  FMA4:
    983       //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    984       //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    985       if (X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    986         VEX_R = 0x0;
    987 
    988       if (HasVEX_4V)
    989         VEX_4V = getVEXRegisterEncoding(MI, 1);
    990 
    991       if (X86II::isX86_64ExtendedReg(
    992                           MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    993         VEX_B = 0x0;
    994       if (X86II::isX86_64ExtendedReg(
    995                           MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    996         VEX_X = 0x0;
    997 
    998       if (HasVEX_4VOp3)
    999         VEX_4V = getVEXRegisterEncoding(MI, X86::AddrNumOperands+1);
   1000       break;
   1001     case X86II::MRM0m: case X86II::MRM1m:
   1002     case X86II::MRM2m: case X86II::MRM3m:
   1003     case X86II::MRM4m: case X86II::MRM5m:
   1004     case X86II::MRM6m: case X86II::MRM7m: {
   1005       // MRM[0-9]m instructions forms:
   1006       //  MemAddr
   1007       //  src1(VEX_4V), MemAddr
   1008       if (HasVEX_4V)
   1009         VEX_4V = getVEXRegisterEncoding(MI, 0);
   1010 
   1011       if (X86II::isX86_64ExtendedReg(
   1012                           MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
   1013         VEX_B = 0x0;
   1014       if (X86II::isX86_64ExtendedReg(
   1015                           MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
   1016         VEX_X = 0x0;
   1017       break;
   1018     }
   1019     case X86II::MRMSrcReg:
   1020       // MRMSrcReg instructions forms:
   1021       //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
   1022       //  dst(ModR/M), src1(ModR/M)
   1023       //  dst(ModR/M), src1(ModR/M), imm8
   1024       //
   1025       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1026         VEX_R = 0x0;
   1027       CurOp++;
   1028 
   1029       if (HasVEX_4V)
   1030         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
   1031 
   1032       if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1033         CurOp++;
   1034 
   1035       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1036         VEX_B = 0x0;
   1037       CurOp++;
   1038       if (HasVEX_4VOp3)
   1039         VEX_4V = getVEXRegisterEncoding(MI, CurOp);
   1040       break;
   1041     case X86II::MRMDestReg:
   1042       // MRMDestReg instructions forms:
   1043       //  dst(ModR/M), src(ModR/M)
   1044       //  dst(ModR/M), src(ModR/M), imm8
   1045       //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
   1046       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1047         VEX_B = 0x0;
   1048       CurOp++;
   1049 
   1050       if (HasVEX_4V)
   1051         VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
   1052 
   1053       if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
   1054         VEX_R = 0x0;
   1055       break;
   1056     case X86II::MRM0r: case X86II::MRM1r:
   1057     case X86II::MRM2r: case X86II::MRM3r:
   1058     case X86II::MRM4r: case X86II::MRM5r:
   1059     case X86II::MRM6r: case X86II::MRM7r:
   1060       // MRM0r-MRM7r instructions forms:
   1061       //  dst(VEX_4V), src(ModR/M), imm8
   1062       VEX_4V = getVEXRegisterEncoding(MI, 0);
   1063       if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
   1064         VEX_B = 0x0;
   1065       break;
   1066     default: // RawFrm
   1067       break;
   1068   }
   1069 
   1070   // Emit segment override opcode prefix as needed.
   1071   emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
   1072 
   1073   // VEX opcode prefix can have 2 or 3 bytes
   1074   //
   1075   //  3 bytes:
   1076   //    +-----+ +--------------+ +-------------------+
   1077   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
   1078   //    +-----+ +--------------+ +-------------------+
   1079   //  2 bytes:
   1080   //    +-----+ +-------------------+
   1081   //    | C5h | | R | vvvv | L | pp |
   1082   //    +-----+ +-------------------+
   1083   //
   1084   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
   1085 
   1086   if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
   1087     MCE.emitByte(0xC5);
   1088     MCE.emitByte(LastByte | (VEX_R << 7));
   1089     return;
   1090   }
   1091 
   1092   // 3 byte VEX prefix
   1093   MCE.emitByte(XOP ? 0x8F : 0xC4);
   1094   MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
   1095   MCE.emitByte(LastByte | (VEX_W << 7));
   1096 }
   1097 
   1098 template<class CodeEmitter>
   1099 void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
   1100                                            const MCInstrDesc *Desc) {
   1101   DEBUG(dbgs() << MI);
   1102 
   1103   // If this is a pseudo instruction, lower it.
