Home | History | Annotate | Download | only in effects
      1 
      2 /*
      3  * Copyright 2006 The Android Open Source Project
      4  *
      5  * Use of this source code is governed by a BSD-style license that can be
      6  * found in the LICENSE file.
      7  */
      8 
      9 
     10 #include "SkDashPathEffect.h"
     11 #include "SkFlattenableBuffers.h"
     12 #include "SkPathMeasure.h"
     13 
     14 static inline int is_even(int x) {
     15     return (~x) << 31;
     16 }
     17 
     18 static SkScalar FindFirstInterval(const SkScalar intervals[], SkScalar phase,
     19                                   int32_t* index, int count) {
     20     for (int i = 0; i < count; ++i) {
     21         if (phase > intervals[i]) {
     22             phase -= intervals[i];
     23         } else {
     24             *index = i;
     25             return intervals[i] - phase;
     26         }
     27     }
     28     // If we get here, phase "appears" to be larger than our length. This
     29     // shouldn't happen with perfect precision, but we can accumulate errors
     30     // during the initial length computation (rounding can make our sum be too
     31     // big or too small. In that event, we just have to eat the error here.
     32     *index = 0;
     33     return intervals[0];
     34 }
     35 
     36 SkDashPathEffect::SkDashPathEffect(const SkScalar intervals[], int count,
     37                                    SkScalar phase, bool scaleToFit)
     38         : fScaleToFit(scaleToFit) {
     39     SkASSERT(intervals);
     40     SkASSERT(count > 1 && SkAlign2(count) == count);
     41 
     42     fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count);
     43     fCount = count;
     44 
     45     SkScalar len = 0;
     46     for (int i = 0; i < count; i++) {
     47         SkASSERT(intervals[i] >= 0);
     48         fIntervals[i] = intervals[i];
     49         len += intervals[i];
     50     }
     51     fIntervalLength = len;
     52 
     53     // watch out for values that might make us go out of bounds
     54     if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
     55 
     56         // Adjust phase to be between 0 and len, "flipping" phase if negative.
     57         // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
     58         if (phase < 0) {
     59             phase = -phase;
     60             if (phase > len) {
     61                 phase = SkScalarMod(phase, len);
     62             }
     63             phase = len - phase;
     64 
     65             // Due to finite precision, it's possible that phase == len,
     66             // even after the subtract (if len >>> phase), so fix that here.
     67             // This fixes http://crbug.com/124652 .
     68             SkASSERT(phase <= len);
     69             if (phase == len) {
     70                 phase = 0;
     71             }
     72         } else if (phase >= len) {
     73             phase = SkScalarMod(phase, len);
     74         }
     75         SkASSERT(phase >= 0 && phase < len);
     76 
     77         fInitialDashLength = FindFirstInterval(intervals, phase,
     78                                                &fInitialDashIndex, count);
     79 
     80         SkASSERT(fInitialDashLength >= 0);
     81         SkASSERT(fInitialDashIndex >= 0 && fInitialDashIndex < fCount);
     82     } else {
     83         fInitialDashLength = -1;    // signal bad dash intervals
     84     }
     85 }
     86 
     87 SkDashPathEffect::~SkDashPathEffect() {
     88     sk_free(fIntervals);
     89 }
     90 
     91 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
     92     SkScalar radius = SkScalarHalf(rec.getWidth());
     93     if (0 == radius) {
     94         radius = SK_Scalar1;    // hairlines
     95     }
     96     if (SkPaint::kMiter_Join == rec.getJoin()) {
     97         radius = SkScalarMul(radius, rec.getMiter());
     98     }
     99     rect->outset(radius, radius);
    100 }
    101 
    102 // Only handles lines for now. If returns true, dstPath is the new (smaller)
    103 // path. If returns false, then dstPath parameter is ignored.
