Home | History | Annotate | Download | only in mDNSCore
      1 /* -*- Mode: C; tab-width: 4 -*-
      2  *
      3  * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
      4  *
      5  * Licensed under the Apache License, Version 2.0 (the "License");
      6  * you may not use this file except in compliance with the License.
      7  * You may obtain a copy of the License at
      8  *
      9  *     http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  * Unless required by applicable law or agreed to in writing, software
     12  * distributed under the License is distributed on an "AS IS" BASIS,
     13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  * See the License for the specific language governing permissions and
     15  * limitations under the License.
     16  */
     17 
     18 
     19 #ifdef __cplusplus
     20 extern "C" {
     21 #endif
     22 
     23 #include "mDNSEmbeddedAPI.h"
     24 #include "DNSCommon.h"
     25 
     26 // Disable certain benign warnings with Microsoft compilers
     27 #if(defined(_MSC_VER))
     28 	// Disable "conditional expression is constant" warning for debug macros.
     29 	// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
     30 	// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
     31 	#pragma warning(disable:4127)
     32 #endif
     33 
     34 
     35  // ***************************************************************************
     36 #if COMPILER_LIKES_PRAGMA_MARK
     37 #pragma mark - Byte Swapping Functions
     38 #endif
     39 
     40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
     41 	{
     42 	return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
     43 	}
     44 
     45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
     46 	{
     47 	return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
     48 	}
     49 
     50  // ***************************************************************************
     51 #if COMPILER_LIKES_PRAGMA_MARK
     52 #pragma mark - MD5 Hash Functions
     53 #endif
     54 
     55 
     56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
     57  * The following changes have been made to the original sources:
     58  *    replaced CC_LONG w/ mDNSu32
     59  *    replaced CC_MD5* with MD5*
     60  *    replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
     61  *    removed extern decls for MD5_Init/Update/Final from CommonDigest.h
     62  *    removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
     63  *
     64  * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
     65  * to aid in platform-specific optimizations and debugging.
     66  * Sources originally distributed under the following license headers:
     67  * CommonDigest.h - APSL
     68  *
     69  * md32_Common.h
     70  * ====================================================================
     71  * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  *
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  *
     80  * 2. Redistributions in binary form must reproduce the above copyright
     81  *    notice, this list of conditions and the following disclaimer in
     82  *    the documentation and/or other materials provided with the
     83  *    distribution.
     84  *
     85  * 3. All advertising materials mentioning features or use of this
     86  *    software must display the following acknowledgment:
     87  *    "This product includes software developed by the OpenSSL Project
     88  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
     89  *
     90  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     91  *    endorse or promote products derived from this software without
     92  *    prior written permission. For written permission, please contact
     93  *    licensing (at) OpenSSL.org.
     94  *
     95  * 5. Products derived from this software may not be called "OpenSSL"
     96  *    nor may "OpenSSL" appear in their names without prior written
     97  *    permission of the OpenSSL Project.
     98  *
     99  * 6. Redistributions of any form whatsoever must retain the following
    100  *    acknowledgment:
    101  *    "This product includes software developed by the OpenSSL Project
    102  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
    103  *
    104  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
    105  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    106  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    107  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
    108  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    109  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    110  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    111  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    112  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    113  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    114  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    115  * OF THE POSSIBILITY OF SUCH DAMAGE.
    116  *
    117  *
    118  * md5_dgst.c, md5_locl.h
    119  * ====================================================================
    120  *
    121  * This product includes cryptographic software written by Eric Young
    122  * (eay (at) cryptsoft.com).  This product includes software written by Tim
    123  * Hudson (tjh (at) cryptsoft.com).
    124  *
    125  * Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
    126  * All rights reserved.
    127  *
    128  * This package is an SSL implementation written
    129  * by Eric Young (eay (at) cryptsoft.com).
    130  * The implementation was written so as to conform with Netscapes SSL.
    131  *
    132  * This library is free for commercial and non-commercial use as long as
    133  * the following conditions are aheared to.  The following conditions
    134  * apply to all code found in this distribution, be it the RC4, RSA,
    135  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
    136  * included with this distribution is covered by the same copyright terms
    137  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
    138  *
    139  * Copyright remains Eric Young's, and as such any Copyright notices in
    140  * the code are not to be removed.
    141  * If this package is used in a product, Eric Young should be given attribution
    142  * as the author of the parts of the library used.
    143  * This can be in the form of a textual message at program startup or
    144  * in documentation (online or textual) provided with the package.
    145  *
    146  * Redistribution and use in source and binary forms, with or without
    147  * modification, are permitted provided that the following conditions
    148  * are met:
    149  * 1. Redistributions of source code must retain the copyright
    150  *    notice, this list of conditions and the following disclaimer.
    151  * 2. Redistributions in binary form must reproduce the above copyright
    152  *    notice, this list of conditions and the following disclaimer in the
    153  *    documentation and/or other materials provided with the distribution.
    154  * 3. All advertising materials mentioning features or use of this software
    155  *    must display the following acknowledgement:
    156  *    "This product includes cryptographic software written by
    157  *     Eric Young (eay (at) cryptsoft.com)"
    158  *    The word 'cryptographic' can be left out if the rouines from the library
    159  *    being used are not cryptographic related :-).
    160  * 4. If you include any Windows specific code (or a derivative thereof) from
    161  *    the apps directory (application code) you must include an acknowledgement:
    162  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
    163  *
    164  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
    165  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    166  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    167  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    168  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    169  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    170  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    171  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    172  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    173  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    174  * SUCH DAMAGE.
    175  *
    176  * The licence and distribution terms for any publically available version or
    177  * derivative of this code cannot be changed.  i.e. this code cannot simply be
    178  * copied and put under another distribution licence
    179  * [including the GNU Public Licence.]
    180  *
    181  */
    182 
    183 //from CommonDigest.h
    184 
    185 #define MD5_DIGEST_LENGTH	16			/* digest length in bytes */
    186 #define MD5_BLOCK_BYTES		64			/* block size in bytes */
    187 #define MD5_BLOCK_LONG       (MD5_BLOCK_BYTES / sizeof(mDNSu32))
    188 
    189 typedef struct MD5state_st
    190 {
    191 	mDNSu32 A,B,C,D;
    192 	mDNSu32 Nl,Nh;
    193 	mDNSu32 data[MD5_BLOCK_LONG];
    194 	int num;
    195 } MD5_CTX;
    196 
    197 
    198 // from openssl/md5.h
    199 
    200 #define MD5_CBLOCK	64
    201 #define MD5_LBLOCK	(MD5_CBLOCK/4)
    202 #define MD5_DIGEST_LENGTH 16
    203 
    204 int MD5_Init(MD5_CTX *c);
    205 int MD5_Update(MD5_CTX *c, const void *data, unsigned long len);
    206 int MD5_Final(unsigned char *md, MD5_CTX *c);
    207 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
    208 
    209 // From md5_locl.h
    210 
    211 #ifndef MD5_LONG_LOG2
    212 #define MD5_LONG_LOG2 2 /* default to 32 bits */
    213 #endif
    214 
    215 #ifdef MD5_ASM
    216 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
    217 #  define md5_block_host_order md5_block_asm_host_order
    218 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
    219    void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
    220 #  define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
    221 # endif
    222 #endif
    223 
    224 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
    225 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
    226 
    227 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
    228 /*
    229  * *_block_host_order is expected to handle aligned data while
    230  * *_block_data_order - unaligned. As algorithm and host (x86)
    231  * are in this case of the same "endianness" these two are
    232  * otherwise indistinguishable. But normally you don't want to
    233  * call the same function because unaligned access in places
    234  * where alignment is expected is usually a "Bad Thing". Indeed,
    235  * on RISCs you get punished with BUS ERROR signal or *severe*
    236  * performance degradation. Intel CPUs are in turn perfectly
    237  * capable of loading unaligned data without such drastic side
    238  * effect. Yes, they say it's slower than aligned load, but no
    239  * exception is generated and therefore performance degradation
    240  * is *incomparable* with RISCs. What we should weight here is
    241  * costs of unaligned access against costs of aligning data.
