Home | History | Annotate | Download | only in ia32
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if defined(V8_TARGET_ARCH_IA32)
     31 
     32 #include "code-stubs.h"
     33 #include "codegen.h"
     34 #include "compiler.h"
     35 #include "debug.h"
     36 #include "full-codegen.h"
     37 #include "isolate-inl.h"
     38 #include "parser.h"
     39 #include "scopes.h"
     40 #include "stub-cache.h"
     41 
     42 namespace v8 {
     43 namespace internal {
     44 
     45 #define __ ACCESS_MASM(masm_)
     46 
     47 
     48 class JumpPatchSite BASE_EMBEDDED {
     49  public:
     50   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
     51 #ifdef DEBUG
     52     info_emitted_ = false;
     53 #endif
     54   }
     55 
     56   ~JumpPatchSite() {
     57     ASSERT(patch_site_.is_bound() == info_emitted_);
     58   }
     59 
     60   void EmitJumpIfNotSmi(Register reg,
     61                         Label* target,
     62                         Label::Distance distance = Label::kFar) {
     63     __ test(reg, Immediate(kSmiTagMask));
     64     EmitJump(not_carry, target, distance);  // Always taken before patched.
     65   }
     66 
     67   void EmitJumpIfSmi(Register reg,
     68                      Label* target,
     69                      Label::Distance distance = Label::kFar) {
     70     __ test(reg, Immediate(kSmiTagMask));
     71     EmitJump(carry, target, distance);  // Never taken before patched.
     72   }
     73 
     74   void EmitPatchInfo() {
     75     if (patch_site_.is_bound()) {
     76       int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
     77       ASSERT(is_int8(delta_to_patch_site));
     78       __ test(eax, Immediate(delta_to_patch_site));
     79 #ifdef DEBUG
     80       info_emitted_ = true;
     81 #endif
     82     } else {
     83       __ nop();  // Signals no inlined code.
     84     }
     85   }
     86 
     87  private:
     88   // jc will be patched with jz, jnc will become jnz.
     89   void EmitJump(Condition cc, Label* target, Label::Distance distance) {
     90     ASSERT(!patch_site_.is_bound() && !info_emitted_);
     91     ASSERT(cc == carry || cc == not_carry);
     92     __ bind(&patch_site_);
     93     __ j(cc, target, distance);
     94   }
     95 
     96   MacroAssembler* masm_;
     97   Label patch_site_;
     98 #ifdef DEBUG
     99   bool info_emitted_;
    100 #endif
    101 };
    102 
    103 
    104 // TODO(jkummerow): Obsolete as soon as x64 is updated. Remove.
    105 int FullCodeGenerator::self_optimization_header_size() {
    106   UNREACHABLE();
    107   return 13;
    108 }
    109 
    110 
    111 // Generate code for a JS function.  On entry to the function the receiver
    112 // and arguments have been pushed on the stack left to right, with the
    113 // return address on top of them.  The actual argument count matches the
    114 // formal parameter count expected by the function.
    115 //
    116 // The live registers are:
    117 //   o edi: the JS function object being called (i.e. ourselves)
    118 //   o esi: our context
    119 //   o ebp: our caller's frame pointer
    120 //   o esp: stack pointer (pointing to return address)
    121 //
    122 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
    123 // frames-ia32.h for its layout.
    124 void FullCodeGenerator::Generate() {
    125   CompilationInfo* info = info_;
    126   handler_table_ =
    127       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
    128   profiling_counter_ = isolate()->factory()->NewJSGlobalPropertyCell(
    129       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget)));
    130   SetFunctionPosition(function());
    131   Comment cmnt(masm_, "[ function compiled by full code generator");
    132 
    133 #ifdef DEBUG
    134   if (strlen(FLAG_stop_at) > 0 &&
    135       info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
    136     __ int3();
    137   }
    138 #endif
    139 
    140   // Strict mode functions and builtins need to replace the receiver
    141   // with undefined when called as functions (without an explicit
    142   // receiver object). ecx is zero for method calls and non-zero for
    143   // function calls.
    144   if (!info->is_classic_mode() || info->is_native()) {
    145     Label ok;
    146     __ test(ecx, ecx);
    147     __ j(zero, &ok, Label::kNear);
    148     // +1 for return address.
    149     int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize;
    150     __ mov(ecx, Operand(esp, receiver_offset));
    151     __ JumpIfSmi(ecx, &ok);
    152     __ CmpObjectType(ecx, JS_GLOBAL_PROXY_TYPE, ecx);
    153     __ j(not_equal, &ok, Label::kNear);
    154     __ mov(Operand(esp, receiver_offset),
    155            Immediate(isolate()->factory()->undefined_value()));
    156     __ bind(&ok);
    157   }
    158 
    159   // Open a frame scope to indicate that there is a frame on the stack.  The
    160   // MANUAL indicates that the scope shouldn't actually generate code to set up
    161   // the frame (that is done below).
    162   FrameScope frame_scope(masm_, StackFrame::MANUAL);
    163 
    164   __ push(ebp);  // Caller's frame pointer.
    165   __ mov(ebp, esp);
    166   __ push(esi);  // Callee's context.
    167   __ push(edi);  // Callee's JS Function.
    168 
    169   { Comment cmnt(masm_, "[ Allocate locals");
    170     int locals_count = info->scope()->num_stack_slots();
    171     if (locals_count == 1) {
    172       __ push(Immediate(isolate()->factory()->undefined_value()));
    173     } else if (locals_count > 1) {
    174       __ mov(eax, Immediate(isolate()->factory()->undefined_value()));
    175       for (int i = 0; i < locals_count; i++) {
    176         __ push(eax);
    177       }
    178     }
    179   }
    180 
    181   bool function_in_register = true;
    182 
    183   // Possibly allocate a local context.
    184   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
    185   if (heap_slots > 0) {
    186     Comment cmnt(masm_, "[ Allocate local context");
    187     // Argument to NewContext is the function, which is still in edi.
    188     __ push(edi);
    189     if (heap_slots <= FastNewContextStub::kMaximumSlots) {
    190       FastNewContextStub stub(heap_slots);
    191       __ CallStub(&stub);
    192     } else {
    193       __ CallRuntime(Runtime::kNewFunctionContext, 1);
    194     }
    195     function_in_register = false;
    196     // Context is returned in both eax and esi.  It replaces the context
    197     // passed to us.  It's saved in the stack and kept live in esi.
    198     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
    199 
    200     // Copy parameters into context if necessary.
    201     int num_parameters = info->scope()->num_parameters();
    202     for (int i = 0; i < num_parameters; i++) {
    203       Variable* var = scope()->parameter(i);
    204       if (var->IsContextSlot()) {
    205         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
    206             (num_parameters - 1 - i) * kPointerSize;
    207         // Load parameter from stack.
    208         __ mov(eax, Operand(ebp, parameter_offset));
    209         // Store it in the context.
    210         int context_offset = Context::SlotOffset(var->index());
    211         __ mov(Operand(esi, context_offset), eax);
    212         // Update the write barrier. This clobbers eax and ebx.
    213         __ RecordWriteContextSlot(esi,
    214                                   context_offset,
    215                                   eax,
    216                                   ebx,
    217                                   kDontSaveFPRegs);
    218       }
    219     }
    220   }
    221 
    222   Variable* arguments = scope()->arguments();
    223   if (arguments != NULL) {
    224     // Function uses arguments object.
    225     Comment cmnt(masm_, "[ Allocate arguments object");
    226     if (function_in_register) {
    227       __ push(edi);
    228     } else {
    229       __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
    230     }
    231     // Receiver is just before the parameters on the caller's stack.
    232     int num_parameters = info->scope()->num_parameters();
    233     int offset = num_parameters * kPointerSize;
    234     __ lea(edx,
    235            Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset));
    236     __ push(edx);
    237     __ SafePush(Immediate(Smi::FromInt(num_parameters)));
    238     // Arguments to ArgumentsAccessStub:
    239     //   function, receiver address, parameter count.
    240     // The stub will rewrite receiver and parameter count if the previous
    241     // stack frame was an arguments adapter frame.
    242     ArgumentsAccessStub::Type type;
    243     if (!is_classic_mode()) {
    244       type = ArgumentsAccessStub::NEW_STRICT;
    245     } else if (function()->has_duplicate_parameters()) {
    246       type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
    247     } else {
    248       type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
    249     }
    250     ArgumentsAccessStub stub(type);
    251     __ CallStub(&stub);
    252 
    253     SetVar(arguments, eax, ebx, edx);
    254   }
    255 
    256   if (FLAG_trace) {
    257     __ CallRuntime(Runtime::kTraceEnter, 0);
    258   }
    259 
    260   // Visit the declarations and body unless there is an illegal
    261   // redeclaration.
