Home | History | Annotate | Download | only in X86
      1 //=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Haswell to support instruction
     11 // scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 def HaswellModel : SchedMachineModel {
     16   // All x86 instructions are modeled as a single micro-op, and HW can decode 4
     17   // instructions per cycle.
     18   let IssueWidth = 4;
     19   let MicroOpBufferSize = 192; // Based on the reorder buffer.
     20   let LoadLatency = 4;
     21   let MispredictPenalty = 16;
     22 }
     23 
     24 let SchedModel = HaswellModel in {
     25 
     26 // Haswell can issue micro-ops to 8 different ports in one cycle.
     27 
     28 // Ports 0, 1, 5, 6 and 7 handle all computation.
     29 // Port 4 gets the data half of stores. Store data can be available later than
     30 // the store address, but since we don't model the latency of stores, we can
     31 // ignore that.
     32 // Ports 2 and 3 are identical. They handle loads and the address half of
     33 // stores. Port 7 can handle address calculations.
     34 def HWPort0 : ProcResource<1>;
     35 def HWPort1 : ProcResource<1>;
     36 def HWPort2 : ProcResource<1>;
     37 def HWPort3 : ProcResource<1>;
     38 def HWPort4 : ProcResource<1>;
     39 def HWPort5 : ProcResource<1>;
     40 def HWPort6 : ProcResource<1>;
     41 def HWPort7 : ProcResource<1>;
     42 
     43 // Many micro-ops are capable of issuing on multiple ports.
     44 def HWPort23  : ProcResGroup<[HWPort2, HWPort3]>;
     45 def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
     46 def HWPort05  : ProcResGroup<[HWPort0, HWPort5]>;
     47 def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
     48 def HWPort15  : ProcResGroup<[HWPort1, HWPort5]>;
     49 def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
     50 def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
     51 
     52 // 60 Entry Unified Scheduler
     53 def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4,
     54                               HWPort5, HWPort6, HWPort7]> {
     55   let BufferSize=60;
     56 }
     57 
     58 // Integer division issued on port 0.
     59 def HWDivider : ProcResource<1>;
     60 
     61 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
     62 // cycles after the memory operand.
     63 def : ReadAdvance<ReadAfterLd, 4>;
     64 
     65 // Many SchedWrites are defined in pairs with and without a folded load.
     66 // Instructions with folded loads are usually micro-fused, so they only appear
     67 // as two micro-ops when queued in the reservation station.
     68 // This multiclass defines the resource usage for variants with and without
     69 // folded loads.
     70 multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
     71                           ProcResourceKind ExePort,
     72                           int Lat> {
     73   // Register variant is using a single cycle on ExePort.
     74   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
     75 
     76   // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
     77   // latency.
     78   def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
     79      let Latency = !add(Lat, 4);
     80   }
     81 }
     82 
     83 // A folded store needs a cycle on port 4 for the store data, but it does not
     84 // need an extra port 2/3 cycle to recompute the address.
     85 def : WriteRes<WriteRMW, [HWPort4]>;
     86 
     87 def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
     88 def : WriteRes<WriteLoad,  [HWPort23]> { let Latency = 4; }
     89 def : WriteRes<WriteMove,  [HWPort0156]>;
     90 def : WriteRes<WriteZero,  []>;
     91 
     92 defm : HWWriteResPair<WriteALU,   HWPort0156, 1>;
     93 defm : HWWriteResPair<WriteIMul,  HWPort1,   3>;
     94 def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
     95 defm : HWWriteResPair<WriteShift, HWPort056,  1>;
     96 defm : HWWriteResPair<WriteJump,  HWPort5,   1>;
     97 
     98 // This is for simple LEAs with one or two input operands.
     99 // The complex ones can only execute on port 1, and they require two cycles on
    100 // the port to read all inputs. We don't model that.
    101 def : WriteRes<WriteLEA, [HWPort15]>;
    102 
    103 // This is quite rough, latency depends on the dividend.
    104 def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
    105   let Latency = 25;
    106   let ResourceCycles = [1, 10];
    107 }
    108 def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
    109   let Latency = 29;
    110   let ResourceCycles = [1, 1, 10];
    111 }
    112 
    113 // Scalar and vector floating point.
    114 defm : HWWriteResPair<WriteFAdd,   HWPort1, 3>;
    115 defm : HWWriteResPair<WriteFMul,   HWPort0, 5>;
    116 defm : HWWriteResPair<WriteFDiv,   HWPort0, 12>; // 10-14 cycles.
    117 defm : HWWriteResPair<WriteFRcp,   HWPort0, 5>;
    118 defm : HWWriteResPair<WriteFSqrt,  HWPort0, 15>;
    119 defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
    120 defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
    121 defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
    122 
    123 // Vector integer operations.
    124 defm : HWWriteResPair<WriteVecShift, HWPort05,  1>;
    125 defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
    126 defm : HWWriteResPair<WriteVecALU,   HWPort15,  1>;
    127 defm : HWWriteResPair<WriteVecIMul,  HWPort0,   5>;
    128 defm : HWWriteResPair<WriteShuffle,  HWPort15,  1>;
    129 
    130 def : WriteRes<WriteSystem,     [HWPort0156]> { let Latency = 100; }
    131 def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
    132 } // SchedModel
    133