   1104   switch (Desc->getOpcode()) {
   1105   case X86::ADD16rr_DB:      Desc = UpdateOp(MI, II, X86::OR16rr); break;
   1106   case X86::ADD32rr_DB:      Desc = UpdateOp(MI, II, X86::OR32rr); break;
   1107   case X86::ADD64rr_DB:      Desc = UpdateOp(MI, II, X86::OR64rr); break;
   1108   case X86::ADD16ri_DB:      Desc = UpdateOp(MI, II, X86::OR16ri); break;
   1109   case X86::ADD32ri_DB:      Desc = UpdateOp(MI, II, X86::OR32ri); break;
   1110   case X86::ADD64ri32_DB:    Desc = UpdateOp(MI, II, X86::OR64ri32); break;
   1111   case X86::ADD16ri8_DB:     Desc = UpdateOp(MI, II, X86::OR16ri8); break;
   1112   case X86::ADD32ri8_DB:     Desc = UpdateOp(MI, II, X86::OR32ri8); break;
   1113   case X86::ADD64ri8_DB:     Desc = UpdateOp(MI, II, X86::OR64ri8); break;
   1114   case X86::ACQUIRE_MOV8rm:  Desc = UpdateOp(MI, II, X86::MOV8rm); break;
   1115   case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
   1116   case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
   1117   case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
   1118   case X86::RELEASE_MOV8mr:  Desc = UpdateOp(MI, II, X86::MOV8mr); break;
   1119   case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
   1120   case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
   1121   case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
   1122   }
   1123 
   1124 
   1125   MCE.processDebugLoc(MI.getDebugLoc(), true);
   1126 
   1127   unsigned Opcode = Desc->Opcode;
   1128 
   1129   // If this is a two-address instruction, skip one of the register operands.
   1130   unsigned NumOps = Desc->getNumOperands();
   1131   unsigned CurOp = 0;
   1132   if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
   1133     ++CurOp;
   1134   else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
   1135     assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
   1136     // Special case for GATHER with 2 TIED_TO operands
   1137     // Skip the first 2 operands: dst, mask_wb
   1138     CurOp += 2;
   1139   }
   1140 
   1141   uint64_t TSFlags = Desc->TSFlags;
   1142 
   1143   // Is this instruction encoded using the AVX VEX prefix?
   1144   bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
   1145   // It uses the VEX.VVVV field?
   1146   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
   1147   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
   1148   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
   1149   const unsigned MemOp4_I8IMMOperand = 2;
   1150 
   1151   // Determine where the memory operand starts, if present.
   1152   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
   1153   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1154 
   1155   if (!HasVEXPrefix)
   1156     emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
   1157   else
   1158     emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
   1159 
   1160   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
   1161   switch (TSFlags & X86II::FormMask) {
   1162   default:
   1163     llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
   1164   case X86II::Pseudo:
   1165     // Remember the current PC offset, this is the PIC relocation
   1166     // base address.
   1167     switch (Opcode) {
   1168     default:
   1169       llvm_unreachable("pseudo instructions should be removed before code"
   1170                        " emission");
   1171     // Do nothing for Int_MemBarrier - it's just a comment.  Add a debug
   1172     // to make it slightly easier to see.
   1173     case X86::Int_MemBarrier:
   1174       DEBUG(dbgs() << "#MEMBARRIER\n");
   1175       break;
   1176 
   1177     case TargetOpcode::INLINEASM:
   1178       // We allow inline assembler nodes with empty bodies - they can
   1179       // implicitly define registers, which is ok for JIT.
   1180       if (MI.getOperand(0).getSymbolName()[0])
   1181         report_fatal_error("JIT does not support inline asm!");
   1182       break;
   1183     case TargetOpcode::PROLOG_LABEL:
   1184     case TargetOpcode::GC_LABEL:
   1185     case TargetOpcode::EH_LABEL:
   1186       MCE.emitLabel(MI.getOperand(0).getMCSymbol());
   1187       break;
   1188 
   1189     case TargetOpcode::IMPLICIT_DEF:
   1190     case TargetOpcode::KILL:
   1191       break;
   1192     case X86::MOVPC32r: {
   1193       // This emits the "call" portion of this pseudo instruction.
   1194       MCE.emitByte(BaseOpcode);
   1195       emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
   1196       // Remember PIC base.
   1197       PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
   1198       X86JITInfo *JTI = TM.getJITInfo();
   1199       JTI->setPICBase(MCE.getCurrentPCValue());
   1200       break;
   1201     }
   1202     }
   1203     CurOp = NumOps;
   1204     break;
   1205   case X86II::RawFrm: {
   1206     MCE.emitByte(BaseOpcode);
   1207 
   1208     if (CurOp == NumOps)
   1209       break;
   1210 
   1211     const MachineOperand &MO = MI.getOperand(CurOp++);
   1212 
   1213     DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
   1214     DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
   1215     DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
   1216     DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
   1217     DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
   1218 
   1219     if (MO.isMBB()) {
   1220       emitPCRelativeBlockAddress(MO.getMBB());
   1221       break;
   1222     }
   1223 
   1224     if (MO.isGlobal()) {
   1225       emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
   1226                         MO.getOffset(), 0);
   1227       break;
   1228     }
   1229 
   1230     if (MO.isSymbol()) {
   1231       emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
   1232       break;
   1233     }
   1234 
   1235     // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
   1236     if (MO.isJTI()) {
   1237       emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
   1238       break;
   1239     }
   1240 
   1241     assert(MO.isImm() && "Unknown RawFrm operand!");
   1242     if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
   1243       // Fix up immediate operand for pc relative calls.