    262   if (scope()->HasIllegalRedeclaration()) {
    263     Comment cmnt(masm_, "[ Declarations");
    264     scope()->VisitIllegalRedeclaration(this);
    265 
    266   } else {
    267     PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
    268     { Comment cmnt(masm_, "[ Declarations");
    269       // For named function expressions, declare the function name as a
    270       // constant.
    271       if (scope()->is_function_scope() && scope()->function() != NULL) {
    272         VariableProxy* proxy = scope()->function();
    273         ASSERT(proxy->var()->mode() == CONST ||
    274                proxy->var()->mode() == CONST_HARMONY);
    275         ASSERT(proxy->var()->location() != Variable::UNALLOCATED);
    276         EmitDeclaration(proxy, proxy->var()->mode(), NULL);
    277       }
    278       VisitDeclarations(scope()->declarations());
    279     }
    280 
    281     { Comment cmnt(masm_, "[ Stack check");
    282       PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS);
    283       Label ok;
    284       ExternalReference stack_limit =
    285           ExternalReference::address_of_stack_limit(isolate());
    286       __ cmp(esp, Operand::StaticVariable(stack_limit));
    287       __ j(above_equal, &ok, Label::kNear);
    288       StackCheckStub stub;
    289       __ CallStub(&stub);
    290       __ bind(&ok);
    291     }
    292 
    293     { Comment cmnt(masm_, "[ Body");
    294       ASSERT(loop_depth() == 0);
    295       VisitStatements(function()->body());
    296       ASSERT(loop_depth() == 0);
    297     }
    298   }
    299 
    300   // Always emit a 'return undefined' in case control fell off the end of
    301   // the body.
    302   { Comment cmnt(masm_, "[ return <undefined>;");
    303     __ mov(eax, isolate()->factory()->undefined_value());
    304     EmitReturnSequence();
    305   }
    306 }
    307 
    308 
    309 void FullCodeGenerator::ClearAccumulator() {
    310   __ Set(eax, Immediate(Smi::FromInt(0)));
    311 }
    312 
    313 
    314 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
    315   __ mov(ebx, Immediate(profiling_counter_));
    316   __ sub(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset),
    317          Immediate(Smi::FromInt(delta)));
    318 }
    319 
    320 
    321 void FullCodeGenerator::EmitProfilingCounterReset() {
    322   int reset_value = FLAG_interrupt_budget;
    323   if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
    324     // Self-optimization is a one-off thing: if it fails, don't try again.
    325     reset_value = Smi::kMaxValue;
    326   }
    327   if (isolate()->IsDebuggerActive()) {
    328     // Detect debug break requests as soon as possible.
    329     reset_value = 10;
    330   }
    331   __ mov(ebx, Immediate(profiling_counter_));
    332   __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset),
    333          Immediate(Smi::FromInt(reset_value)));
    334 }
    335 
    336 
    337 static const int kMaxBackEdgeWeight = 127;
    338 static const int kBackEdgeDistanceDivisor = 100;
    339 
    340 
    341 void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt,
    342                                        Label* back_edge_target) {
    343   Comment cmnt(masm_, "[ Stack check");
    344   Label ok;
    345 
    346   if (FLAG_count_based_interrupts) {
    347     int weight = 1;
    348     if (FLAG_weighted_back_edges) {
    349       ASSERT(back_edge_target->is_bound());
    350       int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
    351       weight = Min(kMaxBackEdgeWeight,
    352                    Max(1, distance / kBackEdgeDistanceDivisor));
    353     }
    354     EmitProfilingCounterDecrement(weight);
    355     __ j(positive, &ok, Label::kNear);
    356     InterruptStub stub;
    357     __ CallStub(&stub);
    358   } else {
    359     // Count based interrupts happen often enough when they are enabled
    360     // that the additional stack checks are not necessary (they would
    361     // only check for interrupts).
    362     ExternalReference stack_limit =
    363         ExternalReference::address_of_stack_limit(isolate());
    364     __ cmp(esp, Operand::StaticVariable(stack_limit));
    365     __ j(above_equal, &ok, Label::kNear);
    366     StackCheckStub stub;
    367     __ CallStub(&stub);
    368   }
    369 
    370   // Record a mapping of this PC offset to the OSR id.  This is used to find
    371   // the AST id from the unoptimized code in order to use it as a key into
    372   // the deoptimization input data found in the optimized code.
    373   RecordStackCheck(stmt->OsrEntryId());
    374 
    375   // Loop stack checks can be patched to perform on-stack replacement. In
    376   // order to decide whether or not to perform OSR we embed the loop depth
    377   // in a test instruction after the call so we can extract it from the OSR
    378   // builtin.
    379   ASSERT(loop_depth() > 0);
    380   __ test(eax, Immediate(Min(loop_depth(), Code::kMaxLoopNestingMarker)));
    381 
    382   if (FLAG_count_based_interrupts) {
    383     EmitProfilingCounterReset();
    384   }
    385 
    386   __ bind(&ok);
    387   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
    388   // Record a mapping of the OSR id to this PC.  This is used if the OSR
    389   // entry becomes the target of a bailout.  We don't expect it to be, but
    390   // we want it to work if it is.
    391   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
    392 }
    393 
    394 
    395 void FullCodeGenerator::EmitReturnSequence() {
    396   Comment cmnt(masm_, "[ Return sequence");
    397   if (return_label_.is_bound()) {
    398     __ jmp(&return_label_);
    399   } else {
    400     // Common return label
    401     __ bind(&return_label_);
    402     if (FLAG_trace) {
    403       __ push(eax);
    404       __ CallRuntime(Runtime::kTraceExit, 1);
    405     }
    406     if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
    407       // Pretend that the exit is a backwards jump to the entry.
    408       int weight = 1;
    409       if (info_->ShouldSelfOptimize()) {
    410         weight = FLAG_interrupt_budget / FLAG_self_opt_count;
    411       } else if (FLAG_weighted_back_edges) {
    412         int distance = masm_->pc_offset();
    413         weight = Min(kMaxBackEdgeWeight,
    414                      Max(1, distance / kBackEdgeDistanceDivisor));
    415       }
    416       EmitProfilingCounterDecrement(weight);
    417       Label ok;
    418       __ j(positive, &ok, Label::kNear);
    419       __ push(eax);
    420       if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
    421         __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
    422         __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
    423       } else {
    424         InterruptStub stub;
    425         __ CallStub(&stub);
    426       }
    427       __ pop(eax);
    428       EmitProfilingCounterReset();
    429       __ bind(&ok);
    430     }
    431 #ifdef DEBUG
    432     // Add a label for checking the size of the code used for returning.
    433     Label check_exit_codesize;
    434     masm_->bind(&check_exit_codesize);
    435 #endif
    436     SetSourcePosition(function()->end_position() - 1);
    437     __ RecordJSReturn();
    438     // Do not use the leave instruction here because it is too short to
    439     // patch with the code required by the debugger.
    440     __ mov(esp, ebp);
    441     __ pop(ebp);
    442 
    443     int arguments_bytes = (info_->scope()->num_parameters() + 1) * kPointerSize;
    444     __ Ret(arguments_bytes, ecx);
    445 #ifdef ENABLE_DEBUGGER_SUPPORT
    446     // Check that the size of the code used for returning is large enough
    447     // for the debugger's requirements.
    448     ASSERT(Assembler::kJSReturnSequenceLength <=
    449            masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
    450 #endif
    451   }
    452 }
    453 
    454 
    455 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
    456   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    457 }
    458 
    459 
    460 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
    461   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    462   codegen()->GetVar(result_register(), var);
    463 }
    464 
    465 
    466 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
    467   ASSERT(var->IsStackAllocated() || var->IsContextSlot());
    468   MemOperand operand = codegen()->VarOperand(var, result_register());
    469   // Memory operands can be pushed directly.
    470   __ push(operand);
    471 }
    472 
    473 
    474 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
    475   // For simplicity we always test the accumulator register.