    104 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
    105                       const SkRect* cullRect, SkScalar intervalLength,
    106                       SkPath* dstPath) {
    107     if (NULL == cullRect) {
    108         return false;
    109     }
    110 
    111     SkPoint pts[2];
    112     if (!srcPath.isLine(pts)) {
    113         return false;
    114     }
    115 
    116     SkRect bounds = *cullRect;
    117     outset_for_stroke(&bounds, rec);
    118 
    119     SkScalar dx = pts[1].x() - pts[0].x();
    120     SkScalar dy = pts[1].y() - pts[0].y();
    121 
    122     // just do horizontal lines for now (lazy)
    123     if (dy) {
    124         return false;
    125     }
    126 
    127     SkScalar minX = pts[0].fX;
    128     SkScalar maxX = pts[1].fX;
    129 
    130     if (maxX < bounds.fLeft || minX > bounds.fRight) {
    131         return false;
    132     }
    133 
    134     if (dx < 0) {
    135         SkTSwap(minX, maxX);
    136     }
    137 
    138     // Now we actually perform the chop, removing the excess to the left and
    139     // right of the bounds (keeping our new line "in phase" with the dash,
    140     // hence the (mod intervalLength).
    141 
    142     if (minX < bounds.fLeft) {
    143         minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
    144                                           intervalLength);
    145     }
    146     if (maxX > bounds.fRight) {
    147         maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
    148                                            intervalLength);
    149     }
    150 
    151     SkASSERT(maxX >= minX);
    152     if (dx < 0) {
    153         SkTSwap(minX, maxX);
    154     }
    155     pts[0].fX = minX;
    156     pts[1].fX = maxX;
    157 
    158     dstPath->moveTo(pts[0]);
    159     dstPath->lineTo(pts[1]);
    160     return true;
    161 }
    162 
    163 class SpecialLineRec {
    164 public:
    165     bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
    166               int intervalCount, SkScalar intervalLength) {
    167         if (rec->isHairlineStyle() || !src.isLine(fPts)) {
    168             return false;
    169         }
    170 
    171         // can relax this in the future, if we handle square and round caps
    172         if (SkPaint::kButt_Cap != rec->getCap()) {
    173             return false;
    174         }
    175 
    176         SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
    177 
    178         fTangent = fPts[1] - fPts[0];
    179         if (fTangent.isZero()) {
    180             return false;
    181         }
    182 
    183         fPathLength = pathLength;
    184         fTangent.scale(SkScalarInvert(pathLength));
    185         fTangent.rotateCCW(&fNormal);
    186         fNormal.scale(SkScalarHalf(rec->getWidth()));
    187 
    188         // now estimate how many quads will be added to the path
    189         //     resulting segments = pathLen * intervalCount / intervalLen
    190         //     resulting points = 4 * segments
    191 
    192         SkScalar ptCount = SkScalarMulDiv(pathLength,
    193                                           SkIntToScalar(intervalCount),
    194                                           intervalLength);
    195         int n = SkScalarCeilToInt(ptCount) << 2;
    196         dst->incReserve(n);
    197 
    198         // we will take care of the stroking
    199         rec->setFillStyle();
    200         return true;
    201     }
    202 
    203     void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
    204         SkASSERT(d0 < fPathLength);
    205         // clamp the segment to our length
    206         if (d1 > fPathLength) {
    207             d1 = fPathLength;
    208         }
    209 
    210         SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
    211         SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
    212         SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
    213         SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
    214 
    215         SkPoint pts[4];
    216         pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY);   // moveTo
    217         pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY);   // lineTo
    218         pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY);   // lineTo
    219         pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY);   // lineTo
    220 
    221         path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
    222     }
    223 
    224 private:
    225     SkPoint fPts[2];
    226     SkVector fTangent;
    227     SkVector fNormal;
    228     SkScalar fPathLength;
    229 };
    230 
    231 bool SkDashPathEffect::filterPath(SkPath* dst, const SkPath& src,
    232                               SkStrokeRec* rec, const SkRect* cullRect) const {
    233     // we do nothing if the src wants to be filled, or if our dashlength is 0
    234     if (rec->isFillStyle() || fInitialDashLength < 0) {
    235         return false;
    236     }
    237 
    238     const SkScalar* intervals = fIntervals;
    239     SkScalar        dashCount = 0;
    240     int             segCount = 0;
    241 
    242     SkPath cullPathStorage;
    243     const SkPath* srcPtr = &src;
    244     if (cull_path(src, *rec, cullRect, fIntervalLength, &cullPathStorage)) {
    245         srcPtr = &cullPathStorage;
    246     }
    247 
    248     SpecialLineRec lineRec;
    249     bool specialLine = lineRec.init(*srcPtr, dst, rec, fCount >> 1, fIntervalLength);
    250 
    251     SkPathMeasure   meas(*srcPtr, false);
    252 
    253     do {
    254         bool        skipFirstSegment = meas.isClosed();
    255         bool        addedSegment = false;
    256         SkScalar    length = meas.getLength();
    257         int         index = fInitialDashIndex;
    258         SkScalar    scale = SK_Scalar1;
    259 
    260         // Since the path length / dash length ratio may be arbitrarily large, we can exert
    261         // significant memory pressure while attempting to build the filtered path. To avoid this,
    262         // we simply give up dashing beyond a certain threshold.