    242  * According to my measurements allowing unaligned access results
    243  * in ~9% performance improvement on Pentium II operating at
    244  * 266MHz. I won't be surprised if the difference will be higher
    245  * on faster systems:-)
    246  *
    247  *				<appro (at) fy.chalmers.se>
    248  */
    249 #define md5_block_data_order md5_block_host_order
    250 #endif
    251 
    252 #define DATA_ORDER_IS_LITTLE_ENDIAN
    253 
    254 #define HASH_LONG		mDNSu32
    255 #define HASH_LONG_LOG2	MD5_LONG_LOG2
    256 #define HASH_CTX		MD5_CTX
    257 #define HASH_CBLOCK		MD5_CBLOCK
    258 #define HASH_LBLOCK		MD5_LBLOCK
    259 
    260 #define HASH_UPDATE		MD5_Update
    261 #define HASH_TRANSFORM	MD5_Transform
    262 #define HASH_FINAL		MD5_Final
    263 
    264 #define	HASH_MAKE_STRING(c,s)	do {	\
    265 	unsigned long ll;		\
    266 	ll=(c)->A; HOST_l2c(ll,(s));	\
    267 	ll=(c)->B; HOST_l2c(ll,(s));	\
    268 	ll=(c)->C; HOST_l2c(ll,(s));	\
    269 	ll=(c)->D; HOST_l2c(ll,(s));	\
    270 	} while (0)
    271 #define HASH_BLOCK_HOST_ORDER	md5_block_host_order
    272 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
    273 #define	HASH_BLOCK_DATA_ORDER	md5_block_data_order
    274 /*
    275  * Little-endians (Intel and Alpha) feel better without this.
    276  * It looks like memcpy does better job than generic
    277  * md5_block_data_order on copying-n-aligning input data.
    278  * But frankly speaking I didn't expect such result on Alpha.
    279  * On the other hand I've got this with egcs-1.0.2 and if
    280  * program is compiled with another (better?) compiler it
    281  * might turn out other way around.
    282  *
    283  *				<appro (at) fy.chalmers.se>
    284  */
    285 #endif
    286 
    287 
    288 // from md32_common.h
    289 
    290 /*
    291  * This is a generic 32 bit "collector" for message digest algorithms.
    292  * Whenever needed it collects input character stream into chunks of
    293  * 32 bit values and invokes a block function that performs actual hash
    294  * calculations.
    295  *
    296  * Porting guide.
    297  *
    298  * Obligatory macros:
    299  *
    300  * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
    301  *	this macro defines byte order of input stream.
    302  * HASH_CBLOCK
    303  *	size of a unit chunk HASH_BLOCK operates on.
    304  * HASH_LONG
    305  *	has to be at lest 32 bit wide, if it's wider, then
    306  *	HASH_LONG_LOG2 *has to* be defined along
    307  * HASH_CTX
    308  *	context structure that at least contains following
    309  *	members:
    310  *		typedef struct {
    311  *			...
    312  *			HASH_LONG	Nl,Nh;
    313  *			HASH_LONG	data[HASH_LBLOCK];
    314  *			int		num;
    315  *			...
    316  *			} HASH_CTX;
    317  * HASH_UPDATE
    318  *	name of "Update" function, implemented here.
    319  * HASH_TRANSFORM
    320  *	name of "Transform" function, implemented here.
    321  * HASH_FINAL
    322  *	name of "Final" function, implemented here.
    323  * HASH_BLOCK_HOST_ORDER
    324  *	name of "block" function treating *aligned* input message
    325  *	in host byte order, implemented externally.
    326  * HASH_BLOCK_DATA_ORDER
    327  *	name of "block" function treating *unaligned* input message
    328  *	in original (data) byte order, implemented externally (it
    329  *	actually is optional if data and host are of the same
    330  *	"endianess").
    331  * HASH_MAKE_STRING
    332  *	macro convering context variables to an ASCII hash string.
    333  *
    334  * Optional macros:
    335  *
    336  * B_ENDIAN or L_ENDIAN
    337  *	defines host byte-order.
    338  * HASH_LONG_LOG2
    339  *	defaults to 2 if not states otherwise.
    340  * HASH_LBLOCK
    341  *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
    342  * HASH_BLOCK_DATA_ORDER_ALIGNED
    343  *	alternative "block" function capable of treating
    344  *	aligned input message in original (data) order,
    345  *	implemented externally.
    346  *
    347  * MD5 example:
    348  *
    349  *	#define DATA_ORDER_IS_LITTLE_ENDIAN
    350  *
    351  *	#define HASH_LONG		mDNSu32
    352  *	#define HASH_LONG_LOG2	mDNSu32_LOG2
    353  *	#define HASH_CTX		MD5_CTX
    354  *	#define HASH_CBLOCK		MD5_CBLOCK
    355  *	#define HASH_LBLOCK		MD5_LBLOCK
    356  *	#define HASH_UPDATE		MD5_Update
    357  *	#define HASH_TRANSFORM		MD5_Transform
    358  *	#define HASH_FINAL		MD5_Final
    359  *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
    360  *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
    361  *
    362  *					<appro (at) fy.chalmers.se>
    363  */
    364 
    365 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    366 #error "DATA_ORDER must be defined!"
    367 #endif
    368 
    369 #ifndef HASH_CBLOCK
    370 #error "HASH_CBLOCK must be defined!"
    371 #endif
    372 #ifndef HASH_LONG
    373 #error "HASH_LONG must be defined!"
    374 #endif
    375 #ifndef HASH_CTX
    376 #error "HASH_CTX must be defined!"
    377 #endif
    378 
    379 #ifndef HASH_UPDATE
    380 #error "HASH_UPDATE must be defined!"
    381 #endif
    382 #ifndef HASH_TRANSFORM
    383 #error "HASH_TRANSFORM must be defined!"
    384 #endif
    385 #ifndef HASH_FINAL
    386 #error "HASH_FINAL must be defined!"
    387 #endif
    388 
    389 #ifndef HASH_BLOCK_HOST_ORDER
    390 #error "HASH_BLOCK_HOST_ORDER must be defined!"
    391 #endif
    392 
    393 #if 0
    394 /*
    395  * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
    396  * isn't defined.
    397  */
    398 #ifndef HASH_BLOCK_DATA_ORDER
    399 #error "HASH_BLOCK_DATA_ORDER must be defined!"
    400 #endif
    401 #endif
    402 
    403 #ifndef HASH_LBLOCK
    404 #define HASH_LBLOCK	(HASH_CBLOCK/4)
    405 #endif
    406 
    407 #ifndef HASH_LONG_LOG2
    408 #define HASH_LONG_LOG2	2
    409 #endif
    410 
    411 /*
    412  * Engage compiler specific rotate intrinsic function if available.