    476   codegen()->GetVar(result_register(), var);
    477   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    478   codegen()->DoTest(this);
    479 }
    480 
    481 
    482 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
    483   UNREACHABLE();  // Not used on IA32.
    484 }
    485 
    486 
    487 void FullCodeGenerator::AccumulatorValueContext::Plug(
    488     Heap::RootListIndex index) const {
    489   UNREACHABLE();  // Not used on IA32.
    490 }
    491 
    492 
    493 void FullCodeGenerator::StackValueContext::Plug(
    494     Heap::RootListIndex index) const {
    495   UNREACHABLE();  // Not used on IA32.
    496 }
    497 
    498 
    499 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
    500   UNREACHABLE();  // Not used on IA32.
    501 }
    502 
    503 
    504 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
    505 }
    506 
    507 
    508 void FullCodeGenerator::AccumulatorValueContext::Plug(
    509     Handle<Object> lit) const {
    510   if (lit->IsSmi()) {
    511     __ SafeSet(result_register(), Immediate(lit));
    512   } else {
    513     __ Set(result_register(), Immediate(lit));
    514   }
    515 }
    516 
    517 
    518 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
    519   if (lit->IsSmi()) {
    520     __ SafePush(Immediate(lit));
    521   } else {
    522     __ push(Immediate(lit));
    523   }
    524 }
    525 
    526 
    527 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
    528   codegen()->PrepareForBailoutBeforeSplit(condition(),
    529                                           true,
    530                                           true_label_,
    531                                           false_label_);
    532   ASSERT(!lit->IsUndetectableObject());  // There are no undetectable literals.
    533   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
    534     if (false_label_ != fall_through_) __ jmp(false_label_);
    535   } else if (lit->IsTrue() || lit->IsJSObject()) {
    536     if (true_label_ != fall_through_) __ jmp(true_label_);
    537   } else if (lit->IsString()) {
    538     if (String::cast(*lit)->length() == 0) {
    539       if (false_label_ != fall_through_) __ jmp(false_label_);
    540     } else {
    541       if (true_label_ != fall_through_) __ jmp(true_label_);
    542     }
    543   } else if (lit->IsSmi()) {
    544     if (Smi::cast(*lit)->value() == 0) {
    545       if (false_label_ != fall_through_) __ jmp(false_label_);
    546     } else {
    547       if (true_label_ != fall_through_) __ jmp(true_label_);
    548     }
    549   } else {
    550     // For simplicity we always test the accumulator register.
    551     __ mov(result_register(), lit);
    552     codegen()->DoTest(this);
    553   }
    554 }
    555 
    556 
    557 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
    558                                                    Register reg) const {
    559   ASSERT(count > 0);
    560   __ Drop(count);
    561 }
    562 
    563 
    564 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
    565     int count,
    566     Register reg) const {
    567   ASSERT(count > 0);
    568   __ Drop(count);
    569   __ Move(result_register(), reg);
    570 }
    571 
    572 
    573 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
    574                                                        Register reg) const {
    575   ASSERT(count > 0);
    576   if (count > 1) __ Drop(count - 1);
    577   __ mov(Operand(esp, 0), reg);
    578 }
    579 
    580 
    581 void FullCodeGenerator::TestContext::DropAndPlug(int count,
    582                                                  Register reg) const {
    583   ASSERT(count > 0);
    584   // For simplicity we always test the accumulator register.
    585   __ Drop(count);
    586   __ Move(result_register(), reg);
    587   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    588   codegen()->DoTest(this);
    589 }
    590 
    591 
    592 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
    593                                             Label* materialize_false) const {
    594   ASSERT(materialize_true == materialize_false);
    595   __ bind(materialize_true);
    596 }
    597 
    598 
    599 void FullCodeGenerator::AccumulatorValueContext::Plug(
    600     Label* materialize_true,
    601     Label* materialize_false) const {
    602   Label done;
    603   __ bind(materialize_true);
    604   __ mov(result_register(), isolate()->factory()->true_value());
    605   __ jmp(&done, Label::kNear);
    606   __ bind(materialize_false);
    607   __ mov(result_register(), isolate()->factory()->false_value());
    608   __ bind(&done);
    609 }
    610 
    611 
    612 void FullCodeGenerator::StackValueContext::Plug(
    613     Label* materialize_true,
    614     Label* materialize_false) const {
    615   Label done;
    616   __ bind(materialize_true);
    617   __ push(Immediate(isolate()->factory()->true_value()));
    618   __ jmp(&done, Label::kNear);
    619   __ bind(materialize_false);
    620   __ push(Immediate(isolate()->factory()->false_value()));
    621   __ bind(&done);
    622 }
    623 
    624 
    625 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
    626                                           Label* materialize_false) const {
    627   ASSERT(materialize_true == true_label_);
    628   ASSERT(materialize_false == false_label_);
    629 }
    630 
    631 
    632 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
    633 }
    634 
    635 
    636 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
    637   Handle<Object> value = flag
    638       ? isolate()->factory()->true_value()
    639       : isolate()->factory()->false_value();
    640   __ mov(result_register(), value);
    641 }
    642 
    643 
    644 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
    645   Handle<Object> value = flag
    646       ? isolate()->factory()->true_value()
    647       : isolate()->factory()->false_value();
    648   __ push(Immediate(value));
    649 }
    650 
    651 
    652 void FullCodeGenerator::TestContext::Plug(bool flag) const {
    653   codegen()->PrepareForBailoutBeforeSplit(condition(),
    654                                           true,
    655                                           true_label_,
    656                                           false_label_);
    657   if (flag) {
    658     if (true_label_ != fall_through_) __ jmp(true_label_);
    659   } else {
    660     if (false_label_ != fall_through_) __ jmp(false_label_);
    661   }
    662 }
    663 
    664 
    665 void FullCodeGenerator::DoTest(Expression* condition,
    666                                Label* if_true,
    667                                Label* if_false,
    668                                Label* fall_through) {
    669   ToBooleanStub stub(result_register());
    670   __ push(result_register());
    671   __ CallStub(&stub, condition->test_id());
    672   __ test(result_register(), result_register());
    673   // The stub returns nonzero for true.
    674   Split(not_zero, if_true, if_false, fall_through);
    675 }
    676 
    677 
    678 void FullCodeGenerator::Split(Condition cc,
    679                               Label* if_true,
    680                               Label* if_false,
    681                               Label* fall_through) {
    682   if (if_false == fall_through) {
    683     __ j(cc, if_true);
    684   } else if (if_true == fall_through) {
    685     __ j(NegateCondition(cc), if_false);
    686   } else {
    687     __ j(cc, if_true);
    688     __ jmp(if_false);
    689   }
    690 }
    691 
    692 
    693 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
    694   ASSERT(var->IsStackAllocated());
    695   // Offset is negative because higher indexes are at lower addresses.
    696   int offset = -var->index() * kPointerSize;
    697   // Adjust by a (parameter or local) base offset.
    698   if (var->IsParameter()) {
    699     offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
    700   } else {
    701     offset += JavaScriptFrameConstants::kLocal0Offset;
    702   }
    703   return Operand(ebp, offset);
    704 }
    705 
    706 
    707 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
    708   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    709   if (var->IsContextSlot()) {
    710     int context_chain_length = scope()->ContextChainLength(var->scope());
    711     __ LoadContext(scratch, context_chain_length);
    712     return ContextOperand(scratch, var->index());
    713   } else {
    714     return StackOperand(var);
    715   }
    716 }
    717 
    718 
    719 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
    720   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    721   MemOperand location = VarOperand(var, dest);
    722   __ mov(dest, location);
    723 }
    724 
    725 
    726 void FullCodeGenerator::SetVar(Variable* var,
    727                                Register src,
    728                                Register scratch0,
    729                                Register scratch1) {
    730   ASSERT(var->IsContextSlot() || var->IsStackAllocated());
    731   ASSERT(!scratch0.is(src));
    732   ASSERT(!scratch0.is(scratch1));
    733   ASSERT(!scratch1.is(src));
    734   MemOperand location = VarOperand(var, scratch0);
    735   __ mov(location, src);
    736 
    737   // Emit the write barrier code if the location is in the heap.
    738   if (var->IsContextSlot()) {
    739     int offset = Context::SlotOffset(var->index());
    740     ASSERT(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi));
    741     __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
    742   }
    743 }
    744 
    745 
    746 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
    747                                                      bool should_normalize,
    748                                                      Label* if_true,
    749                                                      Label* if_false) {
    750   // Only prepare for bailouts before splits if we're in a test
    751   // context. Otherwise, we let the Visit function deal with the
    752   // preparation to avoid preparing with the same AST id twice.
    753   if (!context()->IsTest() || !info_->IsOptimizable()) return;
    754 
    755   Label skip;
    756   if (should_normalize) __ jmp(&skip, Label::kNear);
    757   PrepareForBailout(expr, TOS_REG);
    758   if (should_normalize) {
    759     __ cmp(eax, isolate()->factory()->true_value());
    760     Split(equal, if_true, if_false, NULL);
    761     __ bind(&skip);
    762   }
    763 }
    764 
    765 
    766 void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy,
    767                                         VariableMode mode,
    768                                         FunctionLiteral* function) {
    769   // If it was not possible to allocate the variable at compile time, we
    770   // need to "declare" it at runtime to make sure it actually exists in the
    771   // local context.
