Home | History | Annotate | Download | only in X86
      1 //===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 jump, return, call, and related instructions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 //  Control Flow Instructions.
     16 //
     17 
     18 // Return instructions.
     19 //
     20 // The X86retflag return instructions are variadic because we may add ST0 and
     21 // ST1 arguments when returning values on the x87 stack.
     22 let isTerminator = 1, isReturn = 1, isBarrier = 1,
     23     hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in {
     24   def RET    : I   <0xC3, RawFrm, (outs), (ins variable_ops),
     25                     "ret",
     26                     [(X86retflag 0)], IIC_RET>;
     27   def RETW   : I   <0xC3, RawFrm, (outs), (ins),
     28                     "ret{w}",
     29                     [], IIC_RET>, OpSize;
     30   def RETI   : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops),
     31                     "ret\t$amt",
     32                     [(X86retflag timm:$amt)], IIC_RET_IMM>;
     33   def RETIW  : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt),
     34                     "ret{w}\t$amt",
     35                     [], IIC_RET_IMM>, OpSize;
     36   def LRETL  : I   <0xCB, RawFrm, (outs), (ins),
     37                     "{l}ret{l|f}", [], IIC_RET>;
     38   def LRETW  : I   <0xCB, RawFrm, (outs), (ins),
     39                     "{l}ret{w|f}", [], IIC_RET>, OpSize;
     40   def LRETQ  : RI  <0xCB, RawFrm, (outs), (ins),
     41                     "{l}ret{q|f}", [], IIC_RET>;
     42   def LRETI  : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
     43                     "{l}ret{l|f}\t$amt", [], IIC_RET>;
     44   def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt),
     45                     "{l}ret{w|f}\t$amt", [], IIC_RET>, OpSize;
     46 }
     47 
     48 // Unconditional branches.
     49 let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
     50   def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget:$dst),
     51                         "jmp\t$dst", [(br bb:$dst)], IIC_JMP_REL>;
     52   def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst),
     53                        "jmp\t$dst", [], IIC_JMP_REL>;
     54   // FIXME : Intel syntax for JMP64pcrel32 such that it is not ambiguious
     55   // with JMP_1.
     56   def JMP64pcrel32 : I<0xE9, RawFrm, (outs), (ins brtarget:$dst),
     57                        "jmpq\t$dst", [], IIC_JMP_REL>;
     58 }
     59 
     60 // Conditional Branches.
     61 let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump] in {
     62   multiclass ICBr<bits<8> opc1, bits<8> opc4, string asm, PatFrag Cond> {
     63     def _1 : Ii8PCRel <opc1, RawFrm, (outs), (ins brtarget8:$dst), asm, [],
     64                        IIC_Jcc>;
     65     def _4 : Ii32PCRel<opc4, RawFrm, (outs), (ins brtarget:$dst), asm,
     66                        [(X86brcond bb:$dst, Cond, EFLAGS)], IIC_Jcc>, TB;
     67   }
     68 }
     69 
     70 defm JO  : ICBr<0x70, 0x80, "jo\t$dst" , X86_COND_O>;
     71 defm JNO : ICBr<0x71, 0x81, "jno\t$dst" , X86_COND_NO>;
     72 defm JB  : ICBr<0x72, 0x82, "jb\t$dst" , X86_COND_B>;
     73 defm JAE : ICBr<0x73, 0x83, "jae\t$dst", X86_COND_AE>;
     74 defm JE  : ICBr<0x74, 0x84, "je\t$dst" , X86_COND_E>;
     75 defm JNE : ICBr<0x75, 0x85, "jne\t$dst", X86_COND_NE>;
     76 defm JBE : ICBr<0x76, 0x86, "jbe\t$dst", X86_COND_BE>;
     77 defm JA  : ICBr<0x77, 0x87, "ja\t$dst" , X86_COND_A>;
     78 defm JS  : ICBr<0x78, 0x88, "js\t$dst" , X86_COND_S>;
     79 defm JNS : ICBr<0x79, 0x89, "jns\t$dst", X86_COND_NS>;
     80 defm JP  : ICBr<0x7A, 0x8A, "jp\t$dst" , X86_COND_P>;
     81 defm JNP : ICBr<0x7B, 0x8B, "jnp\t$dst", X86_COND_NP>;
     82 defm JL  : ICBr<0x7C, 0x8C, "jl\t$dst" , X86_COND_L>;
     83 defm JGE : ICBr<0x7D, 0x8D, "jge\t$dst", X86_COND_GE>;
     84 defm JLE : ICBr<0x7E, 0x8E, "jle\t$dst", X86_COND_LE>;
     85 defm JG  : ICBr<0x7F, 0x8F, "jg\t$dst" , X86_COND_G>;
     86 
     87 // jcx/jecx/jrcx instructions.