    413  */
    414 #undef ROTATE
    415 #ifndef PEDANTIC
    416 # if 0 /* defined(_MSC_VER) */
    417 #  define ROTATE(a,n)	_lrotl(a,n)
    418 # elif defined(__MWERKS__)
    419 #  if defined(__POWERPC__)
    420 #   define ROTATE(a,n)	(unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
    421 #  elif defined(__MC68K__)
    422     /* Motorola specific tweak. <appro (at) fy.chalmers.se> */
    423 #   define ROTATE(a,n)	(n<24 ? __rol(a,n) : __ror(a,32-n))
    424 #  else
    425 #   define ROTATE(a,n)	__rol(a,n)
    426 #  endif
    427 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
    428   /*
    429    * Some GNU C inline assembler templates. Note that these are
    430    * rotates by *constant* number of bits! But that's exactly
    431    * what we need here...
    432    *
    433    * 					<appro (at) fy.chalmers.se>
    434    */
    435   /*
    436    * LLVM is more strict about compatibility of types between input & output constraints,
    437    * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
    438    * most significant bytes by casting to an unsigned int.
    439    */
    440 #  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
    441 #   define ROTATE(a,n)	({ register unsigned int ret;	\
    442 				asm (			\
    443 				"roll %1,%0"		\
    444 				: "=r"(ret)		\
    445 				: "I"(n), "0"((unsigned int)a)	\
    446 				: "cc");		\
    447 			   ret;				\
    448 			})
    449 #  elif defined(__powerpc) || defined(__ppc)
    450 #   define ROTATE(a,n)	({ register unsigned int ret;	\
    451 				asm (			\
    452 				"rlwinm %0,%1,%2,0,31"	\
    453 				: "=r"(ret)		\
    454 				: "r"(a), "I"(n));	\
    455 			   ret;				\
    456 			})
    457 #  endif
    458 # endif
    459 
    460 /*
    461  * Engage compiler specific "fetch in reverse byte order"
    462  * intrinsic function if available.
    463  */
    464 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
    465   /* some GNU C inline assembler templates by <appro (at) fy.chalmers.se> */
    466 #  if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
    467 #   define BE_FETCH32(a)	({ register unsigned int l=(a);\
    468 				asm (			\
    469 				"bswapl %0"		\
    470 				: "=r"(l) : "0"(l));	\
    471 			  l;				\
    472 			})
    473 #  elif defined(__powerpc)
    474 #   define LE_FETCH32(a)	({ register unsigned int l;	\
    475 				asm (			\
    476 				"lwbrx %0,0,%1"		\
    477 				: "=r"(l)		\
    478 				: "r"(a));		\
    479 			   l;				\
    480 			})
    481 
    482 #  elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
    483 #  define LE_FETCH32(a)	({ register unsigned int l;		\
    484 				asm (				\
    485 				"lda [%1]#ASI_PRIMARY_LITTLE,%0"\
    486 				: "=r"(l)			\
    487 				: "r"(a));			\
    488 			   l;					\
    489 			})
    490 #  endif
    491 # endif
    492 #endif /* PEDANTIC */
    493 
    494 #if HASH_LONG_LOG2==2	/* Engage only if sizeof(HASH_LONG)== 4 */
    495 /* A nice byte order reversal from Wei Dai <weidai (at) eskimo.com> */
    496 #ifdef ROTATE
    497 /* 5 instructions with rotate instruction, else 9 */
    498 #define REVERSE_FETCH32(a,l)	(					\
    499 		l=*(const HASH_LONG *)(a),				\
    500 		((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))	\
    501 				)
    502 #else
    503 /* 6 instructions with rotate instruction, else 8 */
    504 #define REVERSE_FETCH32(a,l)	(				\
    505 		l=*(const HASH_LONG *)(a),			\
    506 		l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),	\
    507 		ROTATE(l,16)					\
    508 				)
    509 /*
    510  * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
    511  * It's rewritten as above for two reasons:
    512  *	- RISCs aren't good at long constants and have to explicitely
    513  *	  compose 'em with several (well, usually 2) instructions in a
    514  *	  register before performing the actual operation and (as you
    515  *	  already realized:-) having same constant should inspire the
    516  *	  compiler to permanently allocate the only register for it;
    517  *	- most modern CPUs have two ALUs, but usually only one has
    518  *	  circuitry for shifts:-( this minor tweak inspires compiler
    519  *	  to schedule shift instructions in a better way...
    520  *
    521  *				<appro (at) fy.chalmers.se>
    522  */
    523 #endif
    524 #endif
    525 
    526 #ifndef ROTATE
    527 #define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
    528 #endif
    529 
    530 /*
    531  * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
    532  * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
    533  * and host are of the same "endianess". It's possible to mask
    534  * this with blank #define HASH_BLOCK_DATA_ORDER though...
    535  *
    536  *				<appro (at) fy.chalmers.se>
    537  */
    538 #if defined(B_ENDIAN)
    539 #  if defined(DATA_ORDER_IS_BIG_ENDIAN)
    540 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
    541 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
    542 #    endif
    543 #  elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    544 #    ifndef HOST_FETCH32
    545 #      ifdef LE_FETCH32
    546 #        define HOST_FETCH32(p,l)	LE_FETCH32(p)
    547 #      elif defined(REVERSE_FETCH32)
    548 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
    549 #      endif
    550 #    endif
    551 #  endif
    552 #elif defined(L_ENDIAN)
    553 #  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    554 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
    555 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
    556 #    endif
    557 #  elif defined(DATA_ORDER_IS_BIG_ENDIAN)
    558 #    ifndef HOST_FETCH32
    559 #      ifdef BE_FETCH32
    560 #        define HOST_FETCH32(p,l)	BE_FETCH32(p)
    561 #      elif defined(REVERSE_FETCH32)
    562 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
    563 #      endif
    564 #    endif
    565 #  endif
    566 #endif
    567 
    568 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    569 #ifndef HASH_BLOCK_DATA_ORDER
    570 #error "HASH_BLOCK_DATA_ORDER must be defined!"
