Home | History | Annotate | Download | only in softpipe
      1 /**************************************************************************
      2  *
      3  * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /**
     29  * \brief  Primitive rasterization/rendering (points, lines, triangles)
     30  *
     31  * \author  Keith Whitwell <keith (at) tungstengraphics.com>
     32  * \author  Brian Paul
     33  */
     34 
     35 #include "sp_context.h"
     36 #include "sp_quad.h"
     37 #include "sp_quad_pipe.h"
     38 #include "sp_setup.h"
     39 #include "sp_state.h"
     40 #include "draw/draw_context.h"
     41 #include "draw/draw_vertex.h"
     42 #include "pipe/p_shader_tokens.h"
     43 #include "util/u_math.h"
     44 #include "util/u_memory.h"
     45 
     46 
     47 #define DEBUG_VERTS 0
     48 #define DEBUG_FRAGS 0
     49 
     50 
     51 /**
     52  * Triangle edge info
     53  */
     54 struct edge {
     55    float dx;		/**< X(v1) - X(v0), used only during setup */
     56    float dy;		/**< Y(v1) - Y(v0), used only during setup */
     57    float dxdy;		/**< dx/dy */
     58    float sx, sy;	/**< first sample point coord */
     59    int lines;		/**< number of lines on this edge */
     60 };
     61 
     62 
     63 /**
     64  * Max number of quads (2x2 pixel blocks) to process per batch.
     65  * This can't be arbitrarily increased since we depend on some 32-bit
     66  * bitmasks (two bits per quad).
     67  */
     68 #define MAX_QUADS 16
     69 
     70 
     71 /**
     72  * Triangle setup info.
     73  * Also used for line drawing (taking some liberties).
     74  */
     75 struct setup_context {
     76    struct softpipe_context *softpipe;
     77 
     78    /* Vertices are just an array of floats making up each attribute in
     79     * turn.  Currently fixed at 4 floats, but should change in time.
     80     * Codegen will help cope with this.
     81     */
     82    const float (*vmax)[4];
     83    const float (*vmid)[4];
     84    const float (*vmin)[4];
     85    const float (*vprovoke)[4];
     86 
     87    struct edge ebot;
     88    struct edge etop;
     89    struct edge emaj;
     90 
     91    float oneoverarea;
     92    int facing;
     93 
     94    float pixel_offset;
     95 
     96    struct quad_header quad[MAX_QUADS];
     97    struct quad_header *quad_ptrs[MAX_QUADS];
     98    unsigned count;
     99 
    100    struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
    101    struct tgsi_interp_coef posCoef;  /* For Z, W */
    102 
    103    struct {
    104       int left[2];   /**< [0] = row0, [1] = row1 */
    105       int right[2];
    106       int y;
    107    } span;
    108 
    109 #if DEBUG_FRAGS
    110    uint numFragsEmitted;  /**< per primitive */
    111    uint numFragsWritten;  /**< per primitive */
    112 #endif
    113 
    114    unsigned cull_face;		/* which faces cull */
    115    unsigned nr_vertex_attrs;
    116 };
    117 
    118 
    119 
    120 
    121 
    122 
    123 
    124 /**
    125  * Clip setup->quad against the scissor/surface bounds.
    126  */
    127 static INLINE void
    128 quad_clip(struct setup_context *setup, struct quad_header *quad)
    129 {
    130    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
    131    const int minx = (int) cliprect->minx;
    132    const int maxx = (int) cliprect->maxx;
    133    const int miny = (int) cliprect->miny;
    134    const int maxy = (int) cliprect->maxy;
    135 
    136    if (quad->input.x0 >= maxx ||
    137        quad->input.y0 >= maxy ||
    138        quad->input.x0 + 1 < minx ||
    139        quad->input.y0 + 1 < miny) {
    140       /* totally clipped */
    141       quad->inout.mask = 0x0;
    142       return;
    143    }
    144    if (quad->input.x0 < minx)
    145       quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
    146    if (quad->input.y0 < miny)
    147       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
    148    if (quad->input.x0 == maxx - 1)
    149       quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
    150    if (quad->input.y0 == maxy - 1)
    151       quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
    152 }
    153 
    154 
    155 /**
    156  * Emit a quad (pass to next stage) with clipping.
    157  */
    158 static INLINE void
    159 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
    160 {
    161    quad_clip( setup, quad );
    162 
    163    if (quad->inout.mask) {
    164       struct softpipe_context *sp = setup->softpipe;
    165 
    166 #if DEBUG_FRAGS
    167       setup->numFragsEmitted += util_bitcount(quad->inout.mask);
    168 #endif
    169 
    170       sp->quad.first->run( sp->quad.first, &quad, 1 );
    171    }
    172 }
    173 
    174 
    175 
    176 /**
    177  * Given an X or Y coordinate, return the block/quad coordinate that it
    178  * belongs to.
    179  */
    180 static INLINE int
    181 block(int x)
    182 {
    183    return x & ~(2-1);
    184 }
    185 
    186 
    187 static INLINE int
    188 block_x(int x)
    189 {
    190    return x & ~(16-1);
    191 }
    192 
    193 
    194 /**
    195  * Render a horizontal span of quads
    196  */
    197 static void
    198 flush_spans(struct setup_context *setup)
    199 {
    200    const int step = MAX_QUADS;
    201    const int xleft0 = setup->span.left[0];
    202    const int xleft1 = setup->span.left[1];
    203    const int xright0 = setup->span.right[0];
    204    const int xright1 = setup->span.right[1];
    205    struct quad_stage *pipe = setup->softpipe->quad.first;
    206 
    207    const int minleft = block_x(MIN2(xleft0, xleft1));
    208    const int maxright = MAX2(xright0, xright1);
    209    int x;
    210 
    211    /* process quads in horizontal chunks of 16 */
    212    for (x = minleft; x < maxright; x += step) {
    213       unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
    214       unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
    215       unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
    216       unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
    217       unsigned lx = x;
    218       unsigned q = 0;
    219 
    220       unsigned skipmask_left0 = (1U << skip_left0) - 1U;
    221       unsigned skipmask_left1 = (1U << skip_left1) - 1U;
    222 
    223       /* These calculations fail when step == 32 and skip_right == 0.