     88 let isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in {
     89   // These are the 32-bit versions of this instruction for the asmparser.  In
     90   // 32-bit mode, the address size prefix is jcxz and the unprefixed version is
     91   // jecxz.
     92   let Uses = [CX] in
     93     def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
     94                         "jcxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In32BitMode]>;
     95   let Uses = [ECX] in
     96     def JECXZ_32 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
     97                            "jecxz\t$dst", [], IIC_JCXZ>, Requires<[In32BitMode]>;
     98 
     99   // J*CXZ instruction: 64-bit versions of this instruction for the asmparser.
    100   // In 64-bit mode, the address size prefix is jecxz and the unprefixed version
    101   // is jrcxz.
    102   let Uses = [ECX] in
    103     def JECXZ_64 : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
    104                             "jecxz\t$dst", [], IIC_JCXZ>, AdSize, Requires<[In64BitMode]>;
    105   let Uses = [RCX] in
    106     def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst),
    107                            "jrcxz\t$dst", [], IIC_JCXZ>, Requires<[In64BitMode]>;
    108 }
    109 
    110 // Indirect branches
    111 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
    112   def JMP32r     : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst",
    113                      [(brind GR32:$dst)], IIC_JMP_REG>, Requires<[In32BitMode]>,
    114                    Sched<[WriteJump]>;
    115   def JMP32m     : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst",
    116                      [(brind (loadi32 addr:$dst))], IIC_JMP_MEM>,
    117                    Requires<[In32BitMode]>, Sched<[WriteJumpLd]>;
    118 
    119   def JMP64r     : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst",
    120                      [(brind GR64:$dst)], IIC_JMP_REG>, Requires<[In64BitMode]>,
    121                    Sched<[WriteJump]>;
    122   def JMP64m     : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst",
    123                      [(brind (loadi64 addr:$dst))], IIC_JMP_MEM>,
    124                    Requires<[In64BitMode]>, Sched<[WriteJumpLd]>;
    125 
    126   def FARJMP16i  : Iseg16<0xEA, RawFrmImm16, (outs),
    127                           (ins i16imm:$off, i16imm:$seg),
    128                           "ljmp{w}\t{$seg, $off|$off, $seg}", [],
    129                           IIC_JMP_FAR_PTR>, OpSize, Sched<[WriteJump]>;
    130   def FARJMP32i  : Iseg32<0xEA, RawFrmImm16, (outs),
    131                           (ins i32imm:$off, i16imm:$seg),
    132                           "ljmp{l}\t{$seg, $off|$off, $seg}", [],
    133                           IIC_JMP_FAR_PTR>, Sched<[WriteJump]>;
    134   def FARJMP64   : RI<0xFF, MRM5m, (outs), (ins opaque80mem:$dst),
    135                       "ljmp{q}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
    136                    Sched<[WriteJump]>;
    137 
    138   def FARJMP16m  : I<0xFF, MRM5m, (outs), (ins opaque32mem:$dst),
    139                      "ljmp{w}\t{*}$dst", [], IIC_JMP_FAR_MEM>, OpSize,
    140                    Sched<[WriteJumpLd]>;
    141   def FARJMP32m  : I<0xFF, MRM5m, (outs), (ins opaque48mem:$dst),
    142                      "ljmp{l}\t{*}$dst", [], IIC_JMP_FAR_MEM>,
    143                    Sched<[WriteJumpLd]>;
    144 }
    145 
    146 
    147 // Loop instructions
    148 let SchedRW = [WriteJump] in {
    149 def LOOP   : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", [], IIC_LOOP>;
    150 def LOOPE  : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", [], IIC_LOOPE>;
    151 def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", [], IIC_LOOPNE>;
    152 }
    153 
    154 //===----------------------------------------------------------------------===//
    155 //  Call Instructions...