    772   Variable* variable = proxy->var();
    773   bool binding_needs_init = (function == NULL) &&
    774       (mode == CONST || mode == CONST_HARMONY || mode == LET);
    775   switch (variable->location()) {
    776     case Variable::UNALLOCATED:
    777       ++global_count_;
    778       break;
    779 
    780     case Variable::PARAMETER:
    781     case Variable::LOCAL:
    782       if (function != NULL) {
    783         Comment cmnt(masm_, "[ Declaration");
    784         VisitForAccumulatorValue(function);
    785         __ mov(StackOperand(variable), result_register());
    786       } else if (binding_needs_init) {
    787         Comment cmnt(masm_, "[ Declaration");
    788         __ mov(StackOperand(variable),
    789                Immediate(isolate()->factory()->the_hole_value()));
    790       }
    791       break;
    792 
    793     case Variable::CONTEXT:
    794       // The variable in the decl always resides in the current function
    795       // context.
    796       ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
    797       if (FLAG_debug_code) {
    798         // Check that we're not inside a with or catch context.
    799         __ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset));
    800         __ cmp(ebx, isolate()->factory()->with_context_map());
    801         __ Check(not_equal, "Declaration in with context.");
    802         __ cmp(ebx, isolate()->factory()->catch_context_map());
    803         __ Check(not_equal, "Declaration in catch context.");
    804       }
    805       if (function != NULL) {
    806         Comment cmnt(masm_, "[ Declaration");
    807         VisitForAccumulatorValue(function);
    808         __ mov(ContextOperand(esi, variable->index()), result_register());
    809         // We know that we have written a function, which is not a smi.
    810         __ RecordWriteContextSlot(esi,
    811                                   Context::SlotOffset(variable->index()),
    812                                   result_register(),
    813                                   ecx,
    814                                   kDontSaveFPRegs,
    815                                   EMIT_REMEMBERED_SET,
    816                                   OMIT_SMI_CHECK);
    817         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    818       } else if (binding_needs_init) {
    819         Comment cmnt(masm_, "[ Declaration");
    820         __ mov(ContextOperand(esi, variable->index()),
    821                Immediate(isolate()->factory()->the_hole_value()));
    822         // No write barrier since the hole value is in old space.
    823         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
    824       }
    825       break;
    826 
    827     case Variable::LOOKUP: {
    828       Comment cmnt(masm_, "[ Declaration");
    829       __ push(esi);
    830       __ push(Immediate(variable->name()));
    831       // Declaration nodes are always introduced in one of four modes.
    832       ASSERT(mode == VAR ||
    833              mode == CONST ||
    834              mode == CONST_HARMONY ||
    835              mode == LET);
    836       PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY)
    837           ? READ_ONLY : NONE;
    838       __ push(Immediate(Smi::FromInt(attr)));
    839       // Push initial value, if any.
    840       // Note: For variables we must not push an initial value (such as
    841       // 'undefined') because we may have a (legal) redeclaration and we
    842       // must not destroy the current value.
    843       if (function != NULL) {
    844         VisitForStackValue(function);
    845       } else if (binding_needs_init) {
    846         __ push(Immediate(isolate()->factory()->the_hole_value()));
    847       } else {
    848         __ push(Immediate(Smi::FromInt(0)));  // Indicates no initial value.
    849       }
    850       __ CallRuntime(Runtime::kDeclareContextSlot, 4);
    851       break;
    852     }
    853   }
    854 }
    855 
    856 
    857 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
    858   // Call the runtime to declare the globals.
    859   __ push(esi);  // The context is the first argument.
    860   __ push(Immediate(pairs));
    861   __ push(Immediate(Smi::FromInt(DeclareGlobalsFlags())));
    862   __ CallRuntime(Runtime::kDeclareGlobals, 3);
    863   // Return value is ignored.
    864 }
    865 
    866 
    867 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
    868   Comment cmnt(masm_, "[ SwitchStatement");
    869   Breakable nested_statement(this, stmt);
    870   SetStatementPosition(stmt);
    871 
    872   // Keep the switch value on the stack until a case matches.
    873   VisitForStackValue(stmt->tag());
    874   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
    875 
    876   ZoneList<CaseClause*>* clauses = stmt->cases();
    877   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
    878 
    879   Label next_test;  // Recycled for each test.
    880   // Compile all the tests with branches to their bodies.
    881   for (int i = 0; i < clauses->length(); i++) {
    882     CaseClause* clause = clauses->at(i);
    883     clause->body_target()->Unuse();
    884 
    885     // The default is not a test, but remember it as final fall through.
    886     if (clause->is_default()) {
    887       default_clause = clause;
    888       continue;
    889     }
    890 
    891     Comment cmnt(masm_, "[ Case comparison");
    892     __ bind(&next_test);
    893     next_test.Unuse();
    894 
    895     // Compile the label expression.
    896     VisitForAccumulatorValue(clause->label());
    897 
    898     // Perform the comparison as if via '==='.
    899     __ mov(edx, Operand(esp, 0));  // Switch value.
    900     bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
    901     JumpPatchSite patch_site(masm_);
    902     if (inline_smi_code) {
    903       Label slow_case;
    904       __ mov(ecx, edx);
    905       __ or_(ecx, eax);
    906       patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
    907 
    908       __ cmp(edx, eax);
    909       __ j(not_equal, &next_test);
    910       __ Drop(1);  // Switch value is no longer needed.
    911       __ jmp(clause->body_target());
    912       __ bind(&slow_case);
    913     }
    914 
    915     // Record position before stub call for type feedback.
    916     SetSourcePosition(clause->position());
    917     Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
    918     CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
    919     patch_site.EmitPatchInfo();
    920     __ test(eax, eax);
    921     __ j(not_equal, &next_test);
    922     __ Drop(1);  // Switch value is no longer needed.
    923     __ jmp(clause->body_target());
    924   }
    925 
    926   // Discard the test value and jump to the default if present, otherwise to
    927   // the end of the statement.
    928   __ bind(&next_test);
    929   __ Drop(1);  // Switch value is no longer needed.
    930   if (default_clause == NULL) {
    931     __ jmp(nested_statement.break_label());
    932   } else {
    933     __ jmp(default_clause->body_target());
    934   }
    935 
    936   // Compile all the case bodies.
    937   for (int i = 0; i < clauses->length(); i++) {
    938     Comment cmnt(masm_, "[ Case body");
    939     CaseClause* clause = clauses->at(i);
    940     __ bind(clause->body_target());
    941     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
    942     VisitStatements(clause->statements());
    943   }
    944 
    945   __ bind(nested_statement.break_label());
    946   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
    947 }
    948 
    949 
    950 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
    951   Comment cmnt(masm_, "[ ForInStatement");
    952   SetStatementPosition(stmt);
    953 
    954   Label loop, exit;
    955   ForIn loop_statement(this, stmt);
    956   increment_loop_depth();
    957 
    958   // Get the object to enumerate over. Both SpiderMonkey and JSC
    959   // ignore null and undefined in contrast to the specification; see
    960   // ECMA-262 section 12.6.4.
    961   VisitForAccumulatorValue(stmt->enumerable());
    962   __ cmp(eax, isolate()->factory()->undefined_value());
    963   __ j(equal, &exit);
    964   __ cmp(eax, isolate()->factory()->null_value());
    965   __ j(equal, &exit);
    966 
    967   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
    968 
    969   // Convert the object to a JS object.
    970   Label convert, done_convert;
    971   __ JumpIfSmi(eax, &convert, Label::kNear);
    972   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
    973   __ j(above_equal, &done_convert, Label::kNear);
    974   __ bind(&convert);
    975   __ push(eax);
    976   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    977   __ bind(&done_convert);
    978   __ push(eax);
    979 
    980   // Check for proxies.
    981   Label call_runtime, use_cache, fixed_array;
    982   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
    983   __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
    984   __ j(below_equal, &call_runtime);
    985 
    986   // Check cache validity in generated code. This is a fast case for
    987   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
    988   // guarantee cache validity, call the runtime system to check cache
    989   // validity or get the property names in a fixed array.
    990   __ CheckEnumCache(&call_runtime);
    991 
    992   __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
    993   __ jmp(&use_cache, Label::kNear);
    994 
    995   // Get the set of properties to enumerate.
    996   __ bind(&call_runtime);
    997   __ push(eax);
    998   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
    999   __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   1000          isolate()->factory()->meta_map());
   1001   __ j(not_equal, &fixed_array);
   1002 
   1003 
   1004   // We got a map in register eax. Get the enumeration cache from it.
   1005   __ bind(&use_cache);
   1006   __ LoadInstanceDescriptors(eax, ecx);
   1007   __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset));
   1008   __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset));
   1009 
   1010   // Set up the four remaining stack slots.
   1011   __ push(eax);  // Map.
   1012   __ push(edx);  // Enumeration cache.
   1013   __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset));
   1014   __ push(eax);  // Enumeration cache length (as smi).
   1015   __ push(Immediate(Smi::FromInt(0)));  // Initial index.
   1016   __ jmp(&loop);
   1017 
   1018   // We got a fixed array in register eax. Iterate through that.
