Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkMatrix44_DEFINED
      9 #define SkMatrix44_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkScalar.h"
     13 
     14 #ifdef SK_MSCALAR_IS_DOUBLE
     15 #ifdef SK_MSCALAR_IS_FLOAT
     16     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     17 #endif
     18     typedef double SkMScalar;
     19 
     20     static inline double SkFloatToMScalar(float x) {
     21         return static_cast<double>(x);
     22     }
     23     static inline float SkMScalarToFloat(double x) {
     24         return static_cast<float>(x);
     25     }
     26     static inline double SkDoubleToMScalar(double x) {
     27         return x;
     28     }
     29     static inline double SkMScalarToDouble(double x) {
     30         return x;
     31     }
     32     static const SkMScalar SK_MScalarPI = 3.141592653589793;
     33 #elif defined SK_MSCALAR_IS_FLOAT
     34 #ifdef SK_MSCALAR_IS_DOUBLE
     35     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     36 #endif
     37     typedef float SkMScalar;
     38 
     39     static inline float SkFloatToMScalar(float x) {
     40         return x;
     41     }
     42     static inline float SkMScalarToFloat(float x) {
     43         return x;
     44     }
     45     static inline float SkDoubleToMScalar(double x) {
     46         return static_cast<float>(x);
     47     }
     48     static inline double SkMScalarToDouble(float x) {
     49         return static_cast<double>(x);
     50     }
     51     static const SkMScalar SK_MScalarPI = 3.14159265f;
     52 #endif
     53 
     54 #define SkMScalarToScalar SkMScalarToFloat
     55 #define SkScalarToMScalar SkFloatToMScalar
     56 
     57 static const SkMScalar SK_MScalar1 = 1;
     58 
     59 ///////////////////////////////////////////////////////////////////////////////
     60 
     61 struct SkVector4 {
     62     SkScalar fData[4];
     63 
     64     SkVector4() {
     65         this->set(0, 0, 0, 1);
     66     }
     67     SkVector4(const SkVector4& src) {
     68         memcpy(fData, src.fData, sizeof(fData));
     69     }
     70     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
     71         fData[0] = x;
     72         fData[1] = y;
     73         fData[2] = z;
     74         fData[3] = w;
     75     }
     76 
     77     SkVector4& operator=(const SkVector4& src) {
     78         memcpy(fData, src.fData, sizeof(fData));
     79         return *this;
     80     }
     81 
     82     bool operator==(const SkVector4& v) {
     83         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
     84                fData[2] == v.fData[2] && fData[3] == v.fData[3];
     85     }
     86     bool operator!=(const SkVector4& v) {
     87         return !(*this == v);
     88     }
     89     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
     90         return fData[0] == x && fData[1] == y &&
     91                fData[2] == z && fData[3] == w;
     92     }
     93 
     94     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
     95         fData[0] = x;
     96         fData[1] = y;
     97         fData[2] = z;
     98         fData[3] = w;
     99     }
    100 };
    101 
    102 class SK_API SkMatrix44 {
    103 public:
    104 
    105     enum Uninitialized_Constructor {
    106         kUninitialized_Constructor
    107     };
    108     enum Identity_Constructor {
    109         kIdentity_Constructor
    110     };
    111 
    112     SkMatrix44(Uninitialized_Constructor) { }
    113     SkMatrix44(Identity_Constructor) { this->setIdentity(); }
    114 
    115     // DEPRECATED: use the constructors that take an enum
    116     SkMatrix44() { this->setIdentity(); }
    117 
    118     SkMatrix44(const SkMatrix44& src) {
    119         memcpy(fMat, src.fMat, sizeof(fMat));
    120         fTypeMask = src.fTypeMask;
    121     }
    122 
    123     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
    124         this->setConcat(a, b);
    125     }
    126 
    127     SkMatrix44& operator=(const SkMatrix44& src) {
    128         if (&src != this) {
    129             memcpy(fMat, src.fMat, sizeof(fMat));
    130             fTypeMask = src.fTypeMask;
    131         }
    132         return *this;
    133     }
    134 
    135     bool operator==(const SkMatrix44& other) const;
    136     bool operator!=(const SkMatrix44& other) const {
    137         return !(other == *this);
    138     }
    139 
    140     SkMatrix44(const SkMatrix&);
    141     SkMatrix44& operator=(const SkMatrix& src);
    142     operator SkMatrix() const;
    143 
    144     /**
    145      *  Return a reference to a const identity matrix
    146      */
    147     static const SkMatrix44& I();
    148 
    149     enum TypeMask {
    150         kIdentity_Mask      = 0,
    151         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
    152         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
    153         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
    154         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
    155     };
    156 
    157     /**
    158      *  Returns a bitfield describing the transformations the matrix may
    159      *  perform. The bitfield is computed conservatively, so it may include
    160      *  false positives. For example, when kPerspective_Mask is true, all
    161      *  other bits may be set to true even in the case of a pure perspective
    162      *  transform.