    571 #endif
    572 #endif
    573 
    574 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
    575 
    576 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))<<24),		\
    577 			 l|=(((unsigned long)(*((c)++)))<<16),		\
    578 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
    579 			 l|=(((unsigned long)(*((c)++)))    ),		\
    580 			 l)
    581 #define HOST_p_c2l(c,l,n)	{					\
    582 			switch (n) {					\
    583 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
    584 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
    585 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
    586 			case 3: l|=((unsigned long)(*((c)++)));		\
    587 				} }
    588 #define HOST_p_c2l_p(c,l,sc,len) {					\
    589 			switch (sc) {					\
    590 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
    591 				if (--len == 0) break;			\
    592 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
    593 				if (--len == 0) break;			\
    594 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
    595 				} }
    596 /* NOTE the pointer is not incremented at the end of this */
    597 #define HOST_c2l_p(c,l,n)	{					\
    598 			l=0; (c)+=n;					\
    599 			switch (n) {					\
    600 			case 3: l =((unsigned long)(*(--(c))))<< 8;	\
    601 			case 2: l|=((unsigned long)(*(--(c))))<<16;	\
    602 			case 1: l|=((unsigned long)(*(--(c))))<<24;	\
    603 				} }
    604 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff),	\
    605 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
    606 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
    607 			 *((c)++)=(unsigned char)(((l)    )&0xff),	\
    608 			 l)
    609 
    610 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    611 
    612 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))    ),		\
    613 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
    614 			 l|=(((unsigned long)(*((c)++)))<<16),		\
    615 			 l|=(((unsigned long)(*((c)++)))<<24),		\
    616 			 l)
    617 #define HOST_p_c2l(c,l,n)	{					\
    618 			switch (n) {					\
    619 			case 0: l =((unsigned long)(*((c)++)));		\
    620 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
    621 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
    622 			case 3: l|=((unsigned long)(*((c)++)))<<24;	\
    623 				} }
    624 #define HOST_p_c2l_p(c,l,sc,len) {					\
    625 			switch (sc) {					\
    626 			case 0: l =((unsigned long)(*((c)++)));		\
    627 				if (--len == 0) break;			\
    628 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
    629 				if (--len == 0) break;			\
    630 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
    631 				} }
    632 /* NOTE the pointer is not incremented at the end of this */
    633 #define HOST_c2l_p(c,l,n)	{					\
    634 			l=0; (c)+=n;					\
    635 			switch (n) {					\
    636 			case 3: l =((unsigned long)(*(--(c))))<<16;	\
    637 			case 2: l|=((unsigned long)(*(--(c))))<< 8;	\
    638 			case 1: l|=((unsigned long)(*(--(c))));		\
    639 				} }
    640 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)    )&0xff),	\
    641 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
    642 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
    643 			 *((c)++)=(unsigned char)(((l)>>24)&0xff),	\
    644 			 l)
    645 
    646 #endif
    647 
    648 /*
    649  * Time for some action:-)
    650  */
    651 
    652 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
    653 	{
    654 	const unsigned char *data=(const unsigned char *)data_;
    655 	register HASH_LONG * p;
    656 	register unsigned long l;
    657 	int sw,sc,ew,ec;
    658 
    659 	if (len==0) return 1;
    660 
    661 	l=(c->Nl+(len<<3))&0xffffffffL;
    662 	/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
    663 	 * Wei Dai <weidai (at) eskimo.com> for pointing it out. */
    664 	if (l < c->Nl) /* overflow */
    665 		c->Nh++;
    666 	c->Nh+=(len>>29);
    667 	c->Nl=l;
    668 
    669 	if (c->num != 0)
    670 		{
    671 		p=c->data;
    672 		sw=c->num>>2;
    673 		sc=c->num&0x03;
    674 
    675 		if ((c->num+len) >= HASH_CBLOCK)
    676 			{
    677 			l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
    678 			for (; sw<HASH_LBLOCK; sw++)
    679 				{
    680 				HOST_c2l(data,l); p[sw]=l;
    681 				}
    682 			HASH_BLOCK_HOST_ORDER (c,p,1);
    683 			len-=(HASH_CBLOCK-c->num);
    684 			c->num=0;
    685 			/* drop through and do the rest */
    686 			}
    687 		else
    688 			{
    689 			c->num+=len;
    690 			if ((sc+len) < 4) /* ugly, add char's to a word */
    691 				{
    692 				l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
    693 				}
    694 			else
    695 				{
    696 				ew=(c->num>>2);
    697 				ec=(c->num&0x03);
    698 				if (sc)
    699 					l=p[sw];
    700 				HOST_p_c2l(data,l,sc);
    701 				p[sw++]=l;
    702 				for (; sw < ew; sw++)
    703 					{
    704 					HOST_c2l(data,l); p[sw]=l;
    705 					}
    706 				if (ec)
    707 					{
    708 					HOST_c2l_p(data,l,ec); p[sw]=l;
    709 					}
    710 				}
    711 			return 1;
    712 			}
    713 		}
    714 
    715 	sw=(int)(len/HASH_CBLOCK);
    716 	if (sw > 0)
    717 		{
    718 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    719 		/*
    720 		 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
    721 		 * only if sizeof(HASH_LONG)==4.
    722 		 */
    723 		if ((((unsigned long)data)%4) == 0)
    724 			{
    725 			/* data is properly aligned so that we can cast it: */
    726 			HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
    727 			sw*=HASH_CBLOCK;
    728 			data+=sw;
    729 			len-=sw;
    730 			}
    731 		else
    732 #if !defined(HASH_BLOCK_DATA_ORDER)
    733 			while (sw--)
    734 				{
    735 				mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
    736 				HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
    737 				data+=HASH_CBLOCK;
    738 				len-=HASH_CBLOCK;
    739 				}
    740 #endif
    741 #endif
    742 #if defined(HASH_BLOCK_DATA_ORDER)
    743 			{
    744 			HASH_BLOCK_DATA_ORDER(c,data,sw);
    745 			sw*=HASH_CBLOCK;
    746 			data+=sw;
    747 			len-=sw;
    748 			}
    749 #endif
    750 		}
    751 
    752 	if (len!=0)
    753 		{
    754 		p = c->data;
    755 		c->num = (int)len;
    756 		ew=(int)(len>>2);	/* words to copy */
    757 		ec=(int)(len&0x03);
    758 		for (; ew; ew--,p++)
    759 			{
    760 			HOST_c2l(data,l); *p=l;
    761 			}
    762 		HOST_c2l_p(data,l,ec);
    763 		*p=l;
    764 		}
    765 	return 1;
    766 	}
    767 
    768 
    769 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
    770 	{
    771 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
    772 	if ((((unsigned long)data)%4) == 0)
    773 		/* data is properly aligned so that we can cast it: */
    774 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
    775 	else
    776 #if !defined(HASH_BLOCK_DATA_ORDER)
    777 		{
    778 		mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
    779 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
    780 		}
    781 #endif
    782 #endif
    783 #if defined(HASH_BLOCK_DATA_ORDER)
    784 	HASH_BLOCK_DATA_ORDER (c,data,1);
    785 #endif
    786 	}
    787 
    788 
    789 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
    790 	{
    791 	register HASH_LONG *p;
    792 	register unsigned long l;
    793 	register int i,j;
    794 	static const unsigned char end[4]={0x80,0x00,0x00,0x00};
    795 	const unsigned char *cp=end;
    796 
    797 	/* c->num should definitly have room for at least one more byte. */
    798 	p=c->data;
    799 	i=c->num>>2;
    800 	j=c->num&0x03;
    801 
    802 #if 0
    803 	/* purify often complains about the following line as an
    804 	 * Uninitialized Memory Read.  While this can be true, the
    805 	 * following p_c2l macro will reset l when that case is true.
    806 	 * This is because j&0x03 contains the number of 'valid' bytes
    807 	 * already in p[i].  If and only if j&0x03 == 0, the UMR will
    808 	 * occur but this is also the only time p_c2l will do
    809 	 * l= *(cp++) instead of l|= *(cp++)
    810 	 * Many thanks to Alex Tang <altitude (at) cic.net> for pickup this
    811 	 * 'potential bug' */
    812 #ifdef PURIFY
    813 	if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
    814 #endif
    815 	l=p[i];
    816 #else
    817 	l = (j==0) ? 0 : p[i];
    818 #endif
    819 	HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
    820 
    821 	if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
    822 		{
    823 		if (i<HASH_LBLOCK) p[i]=0;
    824 		HASH_BLOCK_HOST_ORDER (c,p,1);
    825 		i=0;
    826 		}
    827 	for (; i<(HASH_LBLOCK-2); i++)
    828 		p[i]=0;
    829 
    830 #if   defined(DATA_ORDER_IS_BIG_ENDIAN)
    831 	p[HASH_LBLOCK-2]=c->Nh;
    832 	p[HASH_LBLOCK-1]=c->Nl;
    833 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
    834 	p[HASH_LBLOCK-2]=c->Nl;
    835 	p[HASH_LBLOCK-1]=c->Nh;
    836 #endif
    837 	HASH_BLOCK_HOST_ORDER (c,p,1);
    838 
    839 #ifndef HASH_MAKE_STRING
    840 #error "HASH_MAKE_STRING must be defined!"