    224        */
    225       unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
    226       unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
    227 
    228       unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
    229       unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
    230 
    231       if (mask0 | mask1) {
    232          do {
    233             unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
    234             if (quadmask) {
    235                setup->quad[q].input.x0 = lx;
    236                setup->quad[q].input.y0 = setup->span.y;
    237                setup->quad[q].input.facing = setup->facing;
    238                setup->quad[q].inout.mask = quadmask;
    239                setup->quad_ptrs[q] = &setup->quad[q];
    240                q++;
    241 #if DEBUG_FRAGS
    242                setup->numFragsEmitted += util_bitcount(quadmask);
    243 #endif
    244             }
    245             mask0 >>= 2;
    246             mask1 >>= 2;
    247             lx += 2;
    248          } while (mask0 | mask1);
    249 
    250          pipe->run( pipe, setup->quad_ptrs, q );
    251       }
    252    }
    253 
    254 
    255    setup->span.y = 0;
    256    setup->span.right[0] = 0;
    257    setup->span.right[1] = 0;
    258    setup->span.left[0] = 1000000;     /* greater than right[0] */
    259    setup->span.left[1] = 1000000;     /* greater than right[1] */
    260 }
    261 
    262 
    263 #if DEBUG_VERTS
    264 static void
    265 print_vertex(const struct setup_context *setup,
    266              const float (*v)[4])
    267 {
    268    int i;
    269    debug_printf("   Vertex: (%p)\n", (void *) v);
    270    for (i = 0; i < setup->nr_vertex_attrs; i++) {
    271       debug_printf("     %d: %f %f %f %f\n",  i,
    272               v[i][0], v[i][1], v[i][2], v[i][3]);
    273       if (util_is_inf_or_nan(v[i][0])) {
    274          debug_printf("   NaN!\n");
    275       }
    276    }
    277 }
    278 #endif
    279 
    280 
    281 /**
    282  * Sort the vertices from top to bottom order, setting up the triangle
    283  * edge fields (ebot, emaj, etop).
    284  * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
    285  */
    286 static boolean
    287 setup_sort_vertices(struct setup_context *setup,
    288                     float det,
    289                     const float (*v0)[4],
    290                     const float (*v1)[4],
    291                     const float (*v2)[4])
    292 {
    293    if (setup->softpipe->rasterizer->flatshade_first)
    294       setup->vprovoke = v0;
    295    else
    296       setup->vprovoke = v2;
    297 
    298    /* determine bottom to top order of vertices */
    299    {
    300       float y0 = v0[0][1];
    301       float y1 = v1[0][1];
    302       float y2 = v2[0][1];
    303       if (y0 <= y1) {
    304 	 if (y1 <= y2) {
    305 	    /* y0<=y1<=y2 */
    306 	    setup->vmin = v0;
    307 	    setup->vmid = v1;
    308 	    setup->vmax = v2;
    309 	 }
    310 	 else if (y2 <= y0) {
    311 	    /* y2<=y0<=y1 */
    312 	    setup->vmin = v2;
    313 	    setup->vmid = v0;
    314 	    setup->vmax = v1;
    315 	 }
    316 	 else {
    317 	    /* y0<=y2<=y1 */
    318 	    setup->vmin = v0;
    319 	    setup->vmid = v2;
    320 	    setup->vmax = v1;
    321 	 }
    322       }
    323       else {
    324 	 if (y0 <= y2) {
    325 	    /* y1<=y0<=y2 */
    326 	    setup->vmin = v1;
    327 	    setup->vmid = v0;
    328 	    setup->vmax = v2;
    329 	 }
    330 	 else if (y2 <= y1) {
    331 	    /* y2<=y1<=y0 */
    332 	    setup->vmin = v2;
    333 	    setup->vmid = v1;
    334 	    setup->vmax = v0;
    335 	 }
    336 	 else {
    337 	    /* y1<=y2<=y0 */
    338 	    setup->vmin = v1;
    339 	    setup->vmid = v2;
    340 	    setup->vmax = v0;
    341 	 }
    342       }
    343    }
    344 
    345    setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
    346    setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
    347    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
    348    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
    349    setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
    350    setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
    351 
    352    /*
    353     * Compute triangle's area.  Use 1/area to compute partial
    354     * derivatives of attributes later.
    355     *
    356     * The area will be the same as prim->det, but the sign may be
    357     * different depending on how the vertices get sorted above.
    358     *
    359     * To determine whether the primitive is front or back facing we
    360     * use the prim->det value because its sign is correct.
    361     */
    362    {
    363       const float area = (setup->emaj.dx * setup->ebot.dy -
    364 			    setup->ebot.dx * setup->emaj.dy);
    365 
    366       setup->oneoverarea = 1.0f / area;
    367 
    368       /*
    369       debug_printf("%s one-over-area %f  area %f  det %f\n",
    370                    __FUNCTION__, setup->oneoverarea, area, det );
    371       */
    372       if (util_is_inf_or_nan(setup->oneoverarea))
    373          return FALSE;
    374    }
    375 
    376    /* We need to know if this is a front or back-facing triangle for:
    377     *  - the GLSL gl_FrontFacing fragment attribute (bool)
    378     *  - two-sided stencil test
    379     * 0 = front-facing, 1 = back-facing
    380     */
    381    setup->facing =
    382       ((det < 0.0) ^
    383        (setup->softpipe->rasterizer->front_ccw));
    384 
    385    {
    386       unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
    387 
    388       if (face & setup->cull_face)
    389 	 return FALSE;
    390    }
    391 
    392 
    393    /* Prepare pixel offset for rasterisation:
    394     *  - pixel center (0.5, 0.5) for GL, or
    395     *  - assume (0.0, 0.0) for other APIs.