    156 //
    157 let isCall = 1 in
    158   // All calls clobber the non-callee saved registers. ESP is marked as
    159   // a use to prevent stack-pointer assignments that appear immediately
    160   // before calls from potentially appearing dead. Uses for argument
    161   // registers are added manually.
    162   let Uses = [ESP] in {
    163     def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm,
    164                            (outs), (ins i32imm_pcrel:$dst),
    165                            "call{l}\t$dst", [], IIC_CALL_RI>,
    166                       Requires<[In32BitMode]>, Sched<[WriteJump]>;
    167     def CALL32r     : I<0xFF, MRM2r, (outs), (ins GR32:$dst),
    168                         "call{l}\t{*}$dst", [(X86call GR32:$dst)], IIC_CALL_RI>,
    169                       Requires<[In32BitMode]>, Sched<[WriteJump]>;
    170     def CALL32m     : I<0xFF, MRM2m, (outs), (ins i32mem:$dst),
    171                         "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))],
    172                         IIC_CALL_MEM>,
    173                       Requires<[In32BitMode,FavorMemIndirectCall]>,
    174                       Sched<[WriteJumpLd]>;
    175 
    176     def FARCALL16i  : Iseg16<0x9A, RawFrmImm16, (outs),
    177                              (ins i16imm:$off, i16imm:$seg),
    178                              "lcall{w}\t{$seg, $off|$off, $seg}", [],
    179                              IIC_CALL_FAR_PTR>, OpSize, Sched<[WriteJump]>;
    180     def FARCALL32i  : Iseg32<0x9A, RawFrmImm16, (outs),
    181                              (ins i32imm:$off, i16imm:$seg),
    182                              "lcall{l}\t{$seg, $off|$off, $seg}", [],
    183                              IIC_CALL_FAR_PTR>, Sched<[WriteJump]>;
    184 
    185     def FARCALL16m  : I<0xFF, MRM3m, (outs), (ins opaque32mem:$dst),
    186                         "lcall{w}\t{*}$dst", [], IIC_CALL_FAR_MEM>, OpSize,
    187                       Sched<[WriteJumpLd]>;
    188     def FARCALL32m  : I<0xFF, MRM3m, (outs), (ins opaque48mem:$dst),
    189                         "lcall{l}\t{*}$dst", [], IIC_CALL_FAR_MEM>,
    190                       Sched<[WriteJumpLd]>;
    191 
    192     // callw for 16 bit code for the assembler.
    193     let isAsmParserOnly = 1 in
    194       def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm,
    195                        (outs), (ins i16imm_pcrel:$dst),
    196                        "callw\t$dst", []>, OpSize;
    197   }
    198 
    199 
    200 // Tail call stuff.
    201 
    202 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    203     isCodeGenOnly = 1, SchedRW = [WriteJumpLd] in
    204   let Uses = [ESP] in {
    205   def TCRETURNdi : PseudoI<(outs),
    206                      (ins i32imm_pcrel:$dst, i32imm:$offset), []>;
    207   def TCRETURNri : PseudoI<(outs),
    208                      (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
    209   let mayLoad = 1 in
    210   def TCRETURNmi : PseudoI<(outs),
    211                      (ins i32mem_TC:$dst, i32imm:$offset), []>;
    212 
    213   // FIXME: The should be pseudo instructions that are lowered when going to
    214   // mcinst.
    215   def TAILJMPd : Ii32PCRel<0xE9, RawFrm, (outs),
    216                            (ins i32imm_pcrel:$dst),
    217                            "jmp\t$dst  # TAILCALL",
    218                            [], IIC_JMP_REL>;
    219   def TAILJMPr : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
    220                    "", [], IIC_JMP_REG>;  // FIXME: Remove encoding when JIT is dead.