    263         //
    264         // The original bug report (http://crbug.com/165432) is based on a path yielding more than
    265         // 90 million dash segments and crashing the memory allocator. A limit of 1 million
    266         // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
    267         // maximum dash memory overhead at roughly 17MB per path.
    268         static const SkScalar kMaxDashCount = 1000000;
    269         dashCount += length * (fCount >> 1) / fIntervalLength;
    270         if (dashCount > kMaxDashCount) {
    271             dst->reset();
    272             return false;
    273         }
    274 
    275         if (fScaleToFit) {
    276             if (fIntervalLength >= length) {
    277                 scale = SkScalarDiv(length, fIntervalLength);
    278             } else {
    279                 SkScalar div = SkScalarDiv(length, fIntervalLength);
    280                 int n = SkScalarFloor(div);
    281                 scale = SkScalarDiv(length, n * fIntervalLength);
    282             }
    283         }
    284 
    285         // Using double precision to avoid looping indefinitely due to single precision rounding
    286         // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
    287         double  distance = 0;
    288         double  dlen = SkScalarMul(fInitialDashLength, scale);
    289 
    290         while (distance < length) {
    291             SkASSERT(dlen >= 0);
    292             addedSegment = false;
    293             if (is_even(index) && dlen > 0 && !skipFirstSegment) {
    294                 addedSegment = true;
    295                 ++segCount;
    296 
    297                 if (specialLine) {
    298                     lineRec.addSegment(SkDoubleToScalar(distance),
    299                                        SkDoubleToScalar(distance + dlen),
    300                                        dst);
    301                 } else {
    302                     meas.getSegment(SkDoubleToScalar(distance),
    303                                     SkDoubleToScalar(distance + dlen),
    304                                     dst, true);
    305                 }
    306             }
    307             distance += dlen;
    308 
    309             // clear this so we only respect it the first time around
    310             skipFirstSegment = false;
    311 
    312             // wrap around our intervals array if necessary
    313             index += 1;
    314             SkASSERT(index <= fCount);
    315             if (index == fCount) {
    316                 index = 0;
    317             }
    318 
    319             // fetch our next dlen
    320             dlen = SkScalarMul(intervals[index], scale);
    321         }
    322 
    323         // extend if we ended on a segment and we need to join up with the (skipped) initial segment
    324         if (meas.isClosed() && is_even(fInitialDashIndex) &&
    325                 fInitialDashLength > 0) {
    326             meas.getSegment(0, SkScalarMul(fInitialDashLength, scale), dst, !addedSegment);
    327             ++segCount;
    328         }
    329     } while (meas.nextContour());
    330 
    331     if (segCount > 1) {
    332         dst->setConvexity(SkPath::kConcave_Convexity);
    333     }
    334 
    335     return true;
    336 }
    337 
    338 // Currently asPoints is more restrictive then it needs to be. In the future
    339 // we need to:
    340 //      allow kRound_Cap capping (could allow rotations in the matrix with this)
    341 //      allow paths to be returned
    342 bool SkDashPathEffect::asPoints(PointData* results,
    343                                 const SkPath& src,
    344                                 const SkStrokeRec& rec,
    345                                 const SkMatrix& matrix,
    346                                 const SkRect* cullRect) const {
    347     // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out
    348     if (fInitialDashLength < 0 || 0 >= rec.getWidth()) {
    349         return false;
    350     }
    351 
    352     // TODO: this next test could be eased up. We could allow any number of
    353     // intervals as long as all the ons match and all the offs match.