    841 #else
    842 	HASH_MAKE_STRING(c,md);
    843 #endif
    844 
    845 	c->num=0;
    846 	/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
    847 	 * but I'm not worried :-)
    848 	OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
    849 	 */
    850 	return 1;
    851 	}
    852 
    853 #ifndef MD32_REG_T
    854 #define MD32_REG_T long
    855 /*
    856  * This comment was originaly written for MD5, which is why it
    857  * discusses A-D. But it basically applies to all 32-bit digests,
    858  * which is why it was moved to common header file.
    859  *
    860  * In case you wonder why A-D are declared as long and not
    861  * as mDNSu32. Doing so results in slight performance
    862  * boost on LP64 architectures. The catch is we don't
    863  * really care if 32 MSBs of a 64-bit register get polluted
    864  * with eventual overflows as we *save* only 32 LSBs in
    865  * *either* case. Now declaring 'em long excuses the compiler
    866  * from keeping 32 MSBs zeroed resulting in 13% performance
    867  * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
    868  * Well, to be honest it should say that this *prevents*
    869  * performance degradation.
    870  *				<appro (at) fy.chalmers.se>
    871  * Apparently there're LP64 compilers that generate better
    872  * code if A-D are declared int. Most notably GCC-x86_64
    873  * generates better code.
    874  *				<appro (at) fy.chalmers.se>
    875  */
    876 #endif
    877 
    878 
    879 // from md5_locl.h (continued)
    880 
    881 /*
    882 #define	F(x,y,z)	(((x) & (y))  |  ((~(x)) & (z)))
    883 #define	G(x,y,z)	(((x) & (z))  |  ((y) & (~(z))))
    884 */
    885 
    886 /* As pointed out by Wei Dai <weidai (at) eskimo.com>, the above can be
    887  * simplified to the code below.  Wei attributes these optimizations
    888  * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
    889  */
    890 #define	F(b,c,d)	((((c) ^ (d)) & (b)) ^ (d))
    891 #define	G(b,c,d)	((((b) ^ (c)) & (d)) ^ (c))
    892 #define	H(b,c,d)	((b) ^ (c) ^ (d))
    893 #define	I(b,c,d)	(((~(d)) | (b)) ^ (c))
    894 
    895 #define R0(a,b,c,d,k,s,t) { \
    896 	a+=((k)+(t)+F((b),(c),(d))); \
    897 	a=ROTATE(a,s); \
    898 	a+=b; };\
    899 
    900 #define R1(a,b,c,d,k,s,t) { \
    901 	a+=((k)+(t)+G((b),(c),(d))); \
    902 	a=ROTATE(a,s); \
    903 	a+=b; };
    904 
    905 #define R2(a,b,c,d,k,s,t) { \
    906 	a+=((k)+(t)+H((b),(c),(d))); \
    907 	a=ROTATE(a,s); \
    908 	a+=b; };
    909 
    910 #define R3(a,b,c,d,k,s,t) { \
    911 	a+=((k)+(t)+I((b),(c),(d))); \
    912 	a=ROTATE(a,s); \
    913 	a+=b; };
    914 
    915 // from md5_dgst.c
    916 
    917 
    918 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
    919  */
    920 
    921 #define INIT_DATA_A (unsigned long)0x67452301L
    922 #define INIT_DATA_B (unsigned long)0xefcdab89L
    923 #define INIT_DATA_C (unsigned long)0x98badcfeL
    924 #define INIT_DATA_D (unsigned long)0x10325476L
    925 
    926 int MD5_Init(MD5_CTX *c)
    927 	{
    928 	c->A=INIT_DATA_A;
    929 	c->B=INIT_DATA_B;
    930 	c->C=INIT_DATA_C;
    931 	c->D=INIT_DATA_D;
    932 	c->Nl=0;
    933 	c->Nh=0;
    934 	c->num=0;
    935 	return 1;
    936 	}
    937 
    938 #ifndef md5_block_host_order
    939 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
    940 	{
    941 	const mDNSu32 *X=(const mDNSu32 *)data;
    942 	register unsigned MD32_REG_T A,B,C,D;
    943 
    944 	A=c->A;
    945 	B=c->B;
    946 	C=c->C;
    947 	D=c->D;
    948 
    949 	for (;num--;X+=HASH_LBLOCK)
    950 		{
    951 	/* Round 0 */
    952 	R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
    953 	R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
    954 	R0(C,D,A,B,X[ 2],17,0x242070dbL);
    955 	R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
    956 	R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
    957 	R0(D,A,B,C,X[ 5],12,0x4787c62aL);
    958 	R0(C,D,A,B,X[ 6],17,0xa8304613L);
    959 	R0(B,C,D,A,X[ 7],22,0xfd469501L);
    960 	R0(A,B,C,D,X[ 8], 7,0x698098d8L);
    961 	R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
    962 	R0(C,D,A,B,X[10],17,0xffff5bb1L);
    963 	R0(B,C,D,A,X[11],22,0x895cd7beL);
    964 	R0(A,B,C,D,X[12], 7,0x6b901122L);
    965 	R0(D,A,B,C,X[13],12,0xfd987193L);
    966 	R0(C,D,A,B,X[14],17,0xa679438eL);
    967 	R0(B,C,D,A,X[15],22,0x49b40821L);
    968 	/* Round 1 */
    969 	R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
    970 	R1(D,A,B,C,X[ 6], 9,0xc040b340L);
    971 	R1(C,D,A,B,X[11],14,0x265e5a51L);
    972 	R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
    973 	R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
    974 	R1(D,A,B,C,X[10], 9,0x02441453L);
    975 	R1(C,D,A,B,X[15],14,0xd8a1e681L);
    976 	R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
    977 	R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
    978 	R1(D,A,B,C,X[14], 9,0xc33707d6L);
    979 	R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
    980 	R1(B,C,D,A,X[ 8],20,0x455a14edL);
    981 	R1(A,B,C,D,X[13], 5,0xa9e3e905L);
    982 	R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
    983 	R1(C,D,A,B,X[ 7],14,0x676f02d9L);
    984 	R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
    985 	/* Round 2 */
    986 	R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
    987 	R2(D,A,B,C,X[ 8],11,0x8771f681L);
    988 	R2(C,D,A,B,X[11],16,0x6d9d6122L);
    989 	R2(B,C,D,A,X[14],23,0xfde5380cL);
    990 	R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
    991 	R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
    992 	R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
    993 	R2(B,C,D,A,X[10],23,0xbebfbc70L);
    994 	R2(A,B,C,D,X[13], 4,0x289b7ec6L);
    995 	R2(D,A,B,C,X[ 0],11,0xeaa127faL);
    996 	R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
    997 	R2(B,C,D,A,X[ 6],23,0x04881d05L);
    998 	R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
    999 	R2(D,A,B,C,X[12],11,0xe6db99e5L);
   1000 	R2(C,D,A,B,X[15],16,0x1fa27cf8L);