   1019   Label non_proxy;
   1020   __ bind(&fixed_array);
   1021 
   1022   Handle<JSGlobalPropertyCell> cell =
   1023       isolate()->factory()->NewJSGlobalPropertyCell(
   1024           Handle<Object>(
   1025               Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker)));
   1026   RecordTypeFeedbackCell(stmt->PrepareId(), cell);
   1027   __ LoadHeapObject(ebx, cell);
   1028   __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset),
   1029          Immediate(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)));
   1030 
   1031   __ mov(ebx, Immediate(Smi::FromInt(1)));  // Smi indicates slow check
   1032   __ mov(ecx, Operand(esp, 0 * kPointerSize));  // Get enumerated object
   1033   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
   1034   __ CmpObjectType(ecx, LAST_JS_PROXY_TYPE, ecx);
   1035   __ j(above, &non_proxy);
   1036   __ mov(ebx, Immediate(Smi::FromInt(0)));  // Zero indicates proxy
   1037   __ bind(&non_proxy);
   1038   __ push(ebx);  // Smi
   1039   __ push(eax);  // Array
   1040   __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset));
   1041   __ push(eax);  // Fixed array length (as smi).
   1042   __ push(Immediate(Smi::FromInt(0)));  // Initial index.
   1043 
   1044   // Generate code for doing the condition check.
   1045   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1046   __ bind(&loop);
   1047   __ mov(eax, Operand(esp, 0 * kPointerSize));  // Get the current index.
   1048   __ cmp(eax, Operand(esp, 1 * kPointerSize));  // Compare to the array length.
   1049   __ j(above_equal, loop_statement.break_label());
   1050 
   1051   // Get the current entry of the array into register ebx.
   1052   __ mov(ebx, Operand(esp, 2 * kPointerSize));
   1053   __ mov(ebx, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize));
   1054 
   1055   // Get the expected map from the stack or a smi in the
   1056   // permanent slow case into register edx.
   1057   __ mov(edx, Operand(esp, 3 * kPointerSize));
   1058 
   1059   // Check if the expected map still matches that of the enumerable.
   1060   // If not, we may have to filter the key.
   1061   Label update_each;
   1062   __ mov(ecx, Operand(esp, 4 * kPointerSize));
   1063   __ cmp(edx, FieldOperand(ecx, HeapObject::kMapOffset));
   1064   __ j(equal, &update_each, Label::kNear);
   1065 
   1066   // For proxies, no filtering is done.
   1067   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
   1068   ASSERT(Smi::FromInt(0) == 0);
   1069   __ test(edx, edx);
   1070   __ j(zero, &update_each);
   1071 
   1072   // Convert the entry to a string or null if it isn't a property
   1073   // anymore. If the property has been removed while iterating, we
   1074   // just skip it.
   1075   __ push(ecx);  // Enumerable.
   1076   __ push(ebx);  // Current entry.
   1077   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
   1078   __ test(eax, eax);
   1079   __ j(equal, loop_statement.continue_label());
   1080   __ mov(ebx, eax);
   1081 
   1082   // Update the 'each' property or variable from the possibly filtered
   1083   // entry in register ebx.
   1084   __ bind(&update_each);
   1085   __ mov(result_register(), ebx);
   1086   // Perform the assignment as if via '='.
   1087   { EffectContext context(this);
   1088     EmitAssignment(stmt->each());
   1089   }
   1090 
   1091   // Generate code for the body of the loop.
   1092   Visit(stmt->body());
   1093 
   1094   // Generate code for going to the next element by incrementing the
   1095   // index (smi) stored on top of the stack.
   1096   __ bind(loop_statement.continue_label());
   1097   __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1)));
   1098 
   1099   EmitStackCheck(stmt, &loop);
   1100   __ jmp(&loop);
   1101 
   1102   // Remove the pointers stored on the stack.
   1103   __ bind(loop_statement.break_label());
   1104   __ add(esp, Immediate(5 * kPointerSize));
   1105 
   1106   // Exit and decrement the loop depth.
   1107   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1108   __ bind(&exit);
   1109   decrement_loop_depth();
   1110 }
   1111 
   1112 
   1113 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
   1114                                        bool pretenure) {
   1115   // Use the fast case closure allocation code that allocates in new
   1116   // space for nested functions that don't need literals cloning. If
   1117   // we're running with the --always-opt or the --prepare-always-opt
   1118   // flag, we need to use the runtime function so that the new function
   1119   // we are creating here gets a chance to have its code optimized and
   1120   // doesn't just get a copy of the existing unoptimized code.
   1121   if (!FLAG_always_opt &&
   1122       !FLAG_prepare_always_opt &&
   1123       !pretenure &&
   1124       scope()->is_function_scope() &&
   1125       info->num_literals() == 0) {
   1126     FastNewClosureStub stub(info->language_mode());
   1127     __ push(Immediate(info));
   1128     __ CallStub(&stub);
   1129   } else {
   1130     __ push(esi);
   1131     __ push(Immediate(info));
   1132     __ push(Immediate(pretenure
   1133                       ? isolate()->factory()->true_value()
   1134                       : isolate()->factory()->false_value()));
   1135     __ CallRuntime(Runtime::kNewClosure, 3);
   1136   }
   1137   context()->Plug(eax);
   1138 }
   1139 
   1140 
   1141 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
   1142   Comment cmnt(masm_, "[ VariableProxy");
   1143   EmitVariableLoad(expr);
   1144 }
   1145 
   1146 
   1147 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
   1148                                                       TypeofState typeof_state,
   1149                                                       Label* slow) {
   1150   Register context = esi;
   1151   Register temp = edx;
   1152 
   1153   Scope* s = scope();
   1154   while (s != NULL) {
   1155     if (s->num_heap_slots() > 0) {
   1156       if (s->calls_non_strict_eval()) {
   1157         // Check that extension is NULL.
   1158         __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
   1159                Immediate(0));
   1160         __ j(not_equal, slow);
   1161       }
   1162       // Load next context in chain.
   1163       __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
   1164       // Walk the rest of the chain without clobbering esi.
   1165       context = temp;
   1166     }
   1167     // If no outer scope calls eval, we do not need to check more
   1168     // context extensions.  If we have reached an eval scope, we check
   1169     // all extensions from this point.
   1170     if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
   1171     s = s->outer_scope();
   1172   }
   1173 
   1174   if (s != NULL && s->is_eval_scope()) {
   1175     // Loop up the context chain.  There is no frame effect so it is
   1176     // safe to use raw labels here.
   1177     Label next, fast;
   1178     if (!context.is(temp)) {
   1179       __ mov(temp, context);
   1180     }
   1181     __ bind(&next);
   1182     // Terminate at global context.
   1183     __ cmp(FieldOperand(temp, HeapObject::kMapOffset),
   1184            Immediate(isolate()->factory()->global_context_map()));
   1185     __ j(equal, &fast, Label::kNear);
   1186     // Check that extension is NULL.
   1187     __ cmp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0));
   1188     __ j(not_equal, slow);
   1189     // Load next context in chain.
   1190     __ mov(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
   1191     __ jmp(&next);
   1192     __ bind(&fast);
   1193   }
   1194 
   1195   // All extension objects were empty and it is safe to use a global
   1196   // load IC call.
   1197   __ mov(eax, GlobalObjectOperand());
   1198   __ mov(ecx, var->name());
   1199   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1200   RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
   1201       ? RelocInfo::CODE_TARGET
   1202       : RelocInfo::CODE_TARGET_CONTEXT;
   1203   CallIC(ic, mode);
   1204 }
   1205 
   1206 
   1207 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
   1208                                                                 Label* slow) {
   1209   ASSERT(var->IsContextSlot());
   1210   Register context = esi;
   1211   Register temp = ebx;
   1212 
   1213   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
   1214     if (s->num_heap_slots() > 0) {
   1215       if (s->calls_non_strict_eval()) {
   1216         // Check that extension is NULL.
   1217         __ cmp(ContextOperand(context, Context::EXTENSION_INDEX),
   1218                Immediate(0));
   1219         __ j(not_equal, slow);
   1220       }
   1221       __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
   1222       // Walk the rest of the chain without clobbering esi.
   1223       context = temp;
   1224     }
   1225   }
   1226   // Check that last extension is NULL.
   1227   __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
   1228   __ j(not_equal, slow);
   1229 
   1230   // This function is used only for loads, not stores, so it's safe to
   1231   // return an esi-based operand (the write barrier cannot be allowed to
   1232   // destroy the esi register).
   1233   return ContextOperand(context, var->index());
   1234 }
   1235 
   1236 
   1237 void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
   1238                                                   TypeofState typeof_state,
   1239                                                   Label* slow,
   1240                                                   Label* done) {
   1241   // Generate fast-case code for variables that might be shadowed by
   1242   // eval-introduced variables.  Eval is used a lot without
   1243   // introducing variables.  In those cases, we do not want to
   1244   // perform a runtime call for all variables in the scope
   1245   // containing the eval.