    354     // Additionally, they do not necessarily need to be integers.
    355     // We cannot allow arbitrary intervals since we want the returned points
    356     // to be uniformly sized.
    357     if (fCount != 2 ||
    358         !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) ||
    359         !SkScalarIsInt(fIntervals[0]) ||
    360         !SkScalarIsInt(fIntervals[1])) {
    361         return false;
    362     }
    363 
    364     // TODO: this next test could be eased up. The rescaling should not impact
    365     // the equality of the ons & offs. However, we would need to remove the
    366     // integer intervals restriction first
    367     if (fScaleToFit) {
    368         return false;
    369     }
    370 
    371     SkPoint pts[2];
    372 
    373     if (!src.isLine(pts)) {
    374         return false;
    375     }
    376 
    377     // TODO: this test could be eased up to allow circles
    378     if (SkPaint::kButt_Cap != rec.getCap()) {
    379         return false;
    380     }
    381 
    382     // TODO: this test could be eased up for circles. Rotations could be allowed.
    383     if (!matrix.rectStaysRect()) {
    384         return false;
    385     }
    386 
    387     SkScalar        length = SkPoint::Distance(pts[1], pts[0]);
    388 
    389     SkVector tangent = pts[1] - pts[0];
    390     if (tangent.isZero()) {
    391         return false;
    392     }
    393 
    394     tangent.scale(SkScalarInvert(length));
    395 
    396     // TODO: make this test for horizontal & vertical lines more robust
    397     bool isXAxis = true;
    398     if (SK_Scalar1 == tangent.fX || -SK_Scalar1 == tangent.fX) {
    399         results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth()));
    400     } else if (SK_Scalar1 == tangent.fY || -SK_Scalar1 == tangent.fY) {
    401         results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0]));
    402         isXAxis = false;
    403     } else if (SkPaint::kRound_Cap != rec.getCap()) {
    404         // Angled lines don't have axis-aligned boxes.
    405         return false;
    406     }
    407 
    408     if (NULL != results) {
    409         results->fFlags = 0;
    410         SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength);
    411 
    412         if (SkPaint::kRound_Cap == rec.getCap()) {
    413             results->fFlags |= PointData::kCircles_PointFlag;
    414         }
    415 
    416         results->fNumPoints = 0;
    417         SkScalar len2 = length;
    418         if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
    419             SkASSERT(len2 >= clampedInitialDashLength);
    420             if (0 == fInitialDashIndex) {
    421                 if (clampedInitialDashLength > 0) {
    422                     if (clampedInitialDashLength >= fIntervals[0]) {
    423                         ++results->fNumPoints;  // partial first dash
    424                     }
    425                     len2 -= clampedInitialDashLength;
    426                 }
    427                 len2 -= fIntervals[1];  // also skip first space
    428                 if (len2 < 0) {
    429                     len2 = 0;
    430                 }
    431             } else {
    432                 len2 -= clampedInitialDashLength; // skip initial partial empty
    433             }
    434         }
    435         int numMidPoints = SkScalarFloorToInt(SkScalarDiv(len2, fIntervalLength));
    436         results->fNumPoints += numMidPoints;
    437         len2 -= numMidPoints * fIntervalLength;
    438         bool partialLast = false;
    439         if (len2 > 0) {
    440             if (len2 < fIntervals[0]) {
    441                 partialLast = true;
    442             } else {
    443                 ++numMidPoints;
    444                 ++results->fNumPoints;
    445             }
    446         }
    447 
    448         results->fPoints = new SkPoint[results->fNumPoints];
    449 
    450         SkScalar    distance = 0;
    451         int         curPt = 0;
    452 
    453         if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
    454             SkASSERT(clampedInitialDashLength <= length);
    455 
    456             if (0 == fInitialDashIndex) {
    457                 if (clampedInitialDashLength > 0) {
    458                     // partial first block
    459                     SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
    460                     SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength));