    396     */
    397    if (setup->softpipe->rasterizer->gl_rasterization_rules) {
    398       setup->pixel_offset = 0.5f;
    399    } else {
    400       setup->pixel_offset = 0.0f;
    401    }
    402 
    403    return TRUE;
    404 }
    405 
    406 
    407 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
    408  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
    409  * Some combinations of coordinates produce invalid results,
    410  * but this behaviour is acceptable.
    411  */
    412 static void
    413 tri_apply_cylindrical_wrap(float v0,
    414                            float v1,
    415                            float v2,
    416                            uint cylindrical_wrap,
    417                            float output[3])
    418 {
    419    if (cylindrical_wrap) {
    420       float delta;
    421 
    422       delta = v1 - v0;
    423       if (delta > 0.5f) {
    424          v0 += 1.0f;
    425       }
    426       else if (delta < -0.5f) {
    427          v1 += 1.0f;
    428       }
    429 
    430       delta = v2 - v1;
    431       if (delta > 0.5f) {
    432          v1 += 1.0f;
    433       }
    434       else if (delta < -0.5f) {
    435          v2 += 1.0f;
    436       }
    437 
    438       delta = v0 - v2;
    439       if (delta > 0.5f) {
    440          v2 += 1.0f;
    441       }
    442       else if (delta < -0.5f) {
    443          v0 += 1.0f;
    444       }
    445    }
    446 
    447    output[0] = v0;
    448    output[1] = v1;
    449    output[2] = v2;
    450 }
    451 
    452 
    453 /**
    454  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
    455  * The value value comes from vertex[slot][i].
    456  * The result will be put into setup->coef[slot].a0[i].
    457  * \param slot  which attribute slot
    458  * \param i  which component of the slot (0..3)
    459  */
    460 static void
    461 const_coeff(struct setup_context *setup,
    462             struct tgsi_interp_coef *coef,
    463             uint vertSlot, uint i)
    464 {
    465    assert(i <= 3);
    466 
    467    coef->dadx[i] = 0;
    468    coef->dady[i] = 0;
    469 
    470    /* need provoking vertex info!
    471     */
    472    coef->a0[i] = setup->vprovoke[vertSlot][i];
    473 }
    474 
    475 
    476 /**
    477  * Compute a0, dadx and dady for a linearly interpolated coefficient,
    478  * for a triangle.
    479  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
    480  */
    481 static void
    482 tri_linear_coeff(struct setup_context *setup,
    483                  struct tgsi_interp_coef *coef,
    484                  uint i,
    485                  const float v[3])
    486 {
    487    float botda = v[1] - v[0];
    488    float majda = v[2] - v[0];
    489    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
    490    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
    491    float dadx = a * setup->oneoverarea;
    492    float dady = b * setup->oneoverarea;
    493 
    494    assert(i <= 3);
    495 
    496    coef->dadx[i] = dadx;
    497    coef->dady[i] = dady;
    498 
    499    /* calculate a0 as the value which would be sampled for the
    500     * fragment at (0,0), taking into account that we want to sample at
    501     * pixel centers, in other words (pixel_offset, pixel_offset).
    502     *
    503     * this is neat but unfortunately not a good way to do things for
    504     * triangles with very large values of dadx or dady as it will
    505     * result in the subtraction and re-addition from a0 of a very
    506     * large number, which means we'll end up loosing a lot of the
    507     * fractional bits and precision from a0.  the way to fix this is
    508     * to define a0 as the sample at a pixel center somewhere near vmin
    509     * instead - i'll switch to this later.
    510     */
    511    coef->a0[i] = (v[0] -
    512                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    513                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    514 
    515    /*
    516    debug_printf("attr[%d].%c: %f dx:%f dy:%f\n",
    517 		slot, "xyzw"[i],
    518 		setup->coef[slot].a0[i],
    519 		setup->coef[slot].dadx[i],
    520 		setup->coef[slot].dady[i]);
    521    */
    522 }
    523 
    524 
    525 /**
    526  * Compute a0, dadx and dady for a perspective-corrected interpolant,
    527  * for a triangle.
    528  * We basically multiply the vertex value by 1/w before computing
    529  * the plane coefficients (a0, dadx, dady).
    530  * Later, when we compute the value at a particular fragment position we'll
    531  * divide the interpolated value by the interpolated W at that fragment.
    532  * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
    533  */
    534 static void
    535 tri_persp_coeff(struct setup_context *setup,
    536                 struct tgsi_interp_coef *coef,
    537                 uint i,
    538                 const float v[3])
    539 {
    540    /* premultiply by 1/w  (v[0][3] is always W):
    541     */
    542    float mina = v[0] * setup->vmin[0][3];
    543    float mida = v[1] * setup->vmid[0][3];
    544    float maxa = v[2] * setup->vmax[0][3];
    545    float botda = mida - mina;
    546    float majda = maxa - mina;
    547    float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
    548    float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
    549    float dadx = a * setup->oneoverarea;
    550    float dady = b * setup->oneoverarea;
    551 
    552    /*
    553    debug_printf("tri persp %d,%d: %f %f %f\n", vertSlot, i,
    554           	setup->vmin[vertSlot][i],
    555           	setup->vmid[vertSlot][i],
    556        		setup->vmax[vertSlot][i]
    557           );
    558    */
    559    assert(i <= 3);
    560 
    561    coef->dadx[i] = dadx;
    562    coef->dady[i] = dady;
    563    coef->a0[i] = (mina -
    564                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    565                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    566 }
    567 
    568 
    569 /**
    570  * Special coefficient setup for gl_FragCoord.
    571  * X and Y are trivial, though Y may have to be inverted for OpenGL.