    163      */
    164     inline TypeMask getType() const {
    165         if (fTypeMask & kUnknown_Mask) {
    166             fTypeMask = this->computeTypeMask();
    167         }
    168         SkASSERT(!(fTypeMask & kUnknown_Mask));
    169         return (TypeMask)fTypeMask;
    170     }
    171 
    172     /**
    173      *  Return true if the matrix is identity.
    174      */
    175     inline bool isIdentity() const {
    176         return kIdentity_Mask == this->getType();
    177     }
    178 
    179     /**
    180      *  Return true if the matrix contains translate or is identity.
    181      */
    182     inline bool isTranslate() const {
    183         return !(this->getType() & ~kTranslate_Mask);
    184     }
    185 
    186     /**
    187      *  Return true if the matrix only contains scale or translate or is identity.
    188      */
    189     inline bool isScaleTranslate() const {
    190         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    191     }
    192 
    193     void setIdentity();
    194     inline void reset() { this->setIdentity();}
    195 
    196     /**
    197      *  get a value from the matrix. The row,col parameters work as follows:
    198      *  (0, 0)  scale-x
    199      *  (0, 3)  translate-x
    200      *  (3, 0)  perspective-x
    201      */
    202     inline SkMScalar get(int row, int col) const {
    203         SkASSERT((unsigned)row <= 3);
    204         SkASSERT((unsigned)col <= 3);
    205         return fMat[col][row];
    206     }
    207 
    208     /**
    209      *  set a value in the matrix. The row,col parameters work as follows:
    210      *  (0, 0)  scale-x
    211      *  (0, 3)  translate-x
    212      *  (3, 0)  perspective-x
    213      */
    214     inline void set(int row, int col, SkMScalar value) {
    215         SkASSERT((unsigned)row <= 3);
    216         SkASSERT((unsigned)col <= 3);
    217         fMat[col][row] = value;
    218         this->dirtyTypeMask();
    219     }
    220 
    221     inline double getDouble(int row, int col) const {
    222         return SkMScalarToDouble(this->get(row, col));
    223     }
    224     inline void setDouble(int row, int col, double value) {
    225         this->set(row, col, SkDoubleToMScalar(value));
    226     }
    227 
    228     /** These methods allow one to efficiently read matrix entries into an
    229      *  array. The given array must have room for exactly 16 entries. Whenever
    230      *  possible, they will try to use memcpy rather than an entry-by-entry
    231      *  copy.
    232      */
    233     void asColMajorf(float[]) const;
    234     void asColMajord(double[]) const;
    235     void asRowMajorf(float[]) const;
    236     void asRowMajord(double[]) const;
    237 
    238     /** These methods allow one to efficiently set all matrix entries from an
    239      *  array. The given array must have room for exactly 16 entries. Whenever
    240      *  possible, they will try to use memcpy rather than an entry-by-entry
    241      *  copy.
    242      */
    243     void setColMajorf(const float[]);
    244     void setColMajord(const double[]);
    245     void setRowMajorf(const float[]);
    246     void setRowMajord(const double[]);
    247 
    248 #ifdef SK_MSCALAR_IS_FLOAT
    249     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
    250     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
    251 #else
    252     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
    253     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
    254 #endif
    255 
    256     void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
    257                 SkMScalar m10, SkMScalar m11, SkMScalar m12,
    258                 SkMScalar m20, SkMScalar m21, SkMScalar m22);
    259 
    260     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    261     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    262     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    263 
    264     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    265     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    266     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    267 
    268     inline void setScale(SkMScalar scale) {
    269         this->setScale(scale, scale, scale);
    270     }
    271     inline void preScale(SkMScalar scale) {
    272         this->preScale(scale, scale, scale);
    273     }
    274     inline void postScale(SkMScalar scale) {
    275         this->postScale(scale, scale, scale);
    276     }
    277 
    278     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    279                                SkMScalar degrees) {
    280         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
    281     }
    282 
    283     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
    284         it will be automatically resized.