    221   let mayLoad = 1 in
    222   def TAILJMPm : I<0xFF, MRM4m, (outs), (ins i32mem_TC:$dst),
    223                    "jmp{l}\t{*}$dst  # TAILCALL", [], IIC_JMP_MEM>;
    224 }
    225 
    226 
    227 //===----------------------------------------------------------------------===//
    228 //  Call Instructions...
    229 //
    230 
    231 // RSP is marked as a use to prevent stack-pointer assignments that appear
    232 // immediately before calls from potentially appearing dead. Uses for argument
    233 // registers are added manually.
    234 let isCall = 1, Uses = [RSP], SchedRW = [WriteJump] in {
    235   // NOTE: this pattern doesn't match "X86call imm", because we do not know
    236   // that the offset between an arbitrary immediate and the call will fit in
    237   // the 32-bit pcrel field that we have.
    238   def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm,
    239                         (outs), (ins i64i32imm_pcrel:$dst),
    240                         "call{q}\t$dst", [], IIC_CALL_RI>,
    241                       Requires<[In64BitMode]>;
    242   def CALL64r       : I<0xFF, MRM2r, (outs), (ins GR64:$dst),
    243                         "call{q}\t{*}$dst", [(X86call GR64:$dst)],
    244                         IIC_CALL_RI>,
    245                       Requires<[In64BitMode]>;
    246   def CALL64m       : I<0xFF, MRM2m, (outs), (ins i64mem:$dst),
    247                         "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))],
    248                         IIC_CALL_MEM>,
    249                       Requires<[In64BitMode,FavorMemIndirectCall]>;
    250 
    251   def FARCALL64   : RI<0xFF, MRM3m, (outs), (ins opaque80mem:$dst),
    252                        "lcall{q}\t{*}$dst", [], IIC_CALL_FAR_MEM>;
    253 }
    254 
    255 let isCall = 1, isCodeGenOnly = 1 in
    256   // __chkstk(MSVC):     clobber R10, R11 and EFLAGS.
    257   // ___chkstk(Mingw64): clobber R10, R11, RAX and EFLAGS, and update RSP.
    258   let Defs = [RAX, R10, R11, RSP, EFLAGS],
    259       Uses = [RSP] in {
    260     def W64ALLOCA : Ii32PCRel<0xE8, RawFrm,
    261                       (outs), (ins i64i32imm_pcrel:$dst),
    262                       "call{q}\t$dst", [], IIC_CALL_RI>,
    263                     Requires<[IsWin64]>, Sched<[WriteJump]>;
    264   }
    265 
    266 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1,
    267     isCodeGenOnly = 1, Uses = [RSP], usesCustomInserter = 1,
    268     SchedRW = [WriteJump] in {
    269   def TCRETURNdi64 : PseudoI<(outs),
    270                       (ins i64i32imm_pcrel:$dst, i32imm:$offset),
    271                       []>;
    272   def TCRETURNri64 : PseudoI<(outs),
    273                       (ins ptr_rc_tailcall:$dst, i32imm:$offset), []>;
    274   let mayLoad = 1 in
    275   def TCRETURNmi64 : PseudoI<(outs),
    276                        (ins i64mem_TC:$dst, i32imm:$offset), []>;
    277 
    278   def TAILJMPd64 : Ii32PCRel<0xE9, RawFrm, (outs),
    279                                       (ins i64i32imm_pcrel:$dst),
    280                    "jmp\t$dst  # TAILCALL", [], IIC_JMP_REL>;
    281   def TAILJMPr64 : I<0xFF, MRM4r, (outs), (ins ptr_rc_tailcall:$dst),
    282                      "jmp{q}\t{*}$dst  # TAILCALL", [], IIC_JMP_MEM>;
    283 
    284   let mayLoad = 1 in
    285   def TAILJMPm64 : I<0xFF, MRM4m, (outs), (ins i64mem_TC:$dst),
    286                      "jmp{q}\t{*}$dst  # TAILCALL", [], IIC_JMP_MEM>;
    287 }
    288