    572  * Z and W are copied from posCoef which should have already been computed.
    573  * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
    574  */
    575 static void
    576 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
    577 {
    578    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    579 
    580    /*X*/
    581    setup->coef[slot].a0[0] = fsInfo->pixel_center_integer ? 0.0 : 0.5;
    582    setup->coef[slot].dadx[0] = 1.0;
    583    setup->coef[slot].dady[0] = 0.0;
    584    /*Y*/
    585    setup->coef[slot].a0[1] =
    586 		   (fsInfo->origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
    587 		   + (fsInfo->pixel_center_integer ? 0.0 : 0.5);
    588    setup->coef[slot].dadx[1] = 0.0;
    589    setup->coef[slot].dady[1] = fsInfo->origin_lower_left ? -1.0 : 1.0;
    590    /*Z*/
    591    setup->coef[slot].a0[2] = setup->posCoef.a0[2];
    592    setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
    593    setup->coef[slot].dady[2] = setup->posCoef.dady[2];
    594    /*W*/
    595    setup->coef[slot].a0[3] = setup->posCoef.a0[3];
    596    setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
    597    setup->coef[slot].dady[3] = setup->posCoef.dady[3];
    598 }
    599 
    600 
    601 
    602 /**
    603  * Compute the setup->coef[] array dadx, dady, a0 values.
    604  * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
    605  */
    606 static void
    607 setup_tri_coefficients(struct setup_context *setup)
    608 {
    609    struct softpipe_context *softpipe = setup->softpipe;
    610    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    611    const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
    612    uint fragSlot;
    613    float v[3];
    614 
    615    /* z and w are done by linear interpolation:
    616     */
    617    v[0] = setup->vmin[0][2];
    618    v[1] = setup->vmid[0][2];
    619    v[2] = setup->vmax[0][2];
    620    tri_linear_coeff(setup, &setup->posCoef, 2, v);
    621 
    622    v[0] = setup->vmin[0][3];
    623    v[1] = setup->vmid[0][3];
    624    v[2] = setup->vmax[0][3];
    625    tri_linear_coeff(setup, &setup->posCoef, 3, v);
    626 
    627    /* setup interpolation for all the remaining attributes:
    628     */
    629    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
    630       const uint vertSlot = vinfo->attrib[fragSlot].src_index;
    631       uint j;
    632 
    633       switch (vinfo->attrib[fragSlot].interp_mode) {
    634       case INTERP_CONSTANT:
    635          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
    636             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
    637          break;
    638       case INTERP_LINEAR:
    639          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    640             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
    641                                        setup->vmid[vertSlot][j],
    642                                        setup->vmax[vertSlot][j],
    643                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
    644                                        v);
    645             tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
    646          }
    647          break;
    648       case INTERP_PERSPECTIVE:
    649          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    650             tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
    651                                        setup->vmid[vertSlot][j],
    652                                        setup->vmax[vertSlot][j],
    653                                        fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
    654                                        v);
    655             tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
    656          }
    657          break;
    658       case INTERP_POS:
    659          setup_fragcoord_coeff(setup, fragSlot);
    660          break;
    661       default:
    662          assert(0);
    663       }
    664 
    665       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
    666          /* convert 0 to 1.0 and 1 to -1.0 */
    667          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
    668          setup->coef[fragSlot].dadx[0] = 0.0;
    669          setup->coef[fragSlot].dady[0] = 0.0;
    670       }
    671    }
    672 }
    673 
    674 
    675 static void
    676 setup_tri_edges(struct setup_context *setup)
    677 {
    678    float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
    679    float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
    680 
    681    float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
    682    float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
    683    float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
    684 
    685    setup->emaj.sy = ceilf(vmin_y);
    686    setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
    687    setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
    688    setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
    689 
    690    setup->etop.sy = ceilf(vmid_y);
    691    setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
    692    setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
    693    setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
    694 
    695    setup->ebot.sy = ceilf(vmin_y);
    696    setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
    697    setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
    698    setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
    699 }
    700 
    701 
    702 /**
    703  * Render the upper or lower half of a triangle.
    704  * Scissoring/cliprect is applied here too.
    705  */
    706 static void
    707 subtriangle(struct setup_context *setup,
    708             struct edge *eleft,
    709             struct edge *eright,
    710             int lines)
    711 {
    712    const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
    713    const int minx = (int) cliprect->minx;
    714    const int maxx = (int) cliprect->maxx;
    715    const int miny = (int) cliprect->miny;
    716    const int maxy = (int) cliprect->maxy;
    717    int y, start_y, finish_y;
    718    int sy = (int)eleft->sy;
    719 
    720    assert((int)eleft->sy == (int) eright->sy);
    721    assert(lines >= 0);
    722 
    723    /* clip top/bottom */
    724    start_y = sy;
    725    if (start_y < miny)
    726       start_y = miny;
    727 
    728    finish_y = sy + lines;
    729    if (finish_y > maxy)
    730       finish_y = maxy;
    731 
    732    start_y -= sy;
    733    finish_y -= sy;
    734 
    735    /*
    736    debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
    737    */
    738 
    739    for (y = start_y; y < finish_y; y++) {
    740 
    741       /* avoid accumulating adds as floats don't have the precision to
    742        * accurately iterate large triangle edges that way.  luckily we
    743        * can just multiply these days.
    744        *
    745        * this is all drowned out by the attribute interpolation anyway.