   1246   if (var->mode() == DYNAMIC_GLOBAL) {
   1247     EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
   1248     __ jmp(done);
   1249   } else if (var->mode() == DYNAMIC_LOCAL) {
   1250     Variable* local = var->local_if_not_shadowed();
   1251     __ mov(eax, ContextSlotOperandCheckExtensions(local, slow));
   1252     if (local->mode() == CONST ||
   1253         local->mode() == CONST_HARMONY ||
   1254         local->mode() == LET) {
   1255       __ cmp(eax, isolate()->factory()->the_hole_value());
   1256       __ j(not_equal, done);
   1257       if (local->mode() == CONST) {
   1258         __ mov(eax, isolate()->factory()->undefined_value());
   1259       } else {  // LET || CONST_HARMONY
   1260         __ push(Immediate(var->name()));
   1261         __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1262       }
   1263     }
   1264     __ jmp(done);
   1265   }
   1266 }
   1267 
   1268 
   1269 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
   1270   // Record position before possible IC call.
   1271   SetSourcePosition(proxy->position());
   1272   Variable* var = proxy->var();
   1273 
   1274   // Three cases: global variables, lookup variables, and all other types of
   1275   // variables.
   1276   switch (var->location()) {
   1277     case Variable::UNALLOCATED: {
   1278       Comment cmnt(masm_, "Global variable");
   1279       // Use inline caching. Variable name is passed in ecx and the global
   1280       // object in eax.
   1281       __ mov(eax, GlobalObjectOperand());
   1282       __ mov(ecx, var->name());
   1283       Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1284       CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   1285       context()->Plug(eax);
   1286       break;
   1287     }
   1288 
   1289     case Variable::PARAMETER:
   1290     case Variable::LOCAL:
   1291     case Variable::CONTEXT: {
   1292       Comment cmnt(masm_, var->IsContextSlot()
   1293                               ? "Context variable"
   1294                               : "Stack variable");
   1295       if (var->binding_needs_init()) {
   1296         // var->scope() may be NULL when the proxy is located in eval code and
   1297         // refers to a potential outside binding. Currently those bindings are
   1298         // always looked up dynamically, i.e. in that case
   1299         //     var->location() == LOOKUP.
   1300         // always holds.
   1301         ASSERT(var->scope() != NULL);
   1302 
   1303         // Check if the binding really needs an initialization check. The check
   1304         // can be skipped in the following situation: we have a LET or CONST
   1305         // binding in harmony mode, both the Variable and the VariableProxy have
   1306         // the same declaration scope (i.e. they are both in global code, in the
   1307         // same function or in the same eval code) and the VariableProxy is in
   1308         // the source physically located after the initializer of the variable.
   1309         //
   1310         // We cannot skip any initialization checks for CONST in non-harmony
   1311         // mode because const variables may be declared but never initialized:
   1312         //   if (false) { const x; }; var y = x;
   1313         //
   1314         // The condition on the declaration scopes is a conservative check for
   1315         // nested functions that access a binding and are called before the
   1316         // binding is initialized:
   1317         //   function() { f(); let x = 1; function f() { x = 2; } }
   1318         //
   1319         bool skip_init_check;
   1320         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
   1321           skip_init_check = false;
   1322         } else {
   1323           // Check that we always have valid source position.
   1324           ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
   1325           ASSERT(proxy->position() != RelocInfo::kNoPosition);
   1326           skip_init_check = var->mode() != CONST &&
   1327               var->initializer_position() < proxy->position();
   1328         }
   1329 
   1330         if (!skip_init_check) {
   1331           // Let and const need a read barrier.
   1332           Label done;
   1333           GetVar(eax, var);
   1334           __ cmp(eax, isolate()->factory()->the_hole_value());
   1335           __ j(not_equal, &done, Label::kNear);
   1336           if (var->mode() == LET || var->mode() == CONST_HARMONY) {
   1337             // Throw a reference error when using an uninitialized let/const
   1338             // binding in harmony mode.
   1339             __ push(Immediate(var->name()));
   1340             __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1341           } else {
   1342             // Uninitalized const bindings outside of harmony mode are unholed.
   1343             ASSERT(var->mode() == CONST);
   1344             __ mov(eax, isolate()->factory()->undefined_value());
   1345           }
   1346           __ bind(&done);
   1347           context()->Plug(eax);
   1348           break;
   1349         }
   1350       }
   1351       context()->Plug(var);
   1352       break;
   1353     }
   1354 
   1355     case Variable::LOOKUP: {
   1356       Label done, slow;
   1357       // Generate code for loading from variables potentially shadowed
   1358       // by eval-introduced variables.
   1359       EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
   1360       __ bind(&slow);
   1361       Comment cmnt(masm_, "Lookup variable");
   1362       __ push(esi);  // Context.
   1363       __ push(Immediate(var->name()));
   1364       __ CallRuntime(Runtime::kLoadContextSlot, 2);
   1365       __ bind(&done);
   1366       context()->Plug(eax);
   1367       break;
   1368     }
   1369   }
   1370 }
   1371 
   1372 
   1373 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
   1374   Comment cmnt(masm_, "[ RegExpLiteral");
   1375   Label materialized;
   1376   // Registers will be used as follows:
   1377   // edi = JS function.
   1378   // ecx = literals array.
   1379   // ebx = regexp literal.
   1380   // eax = regexp literal clone.
   1381   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1382   __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset));
   1383   int literal_offset =
   1384       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
   1385   __ mov(ebx, FieldOperand(ecx, literal_offset));
   1386   __ cmp(ebx, isolate()->factory()->undefined_value());
   1387   __ j(not_equal, &materialized, Label::kNear);
   1388 
   1389   // Create regexp literal using runtime function
   1390   // Result will be in eax.
   1391   __ push(ecx);
   1392   __ push(Immediate(Smi::FromInt(expr->literal_index())));
   1393   __ push(Immediate(expr->pattern()));
   1394   __ push(Immediate(expr->flags()));
   1395   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
   1396   __ mov(ebx, eax);
   1397 
   1398   __ bind(&materialized);
   1399   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
   1400   Label allocated, runtime_allocate;
   1401   __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
   1402   __ jmp(&allocated);
   1403 
   1404   __ bind(&runtime_allocate);
   1405   __ push(ebx);
   1406   __ push(Immediate(Smi::FromInt(size)));
   1407   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
   1408   __ pop(ebx);
   1409 
   1410   __ bind(&allocated);
   1411   // Copy the content into the newly allocated memory.
   1412   // (Unroll copy loop once for better throughput).
   1413   for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
   1414     __ mov(edx, FieldOperand(ebx, i));
   1415     __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
   1416     __ mov(FieldOperand(eax, i), edx);
   1417     __ mov(FieldOperand(eax, i + kPointerSize), ecx);
   1418   }
   1419   if ((size % (2 * kPointerSize)) != 0) {
   1420     __ mov(edx, FieldOperand(ebx, size - kPointerSize));
   1421     __ mov(FieldOperand(eax, size - kPointerSize), edx);
   1422   }
   1423   context()->Plug(eax);
   1424 }
   1425 
   1426 
   1427 void FullCodeGenerator::EmitAccessor(Expression* expression) {
   1428   if (expression == NULL) {
   1429     __ push(Immediate(isolate()->factory()->null_value()));
   1430   } else {
   1431     VisitForStackValue(expression);
   1432   }
   1433 }
   1434 
   1435 
   1436 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
   1437   Comment cmnt(masm_, "[ ObjectLiteral");
   1438   Handle<FixedArray> constant_properties = expr->constant_properties();
   1439   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1440   __ push(FieldOperand(edi, JSFunction::kLiteralsOffset));
   1441   __ push(Immediate(Smi::FromInt(expr->literal_index())));
   1442   __ push(Immediate(constant_properties));
   1443   int flags = expr->fast_elements()
   1444       ? ObjectLiteral::kFastElements
   1445       : ObjectLiteral::kNoFlags;
   1446   flags |= expr->has_function()
   1447       ? ObjectLiteral::kHasFunction
   1448       : ObjectLiteral::kNoFlags;
   1449   __ push(Immediate(Smi::FromInt(flags)));
   1450   int properties_count = constant_properties->length() / 2;
   1451   if (expr->depth() > 1) {
   1452     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
   1453   } else if (flags != ObjectLiteral::kFastElements ||
   1454       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
   1455     __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
   1456   } else {
   1457     FastCloneShallowObjectStub stub(properties_count);
   1458     __ CallStub(&stub);
   1459   }
   1460 
   1461   // If result_saved is true the result is on top of the stack.  If
   1462   // result_saved is false the result is in eax.
