Home | History | Annotate | Download | only in X86
      1 //=- X86SchedSandyBridge.td - X86 Sandy Bridge Scheduling ----*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Sandy Bridge to support instruction
     11 // scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 def SandyBridgeModel : SchedMachineModel {
     16   // All x86 instructions are modeled as a single micro-op, and SB can decode 4
     17   // instructions per cycle.
     18   // FIXME: Identify instructions that aren't a single fused micro-op.
     19   let IssueWidth = 4;
     20   let MicroOpBufferSize = 168; // Based on the reorder buffer.
     21   let LoadLatency = 4;
     22   let MispredictPenalty = 16;
     23 }
     24 
     25 let SchedModel = SandyBridgeModel in {
     26 
     27 // Sandy Bridge can issue micro-ops to 6 different ports in one cycle.
     28 
     29 // Ports 0, 1, and 5 handle all computation.
     30 def SBPort0 : ProcResource<1>;
     31 def SBPort1 : ProcResource<1>;
     32 def SBPort5 : ProcResource<1>;
     33 
     34 // Ports 2 and 3 are identical. They handle loads and the address half of
     35 // stores.
     36 def SBPort23 : ProcResource<2>;
     37 
     38 // Port 4 gets the data half of stores. Store data can be available later than
     39 // the store address, but since we don't model the latency of stores, we can
     40 // ignore that.
     41 def SBPort4 : ProcResource<1>;
     42 
     43 // Many micro-ops are capable of issuing on multiple ports.
     44 def SBPort05  : ProcResGroup<[SBPort0, SBPort5]>;
     45 def SBPort15  : ProcResGroup<[SBPort1, SBPort5]>;
     46 def SBPort015 : ProcResGroup<[SBPort0, SBPort1, SBPort5]>;
     47 
     48 // 54 Entry Unified Scheduler
     49 def SBPortAny : ProcResGroup<[SBPort0, SBPort1, SBPort23, SBPort4, SBPort5]> {
     50   let BufferSize=54;
     51 }
     52 
     53 // Integer division issued on port 0.
     54 def SBDivider : ProcResource<1>;
     55 
     56 // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
     57 // cycles after the memory operand.
     58 def : ReadAdvance<ReadAfterLd, 4>;
     59 
     60 // Many SchedWrites are defined in pairs with and without a folded load.
     61 // Instructions with folded loads are usually micro-fused, so they only appear
     62 // as two micro-ops when queued in the reservation station.
     63 // This multiclass defines the resource usage for variants with and without
     64 // folded loads.
     65 multiclass SBWriteResPair<X86FoldableSchedWrite SchedRW,
     66                           ProcResourceKind ExePort,
     67                           int Lat> {
     68   // Register variant is using a single cycle on ExePort.
     69   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
     70 
     71   // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
     72   // latency.
     73   def : WriteRes<SchedRW.Folded, [SBPort23, ExePort]> {
     74      let Latency = !add(Lat, 4);
     75   }
     76 }
     77 
     78 // A folded store needs a cycle on port 4 for the store data, but it does not
     79 // need an extra port 2/3 cycle to recompute the address.
     80 def : WriteRes<WriteRMW, [SBPort4]>;
     81 
     82 def : WriteRes<WriteStore, [SBPort23, SBPort4]>;
     83 def : WriteRes<WriteLoad,  [SBPort23]> { let Latency = 4; }
     84 def : WriteRes<WriteMove,  [SBPort015]>;
     85 def : WriteRes<WriteZero,  []>;
     86 
     87 defm : SBWriteResPair<WriteALU,   SBPort015, 1>;
     88 defm : SBWriteResPair<WriteIMul,  SBPort1,   3>;
     89 def  : WriteRes<WriteIMulH, []> { let Latency = 3; }
     90 defm : SBWriteResPair<WriteShift, SBPort05,  1>;
     91 defm : SBWriteResPair<WriteJump,  SBPort5,   1>;
     92 
     93 // This is for simple LEAs with one or two input operands.
     94 // The complex ones can only execute on port 1, and they require two cycles on
     95 // the port to read all inputs. We don't model that.
     96 def : WriteRes<WriteLEA, [SBPort15]>;
     97 
     98 // This is quite rough, latency depends on the dividend.
     99 def : WriteRes<WriteIDiv, [SBPort0, SBDivider]> {
    100   let Latency = 25;
    101   let ResourceCycles = [1, 10];
    102 }
    103 def : WriteRes<WriteIDivLd, [SBPort23, SBPort0, SBDivider]> {
    104   let Latency = 29;
    105   let ResourceCycles = [1, 1, 10];
    106 }
    107 
    108 // Scalar and vector floating point.
    109 defm : SBWriteResPair<WriteFAdd,   SBPort1, 3>;
    110 defm : SBWriteResPair<WriteFMul,   SBPort0, 5>;
    111 defm : SBWriteResPair<WriteFDiv,   SBPort0, 12>; // 10-14 cycles.
    112 defm : SBWriteResPair<WriteFRcp,   SBPort0, 5>;
    113 defm : SBWriteResPair<WriteFSqrt,  SBPort0, 15>;
    114 defm : SBWriteResPair<WriteCvtF2I, SBPort1, 3>;
    115 defm : SBWriteResPair<WriteCvtI2F, SBPort1, 4>;
    116 defm : SBWriteResPair<WriteCvtF2F, SBPort1, 3>;
    117 
    118 // Vector integer operations.
    119 defm : SBWriteResPair<WriteVecShift, SBPort05,  1>;
    120 defm : SBWriteResPair<WriteVecLogic, SBPort015, 1>;
    121 defm : SBWriteResPair<WriteVecALU,   SBPort15,  1>;
    122 defm : SBWriteResPair<WriteVecIMul,  SBPort0,   5>;
    123 defm : SBWriteResPair<WriteShuffle,  SBPort15,  1>;
    124 
    125 def : WriteRes<WriteSystem,     [SBPort015]> { let Latency = 100; }
    126 def : WriteRes<WriteMicrocoded, [SBPort015]> { let Latency = 100; }
    127 } // SchedModel
    128