    746        */
    747       int left = (int)(eleft->sx + y * eleft->dxdy);
    748       int right = (int)(eright->sx + y * eright->dxdy);
    749 
    750       /* clip left/right */
    751       if (left < minx)
    752          left = minx;
    753       if (right > maxx)
    754          right = maxx;
    755 
    756       if (left < right) {
    757          int _y = sy + y;
    758          if (block(_y) != setup->span.y) {
    759             flush_spans(setup);
    760             setup->span.y = block(_y);
    761          }
    762 
    763          setup->span.left[_y&1] = left;
    764          setup->span.right[_y&1] = right;
    765       }
    766    }
    767 
    768 
    769    /* save the values so that emaj can be restarted:
    770     */
    771    eleft->sx += lines * eleft->dxdy;
    772    eright->sx += lines * eright->dxdy;
    773    eleft->sy += lines;
    774    eright->sy += lines;
    775 }
    776 
    777 
    778 /**
    779  * Recalculate prim's determinant.  This is needed as we don't have
    780  * get this information through the vbuf_render interface & we must
    781  * calculate it here.
    782  */
    783 static float
    784 calc_det(const float (*v0)[4],
    785          const float (*v1)[4],
    786          const float (*v2)[4])
    787 {
    788    /* edge vectors e = v0 - v2, f = v1 - v2 */
    789    const float ex = v0[0][0] - v2[0][0];
    790    const float ey = v0[0][1] - v2[0][1];
    791    const float fx = v1[0][0] - v2[0][0];
    792    const float fy = v1[0][1] - v2[0][1];
    793 
    794    /* det = cross(e,f).z */
    795    return ex * fy - ey * fx;
    796 }
    797 
    798 
    799 /**
    800  * Do setup for triangle rasterization, then render the triangle.
    801  */
    802 void
    803 sp_setup_tri(struct setup_context *setup,
    804              const float (*v0)[4],
    805              const float (*v1)[4],
    806              const float (*v2)[4])
    807 {
    808    float det;
    809 
    810 #if DEBUG_VERTS
    811    debug_printf("Setup triangle:\n");
    812    print_vertex(setup, v0);
    813    print_vertex(setup, v1);
    814    print_vertex(setup, v2);
    815 #endif
    816 
    817    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
    818       return;
    819 
    820    det = calc_det(v0, v1, v2);
    821    /*
    822    debug_printf("%s\n", __FUNCTION__ );
    823    */
    824 
    825 #if DEBUG_FRAGS
    826    setup->numFragsEmitted = 0;
    827    setup->numFragsWritten = 0;
    828 #endif
    829 
    830    if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
    831       return;
    832 
    833    setup_tri_coefficients( setup );
    834    setup_tri_edges( setup );
    835 
    836    assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
    837 
    838    setup->span.y = 0;
    839    setup->span.right[0] = 0;
    840    setup->span.right[1] = 0;
    841    /*   setup->span.z_mode = tri_z_mode( setup->ctx ); */
    842 
    843    /*   init_constant_attribs( setup ); */
    844 
    845    if (setup->oneoverarea < 0.0) {
    846       /* emaj on left:
    847        */
    848       subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
    849       subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
    850    }
    851    else {
    852       /* emaj on right:
    853        */
    854       subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
    855       subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
    856    }
    857 
    858    flush_spans( setup );
    859 
    860 #if DEBUG_FRAGS
    861    printf("Tri: %u frags emitted, %u written\n",
    862           setup->numFragsEmitted,
    863           setup->numFragsWritten);
    864 #endif
    865 }
    866 
    867 
    868 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
    869  * Input coordinates must be in [0, 1] range, otherwise results are undefined.
    870  */
    871 static void
    872 line_apply_cylindrical_wrap(float v0,
    873                             float v1,
    874                             uint cylindrical_wrap,
    875                             float output[2])
    876 {
    877    if (cylindrical_wrap) {
    878       float delta;
    879 
    880       delta = v1 - v0;
    881       if (delta > 0.5f) {
    882          v0 += 1.0f;
    883       }
    884       else if (delta < -0.5f) {
    885          v1 += 1.0f;
    886       }
    887    }
    888 
    889    output[0] = v0;
    890    output[1] = v1;
    891 }
    892 
    893 
    894 /**
    895  * Compute a0, dadx and dady for a linearly interpolated coefficient,
    896  * for a line.
    897  * v[0] and v[1] are vmin and vmax, respectively.
    898  */
    899 static void
    900 line_linear_coeff(const struct setup_context *setup,
    901                   struct tgsi_interp_coef *coef,
    902                   uint i,
    903                   const float v[2])
    904 {
    905    const float da = v[1] - v[0];
    906    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
    907    const float dady = da * setup->emaj.dy * setup->oneoverarea;
    908    coef->dadx[i] = dadx;
    909    coef->dady[i] = dady;
    910    coef->a0[i] = (v[0] -
    911                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    912                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    913 }
    914 
    915 
    916 /**
    917  * Compute a0, dadx and dady for a perspective-corrected interpolant,
    918  * for a line.
    919  * v[0] and v[1] are vmin and vmax, respectively.
    920  */
    921 static void
    922 line_persp_coeff(const struct setup_context *setup,
    923                  struct tgsi_interp_coef *coef,
    924                  uint i,
    925                  const float v[2])
    926 {
    927    const float a0 = v[0] * setup->vmin[0][3];
    928    const float a1 = v[1] * setup->vmax[0][3];
    929    const float da = a1 - a0;
    930    const float dadx = da * setup->emaj.dx * setup->oneoverarea;
    931    const float dady = da * setup->emaj.dy * setup->oneoverarea;
    932    coef->dadx[i] = dadx;
    933    coef->dady[i] = dady;
    934    coef->a0[i] = (a0 -
    935                   (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
    936                    dady * (setup->vmin[0][1] - setup->pixel_offset)));
    937 }
    938 
    939 
    940 /**
    941  * Compute the setup->coef[] array dadx, dady, a0 values.
    942  * Must be called after setup->vmin,vmax are initialized.