   1001 	R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
   1002 	/* Round 3 */
   1003 	R3(A,B,C,D,X[ 0], 6,0xf4292244L);
   1004 	R3(D,A,B,C,X[ 7],10,0x432aff97L);
   1005 	R3(C,D,A,B,X[14],15,0xab9423a7L);
   1006 	R3(B,C,D,A,X[ 5],21,0xfc93a039L);
   1007 	R3(A,B,C,D,X[12], 6,0x655b59c3L);
   1008 	R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
   1009 	R3(C,D,A,B,X[10],15,0xffeff47dL);
   1010 	R3(B,C,D,A,X[ 1],21,0x85845dd1L);
   1011 	R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
   1012 	R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
   1013 	R3(C,D,A,B,X[ 6],15,0xa3014314L);
   1014 	R3(B,C,D,A,X[13],21,0x4e0811a1L);
   1015 	R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
   1016 	R3(D,A,B,C,X[11],10,0xbd3af235L);
   1017 	R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
   1018 	R3(B,C,D,A,X[ 9],21,0xeb86d391L);
   1019 
   1020 	A = c->A += A;
   1021 	B = c->B += B;
   1022 	C = c->C += C;
   1023 	D = c->D += D;
   1024 		}
   1025 	}
   1026 #endif
   1027 
   1028 #ifndef md5_block_data_order
   1029 #ifdef X
   1030 #undef X
   1031 #endif
   1032 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
   1033 	{
   1034 	const unsigned char *data=data_;
   1035 	register unsigned MD32_REG_T A,B,C,D,l;
   1036 #ifndef MD32_XARRAY
   1037 	/* See comment in crypto/sha/sha_locl.h for details. */
   1038 	unsigned MD32_REG_T	XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
   1039 				XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
   1040 # define X(i)	XX##i
   1041 #else
   1042 	mDNSu32 XX[MD5_LBLOCK];
   1043 # define X(i)	XX[i]
   1044 #endif
   1045 
   1046 	A=c->A;
   1047 	B=c->B;
   1048 	C=c->C;
   1049 	D=c->D;
   1050 
   1051 	for (;num--;)
   1052 		{
   1053 	HOST_c2l(data,l); X( 0)=l;		HOST_c2l(data,l); X( 1)=l;
   1054 	/* Round 0 */
   1055 	R0(A,B,C,D,X( 0), 7,0xd76aa478L);	HOST_c2l(data,l); X( 2)=l;
   1056 	R0(D,A,B,C,X( 1),12,0xe8c7b756L);	HOST_c2l(data,l); X( 3)=l;
   1057 	R0(C,D,A,B,X( 2),17,0x242070dbL);	HOST_c2l(data,l); X( 4)=l;
   1058 	R0(B,C,D,A,X( 3),22,0xc1bdceeeL);	HOST_c2l(data,l); X( 5)=l;
   1059 	R0(A,B,C,D,X( 4), 7,0xf57c0fafL);	HOST_c2l(data,l); X( 6)=l;
   1060 	R0(D,A,B,C,X( 5),12,0x4787c62aL);	HOST_c2l(data,l); X( 7)=l;
   1061 	R0(C,D,A,B,X( 6),17,0xa8304613L);	HOST_c2l(data,l); X( 8)=l;
   1062 	R0(B,C,D,A,X( 7),22,0xfd469501L);	HOST_c2l(data,l); X( 9)=l;
   1063 	R0(A,B,C,D,X( 8), 7,0x698098d8L);	HOST_c2l(data,l); X(10)=l;
   1064 	R0(D,A,B,C,X( 9),12,0x8b44f7afL);	HOST_c2l(data,l); X(11)=l;
   1065 	R0(C,D,A,B,X(10),17,0xffff5bb1L);	HOST_c2l(data,l); X(12)=l;
   1066 	R0(B,C,D,A,X(11),22,0x895cd7beL);	HOST_c2l(data,l); X(13)=l;
   1067 	R0(A,B,C,D,X(12), 7,0x6b901122L);	HOST_c2l(data,l); X(14)=l;
   1068 	R0(D,A,B,C,X(13),12,0xfd987193L);	HOST_c2l(data,l); X(15)=l;
   1069 	R0(C,D,A,B,X(14),17,0xa679438eL);
   1070 	R0(B,C,D,A,X(15),22,0x49b40821L);
   1071 	/* Round 1 */
   1072 	R1(A,B,C,D,X( 1), 5,0xf61e2562L);
   1073 	R1(D,A,B,C,X( 6), 9,0xc040b340L);
   1074 	R1(C,D,A,B,X(11),14,0x265e5a51L);
   1075 	R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
   1076 	R1(A,B,C,D,X( 5), 5,0xd62f105dL);
   1077 	R1(D,A,B,C,X(10), 9,0x02441453L);
   1078 	R1(C,D,A,B,X(15),14,0xd8a1e681L);
   1079 	R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
   1080 	R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
   1081 	R1(D,A,B,C,X(14), 9,0xc33707d6L);
   1082 	R1(C,D,A,B,X( 3),14,0xf4d50d87L);
   1083 	R1(B,C,D,A,X( 8),20,0x455a14edL);
   1084 	R1(A,B,C,D,X(13), 5,0xa9e3e905L);
   1085 	R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
   1086 	R1(C,D,A,B,X( 7),14,0x676f02d9L);
   1087 	R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
   1088 	/* Round 2 */
   1089 	R2(A,B,C,D,X( 5), 4,0xfffa3942L);
   1090 	R2(D,A,B,C,X( 8),11,0x8771f681L);
   1091 	R2(C,D,A,B,X(11),16,0x6d9d6122L);
   1092 	R2(B,C,D,A,X(14),23,0xfde5380cL);
   1093 	R2(A,B,C,D,X( 1), 4,0xa4beea44L);
   1094 	R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
   1095 	R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
   1096 	R2(B,C,D,A,X(10),23,0xbebfbc70L);
   1097 	R2(A,B,C,D,X(13), 4,0x289b7ec6L);
   1098 	R2(D,A,B,C,X( 0),11,0xeaa127faL);
   1099 	R2(C,D,A,B,X( 3),16,0xd4ef3085L);
   1100 	R2(B,C,D,A,X( 6),23,0x04881d05L);
   1101 	R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
   1102 	R2(D,A,B,C,X(12),11,0xe6db99e5L);
   1103 	R2(C,D,A,B,X(15),16,0x1fa27cf8L);
   1104 	R2(B,C,D,A,X( 2),23,0xc4ac5665L);
   1105 	/* Round 3 */
   1106 	R3(A,B,C,D,X( 0), 6,0xf4292244L);
   1107 	R3(D,A,B,C,X( 7),10,0x432aff97L);
   1108 	R3(C,D,A,B,X(14),15,0xab9423a7L);
   1109 	R3(B,C,D,A,X( 5),21,0xfc93a039L);
   1110 	R3(A,B,C,D,X(12), 6,0x655b59c3L);
   1111 	R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
   1112 	R3(C,D,A,B,X(10),15,0xffeff47dL);
   1113 	R3(B,C,D,A,X( 1),21,0x85845dd1L);
   1114 	R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
   1115 	R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
   1116 	R3(C,D,A,B,X( 6),15,0xa3014314L);
   1117 	R3(B,C,D,A,X(13),21,0x4e0811a1L);
   1118 	R3(A,B,C,D,X( 4), 6,0xf7537e82L);
   1119 	R3(D,A,B,C,X(11),10,0xbd3af235L);
   1120 	R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
   1121 	R3(B,C,D,A,X( 9),21,0xeb86d391L);
   1122 
   1123 	A = c->A += A;
   1124 	B = c->B += B;
   1125 	C = c->C += C;
   1126 	D = c->D += D;
   1127 		}
   1128 	}
   1129 #endif
   1130 
   1131 
   1132  // ***************************************************************************
   1133 #if COMPILER_LIKES_PRAGMA_MARK
   1134 #pragma mark - base64 -> binary conversion
   1135 #endif
   1136 
   1137 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
   1138 static const char Pad64 = '=';
   1139 
   1140 
   1141 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
   1142 
   1143 mDNSlocal const char *mDNSstrchr(const char *s, int c)
   1144 	{
   1145 	while (1)
   1146 		{
   1147 		if (c == *s) return s;
   1148 		if (!*s) return mDNSNULL;
   1149 		s++;
   1150 		}
   1151 	}
   1152 
   1153 // skips all whitespace anywhere.