    285      */
    286     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    287                         SkMScalar radians);
    288     /** Rotate about the vector [x,y,z]. Does not check the length of the
    289         vector, assuming it is unit-length.
    290      */
    291     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
    292                             SkMScalar radians);
    293 
    294     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
    295     inline void preConcat(const SkMatrix44& m) {
    296         this->setConcat(*this, m);
    297     }
    298     inline void postConcat(const SkMatrix44& m) {
    299         this->setConcat(m, *this);
    300     }
    301 
    302     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
    303         return SkMatrix44(a, b);
    304     }
    305 
    306     /** If this is invertible, return that in inverse and return true. If it is
    307         not invertible, return false and ignore the inverse parameter.
    308      */
    309     bool invert(SkMatrix44* inverse) const;
    310 
    311     /** Transpose this matrix in place. */
    312     void transpose();
    313 
    314     /** Apply the matrix to the src vector, returning the new vector in dst.
    315         It is legal for src and dst to point to the same memory.
    316      */
    317     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
    318     inline void mapScalars(SkScalar vec[4]) const {
    319         this->mapScalars(vec, vec);
    320     }
    321 
    322     // DEPRECATED: call mapScalars()
    323     void map(const SkScalar src[4], SkScalar dst[4]) const {
    324         this->mapScalars(src, dst);
    325     }
    326     // DEPRECATED: call mapScalars()
    327     void map(SkScalar vec[4]) const {
    328         this->mapScalars(vec, vec);
    329     }
    330 
    331 #ifdef SK_MSCALAR_IS_DOUBLE
    332     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
    333 #elif defined SK_MSCALAR_IS_FLOAT
    334     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
    335         this->mapScalars(src, dst);
    336     }
    337 #endif
    338     inline void mapMScalars(SkMScalar vec[4]) const {
    339         this->mapMScalars(vec, vec);
    340     }
    341 
    342     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
    343         SkVector4 dst;
    344         m.map(src.fData, dst.fData);
    345         return dst;
    346     }
    347 
    348     /**
    349      *  map an array of [x, y, 0, 1] through the matrix, returning an array
    350      *  of [x', y', z', w'].
    351      *
    352      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
    353      *  @param count    number of [x, y] pairs in src2
    354      *  @param dst4     array of [x', y', z', w'] quads as the output.
    355      */
    356     void map2(const float src2[], int count, float dst4[]) const;
    357     void map2(const double src2[], int count, double dst4[]) const;
    358 
    359     void dump() const;
    360 
    361     double determinant() const;
    362 
    363 private:
    364     SkMScalar           fMat[4][4];
    365     mutable unsigned    fTypeMask;
    366 
    367     enum {
    368         kUnknown_Mask = 0x80,
    369 
    370         kAllPublic_Masks = 0xF
    371     };
    372 
    373     SkMScalar transX() const { return fMat[3][0]; }
    374     SkMScalar transY() const { return fMat[3][1]; }
    375     SkMScalar transZ() const { return fMat[3][2]; }
    376 
    377     SkMScalar scaleX() const { return fMat[0][0]; }
    378     SkMScalar scaleY() const { return fMat[1][1]; }
    379     SkMScalar scaleZ() const { return fMat[2][2]; }
    380 
    381     SkMScalar perspX() const { return fMat[0][3]; }
    382     SkMScalar perspY() const { return fMat[1][3]; }
    383     SkMScalar perspZ() const { return fMat[2][3]; }
    384 
    385     int computeTypeMask() const;
    386 
    387     inline void dirtyTypeMask() {
    388         fTypeMask = kUnknown_Mask;
    389     }
    390 
    391     inline void setTypeMask(int mask) {
    392         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
    393         fTypeMask = mask;
    394     }
    395 
    396     /**
    397      *  Does not take the time to 'compute' the typemask. Only returns true if
    398      *  we already know that this matrix is identity.
    399      */
    400     inline bool isTriviallyIdentity() const {
    401         return 0 == fTypeMask;
    402     }
    403 };
    404 
    405 #endif
    406