    943  */
    944 static boolean
    945 setup_line_coefficients(struct setup_context *setup,
    946                         const float (*v0)[4],
    947                         const float (*v1)[4])
    948 {
    949    struct softpipe_context *softpipe = setup->softpipe;
    950    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
    951    const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
    952    uint fragSlot;
    953    float area;
    954    float v[2];
    955 
    956    /* use setup->vmin, vmax to point to vertices */
    957    if (softpipe->rasterizer->flatshade_first)
    958       setup->vprovoke = v0;
    959    else
    960       setup->vprovoke = v1;
    961    setup->vmin = v0;
    962    setup->vmax = v1;
    963 
    964    setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
    965    setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
    966 
    967    /* NOTE: this is not really area but something proportional to it */
    968    area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
    969    if (area == 0.0f || util_is_inf_or_nan(area))
    970       return FALSE;
    971    setup->oneoverarea = 1.0f / area;
    972 
    973    /* z and w are done by linear interpolation:
    974     */
    975    v[0] = setup->vmin[0][2];
    976    v[1] = setup->vmax[0][2];
    977    line_linear_coeff(setup, &setup->posCoef, 2, v);
    978 
    979    v[0] = setup->vmin[0][3];
    980    v[1] = setup->vmax[0][3];
    981    line_linear_coeff(setup, &setup->posCoef, 3, v);
    982 
    983    /* setup interpolation for all the remaining attributes:
    984     */
    985    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
    986       const uint vertSlot = vinfo->attrib[fragSlot].src_index;
    987       uint j;
    988 
    989       switch (vinfo->attrib[fragSlot].interp_mode) {
    990       case INTERP_CONSTANT:
    991          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
    992             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
    993          break;
    994       case INTERP_LINEAR:
    995          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
    996             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
    997                                         setup->vmax[vertSlot][j],
    998                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
    999                                         v);
   1000             line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
   1001          }
   1002          break;
   1003       case INTERP_PERSPECTIVE:
   1004          for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
   1005             line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
   1006                                         setup->vmax[vertSlot][j],
   1007                                         fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
   1008                                         v);
   1009             line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
   1010          }
   1011          break;
   1012       case INTERP_POS:
   1013          setup_fragcoord_coeff(setup, fragSlot);
   1014          break;
   1015       default:
   1016          assert(0);
   1017       }
   1018 
   1019       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
   1020          /* convert 0 to 1.0 and 1 to -1.0 */
   1021          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
   1022          setup->coef[fragSlot].dadx[0] = 0.0;
   1023          setup->coef[fragSlot].dady[0] = 0.0;
   1024       }
   1025    }
   1026    return TRUE;
   1027 }
   1028 
   1029 
   1030 /**
   1031  * Plot a pixel in a line segment.
   1032  */
   1033 static INLINE void
   1034 plot(struct setup_context *setup, int x, int y)
   1035 {
   1036    const int iy = y & 1;
   1037    const int ix = x & 1;
   1038    const int quadX = x - ix;
   1039    const int quadY = y - iy;
   1040    const int mask = (1 << ix) << (2 * iy);
   1041 
   1042    if (quadX != setup->quad[0].input.x0 ||
   1043        quadY != setup->quad[0].input.y0)
   1044    {
   1045       /* flush prev quad, start new quad */
   1046 
   1047       if (setup->quad[0].input.x0 != -1)
   1048          clip_emit_quad( setup, &setup->quad[0] );
   1049 
   1050       setup->quad[0].input.x0 = quadX;
   1051       setup->quad[0].input.y0 = quadY;
   1052       setup->quad[0].inout.mask = 0x0;
   1053    }
   1054 
   1055    setup->quad[0].inout.mask |= mask;
   1056 }
   1057 
   1058 
   1059 /**
   1060  * Do setup for line rasterization, then render the line.
   1061  * Single-pixel width, no stipple, etc.  We rely on the 'draw' module
   1062  * to handle stippling and wide lines.
   1063  */
   1064 void
   1065 sp_setup_line(struct setup_context *setup,
   1066               const float (*v0)[4],
   1067               const float (*v1)[4])
   1068 {
   1069    int x0 = (int) v0[0][0];
   1070    int x1 = (int) v1[0][0];
   1071    int y0 = (int) v0[0][1];
   1072    int y1 = (int) v1[0][1];
   1073    int dx = x1 - x0;
   1074    int dy = y1 - y0;
   1075    int xstep, ystep;
   1076 
   1077 #if DEBUG_VERTS
   1078    debug_printf("Setup line:\n");
   1079    print_vertex(setup, v0);
   1080    print_vertex(setup, v1);
   1081 #endif
   1082 
   1083    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
   1084       return;
   1085 
   1086    if (dx == 0 && dy == 0)
   1087       return;
   1088 
   1089    if (!setup_line_coefficients(setup, v0, v1))
   1090       return;
   1091 
   1092    assert(v0[0][0] < 1.0e9);
   1093    assert(v0[0][1] < 1.0e9);
   1094    assert(v1[0][0] < 1.0e9);
   1095    assert(v1[0][1] < 1.0e9);
   1096 
   1097    if (dx < 0) {
   1098       dx = -dx;   /* make positive */
   1099       xstep = -1;
   1100    }
   1101    else {
   1102       xstep = 1;
   1103    }
   1104 
   1105    if (dy < 0) {
   1106       dy = -dy;   /* make positive */
   1107       ystep = -1;
   1108    }
   1109    else {
   1110       ystep = 1;
   1111    }
   1112 
   1113    assert(dx >= 0);
   1114    assert(dy >= 0);
   1115    assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
   1116 
   1117    setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
   1118    setup->quad[0].inout.mask = 0x0;
   1119 
   1120    /* XXX temporary: set coverage to 1.0 so the line appears
   1121     * if AA mode happens to be enabled.