    461                     SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength));
    462                     SkScalar halfWidth, halfHeight;
    463                     if (isXAxis) {
    464                         halfWidth = SkScalarHalf(clampedInitialDashLength);
    465                         halfHeight = SkScalarHalf(rec.getWidth());
    466                     } else {
    467                         halfWidth = SkScalarHalf(rec.getWidth());
    468                         halfHeight = SkScalarHalf(clampedInitialDashLength);
    469                     }
    470                     if (clampedInitialDashLength < fIntervals[0]) {
    471                         // This one will not be like the others
    472                         results->fFirst.addRect(x - halfWidth, y - halfHeight,
    473                                                 x + halfWidth, y + halfHeight);
    474                     } else {
    475                         SkASSERT(curPt < results->fNumPoints);
    476                         results->fPoints[curPt].set(x, y);
    477                         ++curPt;
    478                     }
    479 
    480                     distance += clampedInitialDashLength;
    481                 }
    482 
    483                 distance += fIntervals[1];  // skip over the next blank block too
    484             } else {
    485                 distance += clampedInitialDashLength;
    486             }
    487         }
    488 
    489         if (0 != numMidPoints) {
    490             distance += SkScalarHalf(fIntervals[0]);
    491 
    492             for (int i = 0; i < numMidPoints; ++i) {
    493                 SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance);
    494                 SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance);
    495 
    496                 SkASSERT(curPt < results->fNumPoints);
    497                 results->fPoints[curPt].set(x, y);
    498                 ++curPt;
    499 
    500                 distance += fIntervalLength;
    501             }
    502 
    503             distance -= SkScalarHalf(fIntervals[0]);
    504         }
    505 
    506         if (partialLast) {
    507             // partial final block
    508             SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
    509             SkScalar temp = length - distance;
    510             SkASSERT(temp < fIntervals[0]);
    511             SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp));
    512             SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp));
    513             SkScalar halfWidth, halfHeight;
    514             if (isXAxis) {
    515                 halfWidth = SkScalarHalf(temp);
    516                 halfHeight = SkScalarHalf(rec.getWidth());
    517             } else {
    518                 halfWidth = SkScalarHalf(rec.getWidth());
    519                 halfHeight = SkScalarHalf(temp);
    520             }
    521             results->fLast.addRect(x - halfWidth, y - halfHeight,
    522                                    x + halfWidth, y + halfHeight);
    523         }
    524 
    525         SkASSERT(curPt == results->fNumPoints);
    526     }
    527 
    528     return true;
    529 }
    530 
    531 SkFlattenable::Factory SkDashPathEffect::getFactory() {
    532     return fInitialDashLength < 0 ? NULL : CreateProc;
    533 }
    534 
    535 void SkDashPathEffect::flatten(SkFlattenableWriteBuffer& buffer) const {
    536     SkASSERT(fInitialDashLength >= 0);
    537 
    538     this->INHERITED::flatten(buffer);
    539     buffer.writeInt(fInitialDashIndex);
    540     buffer.writeScalar(fInitialDashLength);
    541     buffer.writeScalar(fIntervalLength);
    542     buffer.writeBool(fScaleToFit);
    543     buffer.writeScalarArray(fIntervals, fCount);
    544 }
    545 
    546 SkFlattenable* SkDashPathEffect::CreateProc(SkFlattenableReadBuffer& buffer) {
    547     return SkNEW_ARGS(SkDashPathEffect, (buffer));
    548 }
    549 
    550 SkDashPathEffect::SkDashPathEffect(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
    551     fInitialDashIndex = buffer.readInt();
    552     fInitialDashLength = buffer.readScalar();
    553     fIntervalLength = buffer.readScalar();
    554     fScaleToFit = buffer.readBool();
    555 
    556     fCount = buffer.getArrayCount();
    557     fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * fCount);
    558     buffer.readScalarArray(fIntervals);
    559 }
    560