   1244       intptr_t Imm = (intptr_t)MO.getImm();
   1245       Imm = Imm - MCE.getCurrentPCValue() - 4;
   1246       emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
   1247     } else
   1248       emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
   1249     break;
   1250   }
   1251 
   1252   case X86II::AddRegFrm: {
   1253     MCE.emitByte(BaseOpcode +
   1254                  getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1255 
   1256     if (CurOp == NumOps)
   1257       break;
   1258 
   1259     const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1260     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1261     if (MO1.isImm()) {
   1262       emitConstant(MO1.getImm(), Size);
   1263       break;
   1264     }
   1265 
   1266     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1267       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1268     if (Opcode == X86::MOV32ri64)
   1269       rt = X86::reloc_absolute_word;  // FIXME: add X86II flag?
   1270     // This should not occur on Darwin for relocatable objects.
   1271     if (Opcode == X86::MOV64ri)
   1272       rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1273     if (MO1.isGlobal()) {
   1274       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
   1275       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1276                         Indirect);
   1277     } else if (MO1.isSymbol())
   1278       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1279     else if (MO1.isCPI())
   1280       emitConstPoolAddress(MO1.getIndex(), rt);
   1281     else if (MO1.isJTI())
   1282       emitJumpTableAddress(MO1.getIndex(), rt);
   1283     break;
   1284   }
   1285 
   1286   case X86II::MRMDestReg: {
   1287     MCE.emitByte(BaseOpcode);
   1288 
   1289     unsigned SrcRegNum = CurOp+1;
   1290     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1291       SrcRegNum++;
   1292 
   1293     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
   1294                      getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
   1295     CurOp = SrcRegNum + 1;
   1296     break;
   1297   }
   1298   case X86II::MRMDestMem: {
   1299     MCE.emitByte(BaseOpcode);
   1300 
   1301     unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
   1302     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1303       SrcRegNum++;
   1304     emitMemModRMByte(MI, CurOp,
   1305                      getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
   1306     CurOp = SrcRegNum + 1;
   1307     break;
   1308   }
   1309 
   1310   case X86II::MRMSrcReg: {
   1311     MCE.emitByte(BaseOpcode);
   1312 
   1313     unsigned SrcRegNum = CurOp+1;
   1314     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1315       ++SrcRegNum;
   1316 
   1317     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
   1318       ++SrcRegNum;
   1319 
   1320     emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
   1321                      getX86RegNum(MI.getOperand(CurOp).getReg()));
   1322     // 2 operands skipped with HasMemOp4, compensate accordingly
   1323     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
   1324     if (HasVEX_4VOp3)
   1325       ++CurOp;
   1326     break;
   1327   }
   1328   case X86II::MRMSrcMem: {
   1329     int AddrOperands = X86::AddrNumOperands;
   1330     unsigned FirstMemOp = CurOp+1;
   1331     if (HasVEX_4V) {
   1332       ++AddrOperands;
   1333       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1334     }
   1335     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1336       ++FirstMemOp;
   1337 
   1338     MCE.emitByte(BaseOpcode);
   1339 
   1340     intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
   1341       X86II::getSizeOfImm(Desc->TSFlags) : 0;
   1342     emitMemModRMByte(MI, FirstMemOp,
   1343                      getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
   1344     CurOp += AddrOperands + 1;
   1345     if (HasVEX_4VOp3)
   1346       ++CurOp;
   1347     break;
   1348   }
   1349 
   1350   case X86II::MRM0r: case X86II::MRM1r:
   1351   case X86II::MRM2r: case X86II::MRM3r:
   1352   case X86II::MRM4r: case X86II::MRM5r:
   1353   case X86II::MRM6r: case X86II::MRM7r: {
   1354     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1355       ++CurOp;
   1356     MCE.emitByte(BaseOpcode);
   1357     emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
   1358                      (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r);
   1359 
   1360     if (CurOp == NumOps)
   1361       break;
   1362 
   1363     const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1364     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1365     if (MO1.isImm()) {
   1366       emitConstant(MO1.getImm(), Size);
   1367       break;
   1368     }
   1369 
   1370     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1371       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1372     if (Opcode == X86::MOV64ri32)
   1373       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
   1374     if (MO1.isGlobal()) {
   1375       bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
   1376       emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1377                         Indirect);
   1378     } else if (MO1.isSymbol())
   1379       emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1380     else if (MO1.isCPI())
   1381       emitConstPoolAddress(MO1.getIndex(), rt);
   1382     else if (MO1.isJTI())
   1383       emitJumpTableAddress(MO1.getIndex(), rt);
   1384     break;
   1385   }
   1386 
   1387   case X86II::MRM0m: case X86II::MRM1m:
   1388   case X86II::MRM2m: case X86II::MRM3m:
   1389   case X86II::MRM4m: case X86II::MRM5m:
   1390   case X86II::MRM6m: case X86II::MRM7m: {
   1391     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1392       ++CurOp;
   1393     intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
   1394       (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
   1395           X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
   1396 
   1397     MCE.emitByte(BaseOpcode);
   1398     emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m,
   1399                      PCAdj);
   1400     CurOp += X86::AddrNumOperands;
   1401 
   1402     if (CurOp == NumOps)
   1403       break;
   1404 
   1405     const MachineOperand &MO = MI.getOperand(CurOp++);
   1406     unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
   1407     if (MO.isImm()) {
   1408       emitConstant(MO.getImm(), Size);
   1409       break;
   1410     }
   1411 
   1412     unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1413       : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1414     if (Opcode == X86::MOV64mi32)
   1415       rt = X86::reloc_absolute_word_sext;  // FIXME: add X86II flag?
