1 //===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CodeEmitterGen uses the descriptions of instructions and their fields to 11 // construct an automated code emitter: a function that, given a MachineInstr, 12 // returns the (currently, 32-bit unsigned) value of the instruction. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/TableGen/Record.h" 21 #include "llvm/TableGen/TableGenBackend.h" 22 #include <map> 23 #include <string> 24 #include <vector> 25 using namespace llvm; 26 27 // FIXME: Somewhat hackish to use a command line option for this. There should 28 // be a CodeEmitter class in the Target.td that controls this sort of thing 29 // instead. 30 static cl::opt<bool> 31 MCEmitter("mc-emitter", 32 cl::desc("Generate CodeEmitter for use with the MC library."), 33 cl::init(false)); 34 35 namespace { 36 37 class CodeEmitterGen { 38 RecordKeeper &Records; 39 public: 40 CodeEmitterGen(RecordKeeper &R) : Records(R) {} 41 42 void run(raw_ostream &o); 43 private: 44 void emitMachineOpEmitter(raw_ostream &o, const std::string &Namespace); 45 void emitGetValueBit(raw_ostream &o, const std::string &Namespace); 46 void reverseBits(std::vector<Record*> &Insts); 47 int getVariableBit(const std::string &VarName, BitsInit *BI, int bit); 48 std::string getInstructionCase(Record *R, CodeGenTarget &Target); 49 void AddCodeToMergeInOperand(Record *R, BitsInit *BI, 50 const std::string &VarName, 51 unsigned &NumberedOp, 52 std::string &Case, CodeGenTarget &Target); 53 54 }; 55 56 void CodeEmitterGen::reverseBits(std::vector<Record*> &Insts) { 57 for (std::vector<Record*>::iterator I = Insts.begin(), E = Insts.end(); 58 I != E; ++I) { 59 Record *R = *I; 60 if (R->getValueAsString("Namespace") == "TargetOpcode" || 61 R->getValueAsBit("isPseudo")) 62 continue; 63 64 BitsInit *BI = R->getValueAsBitsInit("Inst"); 65 66 unsigned numBits = BI->getNumBits(); 67 68 SmallVector<Init *, 16> NewBits(numBits); 69 70 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 71 unsigned bitSwapIdx = numBits - bit - 1; 72 Init *OrigBit = BI->getBit(bit); 73 Init *BitSwap = BI->getBit(bitSwapIdx); 74 NewBits[bit] = BitSwap; 75 NewBits[bitSwapIdx] = OrigBit; 76 } 77 if (numBits % 2) { 78 unsigned middle = (numBits + 1) / 2; 79 NewBits[middle] = BI->getBit(middle); 80 } 81 82 BitsInit *NewBI = BitsInit::get(NewBits); 83 84 // Update the bits in reversed order so that emitInstrOpBits will get the 85 // correct endianness. 86 R->getValue("Inst")->setValue(NewBI); 87 } 88 } 89 90 // If the VarBitInit at position 'bit' matches the specified variable then 91 // return the variable bit position. Otherwise return -1. 92 int CodeEmitterGen::getVariableBit(const std::string &VarName, 93 BitsInit *BI, int bit) { 94 if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) { 95 if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar())) 96 if (VI->getName() == VarName) 97 return VBI->getBitNum(); 98 } else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) { 99 if (VI->getName() == VarName) 100 return 0; 101 } 102 103 return -1; 104 } 105 106 void CodeEmitterGen:: 107 AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName, 108 unsigned &NumberedOp, 109 std::string &Case, CodeGenTarget &Target) { 110 CodeGenInstruction &CGI = Target.getInstruction(R); 111 112 // Determine if VarName actually contributes to the Inst encoding. 113 int bit = BI->getNumBits()-1; 114 115 // Scan for a bit that this contributed to. 116 for (; bit >= 0; ) { 117 if (getVariableBit(VarName, BI, bit) != -1) 118 break; 119 120 --bit; 121 } 122 123 // If we found no bits, ignore this value, otherwise emit the call to get the 124 // operand encoding. 125 if (bit < 0) return; 126 127 // If the operand matches by name, reference according to that 128 // operand number. Non-matching operands are assumed to be in 129 // order. 130 unsigned OpIdx; 131 if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) { 132 // Get the machine operand number for the indicated operand. 133 OpIdx = CGI.Operands[OpIdx].MIOperandNo; 134 assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) && 135 "Explicitly used operand also marked as not emitted!"); 136 } else { 137 unsigned NumberOps = CGI.Operands.size(); 138 /// If this operand is not supposed to be emitted by the 139 /// generated emitter, skip it. 140 while (NumberedOp < NumberOps && 141 CGI.Operands.isFlatOperandNotEmitted(NumberedOp)) 142 ++NumberedOp; 143 144 OpIdx = NumberedOp++; 145 } 146 147 std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx); 148 std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName; 149 150 // If the source operand has a custom encoder, use it. This will 151 // get the encoding for all of the suboperands. 152 if (!EncoderMethodName.empty()) { 153 // A custom encoder has all of the information for the 154 // sub-operands, if there are more than one, so only 155 // query the encoder once per source operand. 