   1122     */
   1123    setup->quad[0].input.coverage[0] =
   1124    setup->quad[0].input.coverage[1] =
   1125    setup->quad[0].input.coverage[2] =
   1126    setup->quad[0].input.coverage[3] = 1.0;
   1127 
   1128    if (dx > dy) {
   1129       /*** X-major line ***/
   1130       int i;
   1131       const int errorInc = dy + dy;
   1132       int error = errorInc - dx;
   1133       const int errorDec = error - dx;
   1134 
   1135       for (i = 0; i < dx; i++) {
   1136          plot(setup, x0, y0);
   1137 
   1138          x0 += xstep;
   1139          if (error < 0) {
   1140             error += errorInc;
   1141          }
   1142          else {
   1143             error += errorDec;
   1144             y0 += ystep;
   1145          }
   1146       }
   1147    }
   1148    else {
   1149       /*** Y-major line ***/
   1150       int i;
   1151       const int errorInc = dx + dx;
   1152       int error = errorInc - dy;
   1153       const int errorDec = error - dy;
   1154 
   1155       for (i = 0; i < dy; i++) {
   1156          plot(setup, x0, y0);
   1157 
   1158          y0 += ystep;
   1159          if (error < 0) {
   1160             error += errorInc;
   1161          }
   1162          else {
   1163             error += errorDec;
   1164             x0 += xstep;
   1165          }
   1166       }
   1167    }
   1168 
   1169    /* draw final quad */
   1170    if (setup->quad[0].inout.mask) {
   1171       clip_emit_quad( setup, &setup->quad[0] );
   1172    }
   1173 }
   1174 
   1175 
   1176 static void
   1177 point_persp_coeff(const struct setup_context *setup,
   1178                   const float (*vert)[4],
   1179                   struct tgsi_interp_coef *coef,
   1180                   uint vertSlot, uint i)
   1181 {
   1182    assert(i <= 3);
   1183    coef->dadx[i] = 0.0F;
   1184    coef->dady[i] = 0.0F;
   1185    coef->a0[i] = vert[vertSlot][i] * vert[0][3];
   1186 }
   1187 
   1188 
   1189 /**
   1190  * Do setup for point rasterization, then render the point.
   1191  * Round or square points...
   1192  * XXX could optimize a lot for 1-pixel points.
   1193  */
   1194 void
   1195 sp_setup_point(struct setup_context *setup,
   1196                const float (*v0)[4])
   1197 {
   1198    struct softpipe_context *softpipe = setup->softpipe;
   1199    const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
   1200    const int sizeAttr = setup->softpipe->psize_slot;
   1201    const float size
   1202       = sizeAttr > 0 ? v0[sizeAttr][0]
   1203       : setup->softpipe->rasterizer->point_size;
   1204    const float halfSize = 0.5F * size;
   1205    const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
   1206    const float x = v0[0][0];  /* Note: data[0] is always position */
   1207    const float y = v0[0][1];
   1208    const struct vertex_info *vinfo = softpipe_get_vertex_info(softpipe);
   1209    uint fragSlot;
   1210 
   1211 #if DEBUG_VERTS
   1212    debug_printf("Setup point:\n");
   1213    print_vertex(setup, v0);
   1214 #endif
   1215 
   1216    if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
   1217       return;
   1218 
   1219    assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
   1220 
   1221    /* For points, all interpolants are constant-valued.
   1222     * However, for point sprites, we'll need to setup texcoords appropriately.
   1223     * XXX: which coefficients are the texcoords???
   1224     * We may do point sprites as textured quads...
   1225     *
   1226     * KW: We don't know which coefficients are texcoords - ultimately
   1227     * the choice of what interpolation mode to use for each attribute
   1228     * should be determined by the fragment program, using
   1229     * per-attribute declaration statements that include interpolation
   1230     * mode as a parameter.  So either the fragment program will have
   1231     * to be adjusted for pointsprite vs normal point behaviour, or
   1232     * otherwise a special interpolation mode will have to be defined
   1233     * which matches the required behaviour for point sprites.  But -
   1234     * the latter is not a feature of normal hardware, and as such
   1235     * probably should be ruled out on that basis.
   1236     */
   1237    setup->vprovoke = v0;
   1238 
   1239    /* setup Z, W */
   1240    const_coeff(setup, &setup->posCoef, 0, 2);
   1241    const_coeff(setup, &setup->posCoef, 0, 3);
   1242 
   1243    for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
   1244       const uint vertSlot = vinfo->attrib[fragSlot].src_index;
   1245       uint j;
   1246 
   1247       switch (vinfo->attrib[fragSlot].interp_mode) {
   1248       case INTERP_CONSTANT:
   1249          /* fall-through */
   1250       case INTERP_LINEAR:
   1251          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
   1252             const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
   1253          break;
   1254       case INTERP_PERSPECTIVE:
   1255          for (j = 0; j < TGSI_NUM_CHANNELS; j++)
   1256             point_persp_coeff(setup, setup->vprovoke,
   1257                               &setup->coef[fragSlot], vertSlot, j);
   1258          break;
   1259       case INTERP_POS:
   1260          setup_fragcoord_coeff(setup, fragSlot);
   1261          break;
   1262       default:
   1263          assert(0);
   1264       }
   1265 
   1266       if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
   1267          /* convert 0 to 1.0 and 1 to -1.0 */
   1268          setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
   1269          setup->coef[fragSlot].dadx[0] = 0.0;
   1270          setup->coef[fragSlot].dady[0] = 0.0;
   1271       }
   1272    }
   1273 
   1274 
   1275    if (halfSize <= 0.5 && !round) {
   1276       /* special case for 1-pixel points */
   1277       const int ix = ((int) x) & 1;
   1278       const int iy = ((int) y) & 1;
   1279       setup->quad[0].input.x0 = (int) x - ix;
   1280       setup->quad[0].input.y0 = (int) y - iy;
   1281       setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
   1282       clip_emit_quad( setup, &setup->quad[0] );
   1283    }
   1284    else {
   1285       if (round) {
   1286          /* rounded points */
   1287          const int ixmin = block((int) (x - halfSize));
   1288          const int ixmax = block((int) (x + halfSize));
   1289          const int iymin = block((int) (y - halfSize));
   1290          const int iymax = block((int) (y + halfSize));
   1291          const float rmin = halfSize - 0.7071F;  /* 0.7071 = sqrt(2)/2 */