   1416     if (MO.isGlobal()) {
   1417       bool Indirect = gvNeedsNonLazyPtr(MO, TM);
   1418       emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
   1419                         Indirect);
   1420     } else if (MO.isSymbol())
   1421       emitExternalSymbolAddress(MO.getSymbolName(), rt);
   1422     else if (MO.isCPI())
   1423       emitConstPoolAddress(MO.getIndex(), rt);
   1424     else if (MO.isJTI())
   1425       emitJumpTableAddress(MO.getIndex(), rt);
   1426     break;
   1427   }
   1428 
   1429   case X86II::MRMInitReg:
   1430     MCE.emitByte(BaseOpcode);
   1431     // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
   1432     emitRegModRMByte(MI.getOperand(CurOp).getReg(),
   1433                      getX86RegNum(MI.getOperand(CurOp).getReg()));
   1434     ++CurOp;
   1435     break;
   1436 
   1437   case X86II::MRM_C1:
   1438     MCE.emitByte(BaseOpcode);
   1439     MCE.emitByte(0xC1);
   1440     break;
   1441   case X86II::MRM_C8:
   1442     MCE.emitByte(BaseOpcode);
   1443     MCE.emitByte(0xC8);
   1444     break;
   1445   case X86II::MRM_C9:
   1446     MCE.emitByte(BaseOpcode);
   1447     MCE.emitByte(0xC9);
   1448     break;
   1449   case X86II::MRM_CA:
   1450     MCE.emitByte(BaseOpcode);
   1451     MCE.emitByte(0xCA);
   1452     break;
   1453   case X86II::MRM_CB:
   1454     MCE.emitByte(BaseOpcode);
   1455     MCE.emitByte(0xCB);
   1456     break;
   1457   case X86II::MRM_E8:
   1458     MCE.emitByte(BaseOpcode);
   1459     MCE.emitByte(0xE8);
   1460     break;
   1461   case X86II::MRM_F0:
   1462     MCE.emitByte(BaseOpcode);
   1463     MCE.emitByte(0xF0);
   1464     break;
   1465   }
   1466 
   1467   while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1468     // The last source register of a 4 operand instruction in AVX is encoded
   1469     // in bits[7:4] of a immediate byte.
   1470     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
   1471       const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
   1472                                                          : CurOp);
   1473       ++CurOp;
   1474       unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
   1475       if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1476         RegNum |= 1 << 7;
   1477       // If there is an additional 5th operand it must be an immediate, which
   1478       // is encoded in bits[3:0]
   1479       if (CurOp != NumOps) {
   1480         const MachineOperand &MIMM = MI.getOperand(CurOp++);
   1481         if (MIMM.isImm()) {
   1482           unsigned Val = MIMM.getImm();
   1483           assert(Val < 16 && "Immediate operand value out of range");
   1484           RegNum |= Val;
   1485         }
   1486       }
   1487       emitConstant(RegNum, 1);
   1488     } else {
   1489       emitConstant(MI.getOperand(CurOp++).getImm(),
   1490                    X86II::getSizeOfImm(Desc->TSFlags));
   1491     }
   1492   }
   1493 
   1494   if (!MI.isVariadic() && CurOp != NumOps) {
   1495 #ifndef NDEBUG
   1496     dbgs() << "Cannot encode all operands of: " << MI << "\n";
   1497 #endif
   1498     llvm_unreachable(0);
   1499   }
   1500 
   1501   MCE.processDebugLoc(MI.getDebugLoc(), false);
   1502 }
   1503