   1154 // converts characters, four at a time, starting at (or after)
   1155 // src from base - 64 numbers into three 8 bit bytes in the target area.
   1156 // it returns the number of data bytes stored at the target, or -1 on error.
   1157 // adapted from BIND sources
   1158 
   1159 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
   1160 	{
   1161 	int tarindex, state, ch;
   1162 	const char *pos;
   1163 
   1164 	state = 0;
   1165 	tarindex = 0;
   1166 
   1167 	while ((ch = *src++) != '\0') {
   1168 		if (mDNSisspace(ch))	/* Skip whitespace anywhere. */
   1169 			continue;
   1170 
   1171 		if (ch == Pad64)
   1172 			break;
   1173 
   1174 		pos = mDNSstrchr(Base64, ch);
   1175 		if (pos == 0) 		/* A non-base64 character. */
   1176 			return (-1);
   1177 
   1178 		switch (state) {
   1179 		case 0:
   1180 			if (target) {
   1181 				if ((mDNSu32)tarindex >= targsize)
   1182 					return (-1);
   1183 				target[tarindex] = (mDNSu8)((pos - Base64) << 2);
   1184 			}
   1185 			state = 1;
   1186 			break;
   1187 		case 1:
   1188 			if (target) {
   1189 				if ((mDNSu32)tarindex + 1 >= targsize)
   1190 					return (-1);
   1191 				target[tarindex]   |=  (pos - Base64) >> 4;
   1192 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
   1193 			}
   1194 			tarindex++;
   1195 			state = 2;
   1196 			break;
   1197 		case 2:
   1198 			if (target) {
   1199 				if ((mDNSu32)tarindex + 1 >= targsize)
   1200 					return (-1);
   1201 				target[tarindex]   |=  (pos - Base64) >> 2;
   1202 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x03) << 6);
   1203 			}
   1204 			tarindex++;
   1205 			state = 3;
   1206 			break;
   1207 		case 3:
   1208 			if (target) {
   1209 				if ((mDNSu32)tarindex >= targsize)
   1210 					return (-1);
   1211 				target[tarindex] |= (pos - Base64);
   1212 			}
   1213 			tarindex++;
   1214 			state = 0;
   1215 			break;
   1216 		default:
   1217 			return -1;
   1218 		}
   1219 	}
   1220 
   1221 	/*
   1222 	 * We are done decoding Base-64 chars.  Let's see if we ended
   1223 	 * on a byte boundary, and/or with erroneous trailing characters.
   1224 	 */
   1225 
   1226 	if (ch == Pad64) {		/* We got a pad char. */
   1227 		ch = *src++;		/* Skip it, get next. */
   1228 		switch (state) {
   1229 		case 0:		/* Invalid = in first position */
   1230 		case 1:		/* Invalid = in second position */
   1231 			return (-1);
   1232 
   1233 		case 2:		/* Valid, means one byte of info */
   1234 			/* Skip any number of spaces. */
   1235 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
   1236 				if (!mDNSisspace(ch))
   1237 					break;
   1238 			/* Make sure there is another trailing = sign. */
   1239 			if (ch != Pad64)
   1240 				return (-1);
   1241 			ch = *src++;		/* Skip the = */
   1242 			/* Fall through to "single trailing =" case. */
   1243 			/* FALLTHROUGH */
   1244 
   1245 		case 3:		/* Valid, means two bytes of info */
   1246 			/*
   1247 			 * We know this char is an =.  Is there anything but
   1248 			 * whitespace after it?
   1249 			 */
   1250 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
   1251 				if (!mDNSisspace(ch))
   1252 					return (-1);
   1253 
   1254 			/*
   1255 			 * Now make sure for cases 2 and 3 that the "extra"
   1256 			 * bits that slopped past the last full byte were
   1257 			 * zeros.  If we don't check them, they become a
   1258 			 * subliminal channel.
   1259 			 */
   1260 			if (target && target[tarindex] != 0)
   1261 				return (-1);
   1262 		}
   1263 	} else {
   1264 		/*
   1265 		 * We ended by seeing the end of the string.  Make sure we
   1266 		 * have no partial bytes lying around.
   1267 		 */
   1268 		if (state != 0)
   1269 			return (-1);
   1270 		}
   1271 
   1272 	return (tarindex);
   1273 	}
   1274 
   1275 
   1276  // ***************************************************************************
   1277 #if COMPILER_LIKES_PRAGMA_MARK
   1278 #pragma mark - API exported to mDNS Core
   1279 #endif
   1280 
   1281 // Constants
   1282 #define HMAC_IPAD   0x36
   1283 #define HMAC_OPAD   0x5c
   1284 #define MD5_LEN     16
   1285 
   1286 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
   1287 
   1288 // Adapted from Appendix, RFC 2104
   1289 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
   1290 	{
   1291 	MD5_CTX k;
   1292 	mDNSu8 buf[MD5_LEN];
   1293 	int i;
   1294 
   1295 	// If key is longer than HMAC_LEN reset it to MD5(key)
   1296 	if (len > HMAC_LEN)
   1297 		{
   1298 		MD5_Init(&k);
   1299 		MD5_Update(&k, key, len);
   1300 		MD5_Final(buf, &k);
   1301 		key = buf;
   1302 		len = MD5_LEN;
   1303 		}
   1304 
   1305 	// store key in pads
   1306 	mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
   1307 	mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
   1308 	mDNSPlatformMemCopy(info->keydata_ipad, key, len);
   1309 	mDNSPlatformMemCopy(info->keydata_opad, key, len);
   1310 
   1311 	// XOR key with ipad and opad values
   1312 	for (i = 0; i < HMAC_LEN; i++)
   1313 		{
   1314 		info->keydata_ipad[i] ^= HMAC_IPAD;
   1315 		info->keydata_opad[i] ^= HMAC_OPAD;
   1316 		}
   1317 
   1318 	}
   1319 
   1320 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
   1321 	{
   1322 	mDNSu8 keybuf[1024];
   1323 	mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
   1324 	if (keylen < 0) return(keylen);
   1325 	DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
   1326 	return(keylen);
   1327 	}
   1328 
   1329 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
   1330 	{
   1331 	AuthRecord tsig;
   1332 	mDNSu8  *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals;	// Get existing numAdditionals value
   1333 	mDNSu32 utc32;
   1334 	mDNSu8 utc48[6];
   1335 	mDNSu8 digest[MD5_LEN];
   1336 	mDNSu8 *ptr = *end;
   1337 	mDNSu32 len;
   1338 	mDNSOpaque16 buf;
   1339 	MD5_CTX c;
   1340 	mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
   1341 
   1342 	// Init MD5 context, digest inner key pad and message
   1343     MD5_Init(&c);
   1344     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
   1345 	MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
   1346 
   1347 	// Construct TSIG RR, digesting variables as apporpriate
   1348 	mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
   1349 
   1350 	// key name
   1351 	AssignDomainName(&tsig.namestorage, &info->keyname);
   1352 	MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
   1353 
   1354 	// class
   1355 	tsig.resrec.rrclass = kDNSQClass_ANY;
   1356 	buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
   1357 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1358 
   1359 	// ttl
   1360 	tsig.resrec.rroriginalttl = 0;
   1361 	MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
   1362 
   1363 	// alg name
   1364 	AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
   1365 	len = DomainNameLength(&HMAC_MD5_AlgName);