   1463   bool result_saved = false;
   1464 
   1465   // Mark all computed expressions that are bound to a key that
   1466   // is shadowed by a later occurrence of the same key. For the
   1467   // marked expressions, no store code is emitted.
   1468   expr->CalculateEmitStore();
   1469 
   1470   AccessorTable accessor_table(isolate()->zone());
   1471   for (int i = 0; i < expr->properties()->length(); i++) {
   1472     ObjectLiteral::Property* property = expr->properties()->at(i);
   1473     if (property->IsCompileTimeValue()) continue;
   1474 
   1475     Literal* key = property->key();
   1476     Expression* value = property->value();
   1477     if (!result_saved) {
   1478       __ push(eax);  // Save result on the stack
   1479       result_saved = true;
   1480     }
   1481     switch (property->kind()) {
   1482       case ObjectLiteral::Property::CONSTANT:
   1483         UNREACHABLE();
   1484       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
   1485         ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
   1486         // Fall through.
   1487       case ObjectLiteral::Property::COMPUTED:
   1488         if (key->handle()->IsSymbol()) {
   1489           if (property->emit_store()) {
   1490             VisitForAccumulatorValue(value);
   1491             __ mov(ecx, Immediate(key->handle()));
   1492             __ mov(edx, Operand(esp, 0));
   1493             Handle<Code> ic = is_classic_mode()
   1494                 ? isolate()->builtins()->StoreIC_Initialize()
   1495                 : isolate()->builtins()->StoreIC_Initialize_Strict();
   1496             CallIC(ic, RelocInfo::CODE_TARGET, key->id());
   1497             PrepareForBailoutForId(key->id(), NO_REGISTERS);
   1498           } else {
   1499             VisitForEffect(value);
   1500           }
   1501           break;
   1502         }
   1503         // Fall through.
   1504       case ObjectLiteral::Property::PROTOTYPE:
   1505         __ push(Operand(esp, 0));  // Duplicate receiver.
   1506         VisitForStackValue(key);
   1507         VisitForStackValue(value);
   1508         if (property->emit_store()) {
   1509           __ push(Immediate(Smi::FromInt(NONE)));  // PropertyAttributes
   1510           __ CallRuntime(Runtime::kSetProperty, 4);
   1511         } else {
   1512           __ Drop(3);
   1513         }
   1514         break;
   1515       case ObjectLiteral::Property::GETTER:
   1516         accessor_table.lookup(key)->second->getter = value;
   1517         break;
   1518       case ObjectLiteral::Property::SETTER:
   1519         accessor_table.lookup(key)->second->setter = value;
   1520         break;
   1521     }
   1522   }
   1523 
   1524   // Emit code to define accessors, using only a single call to the runtime for
   1525   // each pair of corresponding getters and setters.
   1526   for (AccessorTable::Iterator it = accessor_table.begin();
   1527        it != accessor_table.end();
   1528        ++it) {
   1529     __ push(Operand(esp, 0));  // Duplicate receiver.
   1530     VisitForStackValue(it->first);
   1531     EmitAccessor(it->second->getter);
   1532     EmitAccessor(it->second->setter);
   1533     __ push(Immediate(Smi::FromInt(NONE)));
   1534     __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
   1535   }
   1536 
   1537   if (expr->has_function()) {
   1538     ASSERT(result_saved);
   1539     __ push(Operand(esp, 0));
   1540     __ CallRuntime(Runtime::kToFastProperties, 1);
   1541   }
   1542 
   1543   if (result_saved) {
   1544     context()->PlugTOS();
   1545   } else {
   1546     context()->Plug(eax);
   1547   }
   1548 }
   1549 
   1550 
   1551 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
   1552   Comment cmnt(masm_, "[ ArrayLiteral");
   1553 
   1554   ZoneList<Expression*>* subexprs = expr->values();
   1555   int length = subexprs->length();
   1556   Handle<FixedArray> constant_elements = expr->constant_elements();
   1557   ASSERT_EQ(2, constant_elements->length());
   1558   ElementsKind constant_elements_kind =
   1559       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
   1560   bool has_constant_fast_elements = constant_elements_kind == FAST_ELEMENTS;
   1561   Handle<FixedArrayBase> constant_elements_values(
   1562       FixedArrayBase::cast(constant_elements->get(1)));
   1563 
   1564   __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1565   __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset));
   1566   __ push(Immediate(Smi::FromInt(expr->literal_index())));
   1567   __ push(Immediate(constant_elements));
   1568   Heap* heap = isolate()->heap();
   1569   if (has_constant_fast_elements &&
   1570       constant_elements_values->map() == heap->fixed_cow_array_map()) {
   1571     // If the elements are already FAST_ELEMENTS, the boilerplate cannot
   1572     // change, so it's possible to specialize the stub in advance.
   1573     __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), 1);
   1574     FastCloneShallowArrayStub stub(
   1575         FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS,
   1576         length);
   1577     __ CallStub(&stub);
   1578   } else if (expr->depth() > 1) {
   1579     __ CallRuntime(Runtime::kCreateArrayLiteral, 3);
   1580   } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
   1581     __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
   1582   } else {
   1583     ASSERT(constant_elements_kind == FAST_ELEMENTS ||
   1584            constant_elements_kind == FAST_SMI_ONLY_ELEMENTS ||
   1585            FLAG_smi_only_arrays);
   1586     // If the elements are already FAST_ELEMENTS, the boilerplate cannot
   1587     // change, so it's possible to specialize the stub in advance.
   1588     FastCloneShallowArrayStub::Mode mode = has_constant_fast_elements
   1589         ? FastCloneShallowArrayStub::CLONE_ELEMENTS
   1590         : FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
   1591     FastCloneShallowArrayStub stub(mode, length);
   1592     __ CallStub(&stub);
   1593   }
   1594 
   1595   bool result_saved = false;  // Is the result saved to the stack?
   1596 
   1597   // Emit code to evaluate all the non-constant subexpressions and to store
   1598   // them into the newly cloned array.
   1599   for (int i = 0; i < length; i++) {
   1600     Expression* subexpr = subexprs->at(i);
   1601     // If the subexpression is a literal or a simple materialized literal it
   1602     // is already set in the cloned array.
   1603     if (subexpr->AsLiteral() != NULL ||
   1604         CompileTimeValue::IsCompileTimeValue(subexpr)) {
   1605       continue;
   1606     }
   1607 
   1608     if (!result_saved) {
   1609       __ push(eax);
   1610       result_saved = true;
   1611     }
   1612     VisitForAccumulatorValue(subexpr);
   1613 
   1614     if (constant_elements_kind == FAST_ELEMENTS) {
   1615       // Fast-case array literal with ElementsKind of FAST_ELEMENTS, they cannot
   1616       // transition and don't need to call the runtime stub.
   1617       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
   1618       __ mov(ebx, Operand(esp, 0));  // Copy of array literal.
   1619       __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset));
   1620       // Store the subexpression value in the array's elements.
   1621       __ mov(FieldOperand(ebx, offset), result_register());
   1622       // Update the write barrier for the array store.
   1623       __ RecordWriteField(ebx, offset, result_register(), ecx,
   1624                           kDontSaveFPRegs,
   1625                           EMIT_REMEMBERED_SET,
   1626                           INLINE_SMI_CHECK);
   1627     } else {
   1628       // Store the subexpression value in the array's elements.
   1629       __ mov(ebx, Operand(esp, 0));  // Copy of array literal.
   1630       __ mov(edi, FieldOperand(ebx, JSObject::kMapOffset));
   1631       __ mov(ecx, Immediate(Smi::FromInt(i)));
   1632       __ mov(edx, Immediate(Smi::FromInt(expr->literal_index())));
   1633       StoreArrayLiteralElementStub stub;
   1634       __ CallStub(&stub);
   1635     }
   1636 
   1637     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
   1638   }
   1639 
   1640   if (result_saved) {
   1641     context()->PlugTOS();
   1642   } else {
   1643     context()->Plug(eax);
   1644   }
   1645 }
   1646 
   1647 
   1648 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
   1649   Comment cmnt(masm_, "[ Assignment");
   1650   // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
   1651   // on the left-hand side.
   1652   if (!expr->target()->IsValidLeftHandSide()) {
   1653     VisitForEffect(expr->target());
   1654     return;
   1655   }
   1656 
   1657   // Left-hand side can only be a property, a global or a (parameter or local)
   1658   // slot.
   1659   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   1660   LhsKind assign_type = VARIABLE;
   1661   Property* property = expr->target()->AsProperty();
   1662   if (property != NULL) {
   1663     assign_type = (property->key()->IsPropertyName())
   1664         ? NAMED_PROPERTY
   1665         : KEYED_PROPERTY;
   1666   }
   1667 
   1668   // Evaluate LHS expression.
