1 //=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the machine model for Haswell to support instruction 11 // scheduling and other instruction cost heuristics. 12 // 13 //===----------------------------------------------------------------------===// 14 15 def HaswellModel : SchedMachineModel { 16 // All x86 instructions are modeled as a single micro-op, and HW can decode 4 17 // instructions per cycle. 18 let IssueWidth = 4; 19 let MicroOpBufferSize = 192; // Based on the reorder buffer. 20 let LoadLatency = 4; 21 let MispredictPenalty = 16; 22 } 23 24 let SchedModel = HaswellModel in { 25 26 // Haswell can issue micro-ops to 8 different ports in one cycle. 27 28 // Ports 0, 1, 5, 6 and 7 handle all computation. 29 // Port 4 gets the data half of stores. Store data can be available later than 30 // the store address, but since we don't model the latency of stores, we can 31 // ignore that. 32 // Ports 2 and 3 are identical. They handle loads and the address half of 33 // stores. Port 7 can handle address calculations. 34 def HWPort0 : ProcResource<1>; 35 def HWPort1 : ProcResource<1>; 36 def HWPort2 : ProcResource<1>; 37 def HWPort3 : ProcResource<1>; 38 def HWPort4 : ProcResource<1>; 39 def HWPort5 : ProcResource<1>; 40 def HWPort6 : ProcResource<1>; 41 def HWPort7 : ProcResource<1>; 42 43 // Many micro-ops are capable of issuing on multiple ports. 44 def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; 45 def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; 46 def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; 47 def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>; 48 def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; 49 def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; 50 def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; 51 52 // 60 Entry Unified Scheduler 53 def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4, 54 HWPort5, HWPort6, HWPort7]> { 55 let BufferSize=60; 56 } 57 58 // Integer division issued on port 0. 59 def HWDivider : ProcResource<1>; 60 61 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 62 // cycles after the memory operand. 63 def : ReadAdvance<ReadAfterLd, 4>; 64 65 // Many SchedWrites are defined in pairs with and without a folded load. 66 // Instructions with folded loads are usually micro-fused, so they only appear 67 // as two micro-ops when queued in the reservation station. 68 // This multiclass defines the resource usage for variants with and without 69 // folded loads. 70 multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, 71 ProcResourceKind ExePort, 72 int Lat> { 73 // Register variant is using a single cycle on ExePort. 74 def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } 75 76 // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the 77 // latency. 78 def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { 79 let Latency = !add(Lat, 4); 80 } 81 } 82 83 // A folded store needs a cycle on port 4 for the store data, but it does not 84 // need an extra port 2/3 cycle to recompute the address. 85 def : WriteRes<WriteRMW, [HWPort4]>; 86 87 def : WriteRes<WriteStore, [HWPort237, HWPort4]>; 88 def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } 89 def : WriteRes<WriteMove, [HWPort0156]>; 90 def : WriteRes<WriteZero, []>; 91 92 defm : HWWriteResPair<WriteALU, HWPort0156, 1>; 93 defm : HWWriteResPair<WriteIMul, HWPort1, 3>; 94 def : WriteRes<WriteIMulH, []> { let Latency = 3; } 95 defm : HWWriteResPair<WriteShift, HWPort056, 1>; 96 defm : HWWriteResPair<WriteJump, HWPort5, 1>; 97 98 // This is for simple LEAs with one or two input operands. 99 // The complex ones can only execute on port 1, and they require two cycles on 100 // the port to read all inputs. We don't model that. 101 def : WriteRes<WriteLEA, [HWPort15]>; 102 103 // This is quite rough, latency depends on the dividend. 104 def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { 105 let Latency = 25; 106 let ResourceCycles = [1, 10]; 107 } 108 def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { 109 let Latency = 29; 110 let ResourceCycles = [1, 1, 10]; 111 } 112 113 // Scalar and vector floating point. 114 defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; 115 defm : HWWriteResPair<WriteFMul, HWPort0, 5>; 116 defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. 117 defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; 118 defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; 119 defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; 120 defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; 121 defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; 122 123 // Vector integer operations. 124 defm : HWWriteResPair<WriteVecShift, HWPort05, 1>; 125 defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; 126 defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; 127 defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; 128 defm : HWWriteResPair<WriteShuffle, HWPort15, 1>; 129 130 def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } 131 def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } 132 } // SchedModel 133