   1366 	rdata = tsig.resrec.rdata->u.data + len;
   1367 	MD5_Update(&c, HMAC_MD5_AlgName.c, len);
   1368 
   1369 	// time
   1370 	// get UTC (universal time), convert to 48-bit unsigned in network byte order
   1371 	utc32 = (mDNSu32)mDNSPlatformUTC();
   1372 	if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
   1373 	utc48[0] = 0;
   1374 	utc48[1] = 0;
   1375 	utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
   1376 	utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
   1377 	utc48[4] = (mDNSu8)((utc32 >>  8) & 0xff);
   1378 	utc48[5] = (mDNSu8)( utc32        & 0xff);
   1379 
   1380 	mDNSPlatformMemCopy(rdata, utc48, 6);
   1381 	rdata += 6;
   1382 	MD5_Update(&c, utc48, 6);
   1383 
   1384 	// 300 sec is fudge recommended in RFC 2485
   1385 	rdata[0] = (mDNSu8)((300 >> 8)  & 0xff);
   1386 	rdata[1] = (mDNSu8)( 300        & 0xff);
   1387 	MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
   1388 	rdata += sizeof(mDNSOpaque16);
   1389 
   1390 	// digest error (tcode) and other data len (zero) - we'll add them to the rdata later
   1391 	buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
   1392 	buf.b[1] = (mDNSu8)( tcode       & 0xff);
   1393 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
   1394 	buf.NotAnInteger = 0;
   1395 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
   1396 
   1397 	// finish the message & tsig var hash
   1398     MD5_Final(digest, &c);
   1399 
   1400 	// perform outer MD5 (outer key pad, inner digest)
   1401 	MD5_Init(&c);
   1402 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
   1403 	MD5_Update(&c, digest, MD5_LEN);
   1404 	MD5_Final(digest, &c);
   1405 
   1406 	// set remaining rdata fields
   1407 	rdata[0] = (mDNSu8)((MD5_LEN >> 8)  & 0xff);
   1408 	rdata[1] = (mDNSu8)( MD5_LEN        & 0xff);
   1409 	rdata += sizeof(mDNSOpaque16);
   1410 	mDNSPlatformMemCopy(rdata, digest, MD5_LEN);                          // MAC
   1411 	rdata += MD5_LEN;
   1412 	rdata[0] = msg->h.id.b[0];                                            // original ID
   1413 	rdata[1] = msg->h.id.b[1];
   1414 	rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
   1415 	rdata[3] = (mDNSu8)( tcode       & 0xff);
   1416 	rdata[4] = 0;                                                         // other data len
   1417 	rdata[5] = 0;
   1418 	rdata += 6;
   1419 
   1420 	tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
   1421 	*end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
   1422 	if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
   1423 
   1424 	// Write back updated numAdditionals value
   1425 	countPtr[0] = (mDNSu8)(numAdditionals >> 8);
   1426 	countPtr[1] = (mDNSu8)(numAdditionals &  0xFF);
   1427 	}
   1428 
   1429 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
   1430 	{
   1431 	mDNSu8			*	ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
   1432 	mDNSs32				now;
   1433 	mDNSs32				then;
   1434 	mDNSu8				thisDigest[MD5_LEN];
   1435 	mDNSu8				thatDigest[MD5_LEN];
   1436 	mDNSu32				macsize;
   1437 	mDNSOpaque16 		buf;
   1438 	mDNSu8				utc48[6];
   1439 	mDNSs32				delta;
   1440 	mDNSu16				fudge;
   1441 	domainname		*	algo;
   1442 	MD5_CTX				c;
   1443 	mDNSBool			ok = mDNSfalse;
   1444 
   1445 	// We only support HMAC-MD5 for now
   1446 
   1447 	algo = (domainname*) ptr;
   1448 
   1449 	if (!SameDomainName(algo, &HMAC_MD5_AlgName))
   1450 		{
   1451 		LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
   1452 		*rcode = kDNSFlag1_RC_NotAuth;
   1453 		*tcode = TSIG_ErrBadKey;
   1454 		ok = mDNSfalse;
   1455 		goto exit;
   1456 		}
   1457 
   1458 	ptr += DomainNameLength(algo);
   1459 
   1460 	// Check the times
   1461 
   1462 	now = mDNSPlatformUTC();
   1463 	if (now == -1)
   1464 		{
   1465 		LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
   1466 		*rcode = kDNSFlag1_RC_NotAuth;
   1467 		*tcode = TSIG_ErrBadTime;
   1468 		ok = mDNSfalse;
   1469 		goto exit;
   1470 		}
   1471 
   1472 	// Get the 48 bit time field, skipping over the first word
   1473 
   1474 	utc48[0] = *ptr++;
   1475 	utc48[1] = *ptr++;
   1476 	utc48[2] = *ptr++;
   1477 	utc48[3] = *ptr++;
   1478 	utc48[4] = *ptr++;
   1479 	utc48[5] = *ptr++;
   1480 
   1481 	then  = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
   1482 
   1483 	fudge = NToH16(ptr);
   1484 
   1485 	ptr += sizeof(mDNSu16);
   1486 
   1487 	delta = (now > then) ? now - then : then - now;
   1488 
   1489 	if (delta > fudge)
   1490 		{
   1491 		LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
   1492 		*rcode = kDNSFlag1_RC_NotAuth;
   1493 		*tcode = TSIG_ErrBadTime;
   1494 		ok = mDNSfalse;
   1495 		goto exit;
   1496 		}
   1497 
   1498 	// MAC size
   1499 
   1500 	macsize = (mDNSu32) NToH16(ptr);
   1501 
   1502 	ptr += sizeof(mDNSu16);
   1503 
   1504 	// MAC
   1505 
   1506 	mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
   1507 
   1508 	// Init MD5 context, digest inner key pad and message
   1509 
   1510 	MD5_Init(&c);
   1511 	MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
   1512 	MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
   1513 
   1514 	// Key name
   1515 
   1516 	MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
   1517 
   1518 	// Class name
   1519 
   1520 	buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
   1521 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1522 
   1523 	// TTL
   1524 
   1525 	MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
   1526 
   1527 	// Algorithm
   1528 
   1529 	MD5_Update(&c, algo->c, DomainNameLength(algo));
   1530 
   1531 	// Time
   1532 
   1533 	MD5_Update(&c, utc48, 6);
   1534 
   1535 	// Fudge
   1536 
   1537 	buf = mDNSOpaque16fromIntVal(fudge);
   1538 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
   1539 
   1540 	// Digest error and other data len (both zero) - we'll add them to the rdata later
   1541 
   1542 	buf.NotAnInteger = 0;
   1543 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
   1544 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
   1545 
   1546 	// Finish the message & tsig var hash
   1547 
   1548     MD5_Final(thisDigest, &c);
   1549 
   1550 	// perform outer MD5 (outer key pad, inner digest)
   1551 
   1552 	MD5_Init(&c);
   1553 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
   1554 	MD5_Update(&c, thisDigest, MD5_LEN);
   1555 	MD5_Final(thisDigest, &c);
   1556 
   1557 	if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
   1558 		{
   1559 		LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
   1560 		*rcode = kDNSFlag1_RC_NotAuth;
   1561 		*tcode = TSIG_ErrBadSig;
   1562 		ok = mDNSfalse;
   1563 		goto exit;
   1564 		}
   1565 
   1566 	// set remaining rdata fields
   1567 	ok = mDNStrue;
   1568 
   1569 exit:
   1570 
   1571 	return ok;
   1572 	}
   1573 
   1574 
   1575 #ifdef __cplusplus
   1576 }
   1577 #endif
   1578