   1292          const float rmax = halfSize + 0.7071F;
   1293          const float rmin2 = MAX2(0.0F, rmin * rmin);
   1294          const float rmax2 = rmax * rmax;
   1295          const float cscale = 1.0F / (rmax2 - rmin2);
   1296          int ix, iy;
   1297 
   1298          for (iy = iymin; iy <= iymax; iy += 2) {
   1299             for (ix = ixmin; ix <= ixmax; ix += 2) {
   1300                float dx, dy, dist2, cover;
   1301 
   1302                setup->quad[0].inout.mask = 0x0;
   1303 
   1304                dx = (ix + 0.5f) - x;
   1305                dy = (iy + 0.5f) - y;
   1306                dist2 = dx * dx + dy * dy;
   1307                if (dist2 <= rmax2) {
   1308                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1309                   setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
   1310                   setup->quad[0].inout.mask |= MASK_TOP_LEFT;
   1311                }
   1312 
   1313                dx = (ix + 1.5f) - x;
   1314                dy = (iy + 0.5f) - y;
   1315                dist2 = dx * dx + dy * dy;
   1316                if (dist2 <= rmax2) {
   1317                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1318                   setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
   1319                   setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
   1320                }
   1321 
   1322                dx = (ix + 0.5f) - x;
   1323                dy = (iy + 1.5f) - y;
   1324                dist2 = dx * dx + dy * dy;
   1325                if (dist2 <= rmax2) {
   1326                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1327                   setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
   1328                   setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
   1329                }
   1330 
   1331                dx = (ix + 1.5f) - x;
   1332                dy = (iy + 1.5f) - y;
   1333                dist2 = dx * dx + dy * dy;
   1334                if (dist2 <= rmax2) {
   1335                   cover = 1.0F - (dist2 - rmin2) * cscale;
   1336                   setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
   1337                   setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
   1338                }
   1339 
   1340                if (setup->quad[0].inout.mask) {
   1341                   setup->quad[0].input.x0 = ix;
   1342                   setup->quad[0].input.y0 = iy;
   1343                   clip_emit_quad( setup, &setup->quad[0] );
   1344                }
   1345             }
   1346          }
   1347       }
   1348       else {
   1349          /* square points */
   1350          const int xmin = (int) (x + 0.75 - halfSize);
   1351          const int ymin = (int) (y + 0.25 - halfSize);
   1352          const int xmax = xmin + (int) size;
   1353          const int ymax = ymin + (int) size;
   1354          /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
   1355          const int ixmin = block(xmin);
   1356          const int ixmax = block(xmax - 1);
   1357          const int iymin = block(ymin);
   1358          const int iymax = block(ymax - 1);
   1359          int ix, iy;
   1360 
   1361          /*
   1362          debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
   1363          */
   1364          for (iy = iymin; iy <= iymax; iy += 2) {
   1365             uint rowMask = 0xf;
   1366             if (iy < ymin) {
   1367                /* above the top edge */
   1368                rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
   1369             }
   1370             if (iy + 1 >= ymax) {
   1371                /* below the bottom edge */
   1372                rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
   1373             }
   1374 
   1375             for (ix = ixmin; ix <= ixmax; ix += 2) {
   1376                uint mask = rowMask;
   1377 
   1378                if (ix < xmin) {
   1379                   /* fragment is past left edge of point, turn off left bits */
   1380                   mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
   1381                }
   1382                if (ix + 1 >= xmax) {
   1383                   /* past the right edge */
   1384                   mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
   1385                }
   1386 
   1387                setup->quad[0].inout.mask = mask;
   1388                setup->quad[0].input.x0 = ix;
   1389                setup->quad[0].input.y0 = iy;
   1390                clip_emit_quad( setup, &setup->quad[0] );
   1391             }
   1392          }
   1393       }
   1394    }
   1395 }
   1396 
   1397 
   1398 /**
   1399  * Called by vbuf code just before we start buffering primitives.
   1400  */
   1401 void
   1402 sp_setup_prepare(struct setup_context *setup)
   1403 {
   1404    struct softpipe_context *sp = setup->softpipe;
   1405 
   1406    if (sp->dirty) {
   1407       softpipe_update_derived(sp, sp->reduced_api_prim);
   1408    }
   1409 
   1410    /* Note: nr_attrs is only used for debugging (vertex printing) */
   1411    setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
   1412 
   1413    sp->quad.first->begin( sp->quad.first );
   1414 
   1415    if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
   1416        sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
   1417        sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
   1418       /* we'll do culling */
   1419       setup->cull_face = sp->rasterizer->cull_face;
   1420    }
   1421    else {
   1422       /* 'draw' will do culling */
   1423       setup->cull_face = PIPE_FACE_NONE;
   1424    }
   1425 }
   1426 
   1427 
   1428 void
   1429 sp_setup_destroy_context(struct setup_context *setup)
   1430 {
   1431    FREE( setup );
   1432 }
   1433 
   1434 
   1435 /**
   1436  * Create a new primitive setup/render stage.
   1437  */
   1438 struct setup_context *
   1439 sp_setup_create_context(struct softpipe_context *softpipe)
   1440 {
   1441    struct setup_context *setup = CALLOC_STRUCT(setup_context);
   1442    unsigned i;
   1443 
   1444    setup->softpipe = softpipe;
   1445 
   1446    for (i = 0; i < MAX_QUADS; i++) {
   1447       setup->quad[i].coef = setup->coef;
   1448       setup->quad[i].posCoef = &setup->posCoef;
   1449    }
   1450 
   1451    setup->span.left[0] = 1000000;     /* greater than right[0] */
   1452    setup->span.left[1] = 1000000;     /* greater than right[1] */
   1453 
   1454    return setup;
   1455 }
   1456