156 if (SO.second == 0) { 157 Case += " // op: " + VarName + "\n" + 158 " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx); 159 if (MCEmitter) 160 Case += ", Fixups"; 161 Case += ");\n"; 162 } 163 } else { 164 Case += " // op: " + VarName + "\n" + 165 " op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")"; 166 if (MCEmitter) 167 Case += ", Fixups"; 168 Case += ");\n"; 169 } 170 171 for (; bit >= 0; ) { 172 int varBit = getVariableBit(VarName, BI, bit); 173 174 // If this bit isn't from a variable, skip it. 175 if (varBit == -1) { 176 --bit; 177 continue; 178 } 179 180 // Figure out the consecutive range of bits covered by this operand, in 181 // order to generate better encoding code. 182 int beginInstBit = bit; 183 int beginVarBit = varBit; 184 int N = 1; 185 for (--bit; bit >= 0;) { 186 varBit = getVariableBit(VarName, BI, bit); 187 if (varBit == -1 || varBit != (beginVarBit - N)) break; 188 ++N; 189 --bit; 190 } 191 192 uint64_t opMask = ~(uint64_t)0 >> (64-N); 193 int opShift = beginVarBit - N + 1; 194 opMask <<= opShift; 195 opShift = beginInstBit - beginVarBit; 196 197 if (opShift > 0) { 198 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " + 199 itostr(opShift) + ";\n"; 200 } else if (opShift < 0) { 201 Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " + 202 itostr(-opShift) + ";\n"; 203 } else { 204 Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n"; 205 } 206 } 207 } 208 209 210 std::string CodeEmitterGen::getInstructionCase(Record *R, 211 CodeGenTarget &Target) { 212 std::string Case; 213 214 BitsInit *BI = R->getValueAsBitsInit("Inst"); 215 const std::vector<RecordVal> &Vals = R->getValues(); 216 unsigned NumberedOp = 0; 217 218 // Loop over all of the fields in the instruction, determining which are the 219 // operands to the instruction. 220 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 221 // Ignore fixed fields in the record, we're looking for values like: 222 // bits<5> RST = { ?, ?, ?, ?, ? }; 223 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) 224 continue; 225 226 AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp, Case, Target); 227 } 228 229 std::string PostEmitter = R->getValueAsString("PostEncoderMethod"); 230 if (!PostEmitter.empty()) 231 Case += " Value = " + PostEmitter + "(MI, Value);\n"; 232 233 return Case; 234 } 235 236 void CodeEmitterGen::run(raw_ostream &o) { 237 CodeGenTarget Target(Records); 238 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 239 240 // For little-endian instruction bit encodings, reverse the bit order 241 if (Target.isLittleEndianEncoding()) reverseBits(Insts); 242 243 244 const std::vector<const CodeGenInstruction*> &NumberedInstructions = 245 Target.getInstructionsByEnumValue(); 246 247 // Emit function declaration 248 o << "uint64_t " << Target.getName(); 249 if (MCEmitter) 250 o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n" 251 << " SmallVectorImpl<MCFixup> &Fixups) const {\n"; 252 else 253 o << "CodeEmitter::getBinaryCodeForInstr(const MachineInstr &MI) const {\n"; 254 255 // Emit instruction base values 256 o << " static const uint64_t InstBits[] = {\n"; 257 for (std::vector<const CodeGenInstruction*>::const_iterator 258 IN = NumberedInstructions.begin(), 259 EN = NumberedInstructions.end(); 260 IN != EN; ++IN) { 261 const CodeGenInstruction *CGI = *IN; 262 Record *R = CGI->TheDef; 263 264 if (R->getValueAsString("Namespace") == "TargetOpcode" || 265 R->getValueAsBit("isPseudo")) { 266 o << " UINT64_C(0),\n"; 267 continue; 268 } 269 270 BitsInit *BI = R->getValueAsBitsInit("Inst"); 271 272 // Start by filling in fixed values. 273 uint64_t Value = 0; 274 for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) { 275 if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1))) 276 Value |= (uint64_t)B->getValue() << (e-i-1); 277 } 278 o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n"; 279 } 280 o << " UINT64_C(0)\n };\n"; 281 282 // Map to accumulate all the cases. 283 std::map<std::string, std::vector<std::string> > CaseMap; 284 285 // Construct all cases statement for each opcode 286 for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end(); 287 IC != EC; ++IC) { 288 Record *R = *IC; 289 if (R->getValueAsString("Namespace") == "TargetOpcode" || 290 (R->getValueAsBit("isPseudo") && MCEmitter)) 291 continue; 292 const std::string &InstName = R->getValueAsString("Namespace") + "::" 293 + R->getName(); 294 std::string Case; 295 if (!R->getValueAsBit("isPseudo")) { 296 Case = getInstructionCase(R, Target); 297 } 298 299 CaseMap[Case].push_back(InstName); 300 } 301 302 // Emit initial function code 303 o << " const unsigned opcode = MI.getOpcode();\n" 304 << " uint64_t Value = InstBits[opcode];\n" 305 << " uint64_t op = 0;\n" 306 << " (void)op; // suppress warning\n" 307 << " switch (opcode) {\n"; 308 309 // Emit each case statement 310 std::map<std::string, std::vector<std::string> >::iterator IE, EE; 311 for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) { 312 const std::string &Case = IE->first; 313 std::vector<std::string> &InstList = IE->second; 314 315 for (int i = 0, N = InstList.size(); i < N; i++) { 316 if (i) o << "\n"; 317 o << " case " << InstList[i] << ":"; 318 } 319 o << " {\n"; 320 o << Case; 321 o << " break;\n" 322 << " }\n"; 323 } 324 325 // Default case: unhandled opcode 326 o << " default:\n" 327 << " std::string msg;\n" 328 << " raw_string_ostream Msg(msg);\n" 329 << " Msg << \"Not supported instr: \" << MI;\n" 330 << " report_fatal_error(Msg.str());\n" 331 << " }\n" 332 << " return Value;\n" 333 << "}\n\n"; 334 } 335 336 } // End anonymous namespace 337 338 namespace llvm { 339 340 void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) { 341 emitSourceFileHeader("Machine Code Emitter", OS); 342 CodeEmitterGen(RK).run(OS); 343 } 344 345 } // End llvm namespace 346