   1669   switch (assign_type) {
   1670     case VARIABLE:
   1671       // Nothing to do here.
   1672       break;
   1673     case NAMED_PROPERTY:
   1674       if (expr->is_compound()) {
   1675         // We need the receiver both on the stack and in the accumulator.
   1676         VisitForAccumulatorValue(property->obj());
   1677         __ push(result_register());
   1678       } else {
   1679         VisitForStackValue(property->obj());
   1680       }
   1681       break;
   1682     case KEYED_PROPERTY: {
   1683       if (expr->is_compound()) {
   1684         VisitForStackValue(property->obj());
   1685         VisitForAccumulatorValue(property->key());
   1686         __ mov(edx, Operand(esp, 0));
   1687         __ push(eax);
   1688       } else {
   1689         VisitForStackValue(property->obj());
   1690         VisitForStackValue(property->key());
   1691       }
   1692       break;
   1693     }
   1694   }
   1695 
   1696   // For compound assignments we need another deoptimization point after the
   1697   // variable/property load.
   1698   if (expr->is_compound()) {
   1699     AccumulatorValueContext result_context(this);
   1700     { AccumulatorValueContext left_operand_context(this);
   1701       switch (assign_type) {
   1702         case VARIABLE:
   1703           EmitVariableLoad(expr->target()->AsVariableProxy());
   1704           PrepareForBailout(expr->target(), TOS_REG);
   1705           break;
   1706         case NAMED_PROPERTY:
   1707           EmitNamedPropertyLoad(property);
   1708           PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
   1709           break;
   1710         case KEYED_PROPERTY:
   1711           EmitKeyedPropertyLoad(property);
   1712           PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
   1713           break;
   1714       }
   1715     }
   1716 
   1717     Token::Value op = expr->binary_op();
   1718     __ push(eax);  // Left operand goes on the stack.
   1719     VisitForAccumulatorValue(expr->value());
   1720 
   1721     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
   1722         ? OVERWRITE_RIGHT
   1723         : NO_OVERWRITE;
   1724     SetSourcePosition(expr->position() + 1);
   1725     if (ShouldInlineSmiCase(op)) {
   1726       EmitInlineSmiBinaryOp(expr->binary_operation(),
   1727                             op,
   1728                             mode,
   1729                             expr->target(),
   1730                             expr->value());
   1731     } else {
   1732       EmitBinaryOp(expr->binary_operation(), op, mode);
   1733     }
   1734 
   1735     // Deoptimization point in case the binary operation may have side effects.
   1736     PrepareForBailout(expr->binary_operation(), TOS_REG);
   1737   } else {
   1738     VisitForAccumulatorValue(expr->value());
   1739   }
   1740 
   1741   // Record source position before possible IC call.
   1742   SetSourcePosition(expr->position());
   1743 
   1744   // Store the value.
   1745   switch (assign_type) {
   1746     case VARIABLE:
   1747       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
   1748                              expr->op());
   1749       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   1750       context()->Plug(eax);
   1751       break;
   1752     case NAMED_PROPERTY:
   1753       EmitNamedPropertyAssignment(expr);
   1754       break;
   1755     case KEYED_PROPERTY:
   1756       EmitKeyedPropertyAssignment(expr);
   1757       break;
   1758   }
   1759 }
   1760 
   1761 
   1762 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
   1763   SetSourcePosition(prop->position());
   1764   Literal* key = prop->key()->AsLiteral();
   1765   ASSERT(!key->handle()->IsSmi());
   1766   __ mov(ecx, Immediate(key->handle()));
   1767   Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   1768   CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
   1769 }
   1770 
   1771 
   1772 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
   1773   SetSourcePosition(prop->position());
   1774   Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
   1775   CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
   1776 }
   1777 
   1778 
   1779 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
   1780                                               Token::Value op,
   1781                                               OverwriteMode mode,
   1782                                               Expression* left,
   1783                                               Expression* right) {
   1784   // Do combined smi check of the operands. Left operand is on the
   1785   // stack. Right operand is in eax.
   1786   Label smi_case, done, stub_call;
   1787   __ pop(edx);
   1788   __ mov(ecx, eax);
   1789   __ or_(eax, edx);
   1790   JumpPatchSite patch_site(masm_);
   1791   patch_site.EmitJumpIfSmi(eax, &smi_case, Label::kNear);
   1792 
   1793   __ bind(&stub_call);
   1794   __ mov(eax, ecx);
   1795   BinaryOpStub stub(op, mode);
   1796   CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
   1797   patch_site.EmitPatchInfo();
   1798   __ jmp(&done, Label::kNear);
   1799 
   1800   // Smi case.
   1801   __ bind(&smi_case);
   1802   __ mov(eax, edx);  // Copy left operand in case of a stub call.
   1803 
   1804   switch (op) {
   1805     case Token::SAR:
   1806       __ SmiUntag(eax);
   1807       __ SmiUntag(ecx);
   1808       __ sar_cl(eax);  // No checks of result necessary
   1809       __ SmiTag(eax);
   1810       break;
   1811     case Token::SHL: {
   1812       Label result_ok;
   1813       __ SmiUntag(eax);
   1814       __ SmiUntag(ecx);
   1815       __ shl_cl(eax);
   1816       // Check that the *signed* result fits in a smi.
   1817       __ cmp(eax, 0xc0000000);
   1818       __ j(positive, &result_ok);
   1819       __ SmiTag(ecx);
   1820       __ jmp(&stub_call);
   1821       __ bind(&result_ok);
   1822       __ SmiTag(eax);
   1823       break;
   1824     }
   1825     case Token::SHR: {
   1826       Label result_ok;
   1827       __ SmiUntag(eax);
   1828       __ SmiUntag(ecx);
   1829       __ shr_cl(eax);
   1830       __ test(eax, Immediate(0xc0000000));
   1831       __ j(zero, &result_ok);
   1832       __ SmiTag(ecx);
   1833       __ jmp(&stub_call);
   1834       __ bind(&result_ok);
   1835       __ SmiTag(eax);
   1836       break;
   1837     }
   1838     case Token::ADD:
   1839       __ add(eax, ecx);
   1840       __ j(overflow, &stub_call);
   1841       break;
   1842     case Token::SUB:
   1843       __ sub(eax, ecx);
   1844       __ j(overflow, &stub_call);
   1845       break;
   1846     case Token::MUL: {
   1847       __ SmiUntag(eax);
   1848       __ imul(eax, ecx);
   1849       __ j(overflow, &stub_call);
   1850       __ test(eax, eax);
   1851       __ j(not_zero, &done, Label::kNear);
   1852       __ mov(ebx, edx);
   1853       __ or_(ebx, ecx);
   1854       __ j(negative, &stub_call);
   1855       break;
   1856     }
   1857     case Token::BIT_OR:
   1858       __ or_(eax, ecx);
   1859       break;
   1860     case Token::BIT_AND:
   1861       __ and_(eax, ecx);
   1862       break;
   1863     case Token::BIT_XOR:
   1864       __ xor_(eax, ecx);
   1865       break;
   1866     default:
   1867       UNREACHABLE();
   1868   }
   1869 
   1870   __ bind(&done);
   1871   context()->Plug(eax);
   1872 }
   1873 
   1874 
   1875 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
   1876                                      Token::Value op,
   1877                                      OverwriteMode mode) {
   1878   __ pop(edx);
   1879   BinaryOpStub stub(op, mode);
   1880   JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
   1881   CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
   1882   patch_site.EmitPatchInfo();
   1883   context()->Plug(eax);
   1884 }
   1885 
   1886 
   1887 void FullCodeGenerator::EmitAssignment(Expression* expr) {
   1888   // Invalid left-hand sides are rewritten to have a 'throw
   1889   // ReferenceError' on the left-hand side.
   1890   if (!expr->IsValidLeftHandSide()) {
   1891     VisitForEffect(expr);
   1892     return;
   1893   }
   1894 
   1895   // Left-hand side can only be a property, a global or a (parameter or local)
   1896   // slot.
   1897   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   1898   LhsKind assign_type = VARIABLE;
   1899   Property* prop = expr->AsProperty();
   1900   if (prop != NULL) {
   1901     assign_type = (prop->key()->IsPropertyName())
   1902         ? NAMED_PROPERTY
   1903         : KEYED_PROPERTY;
   1904   }
   1905 
   1906   switch (assign_type) {
   1907     case VARIABLE: {
   1908       Variable* var = expr->AsVariableProxy()->var();
   1909       EffectContext context(this);
   1910       EmitVariableAssignment(var, Token::ASSIGN);
   1911       break;
   1912     }
   1913     case NAMED_PROPERTY: {
   1914       __ push(eax);  // Preserve value.
   1915       VisitForAccumulatorValue(prop->obj());
   1916       __ mov(edx, eax);
   1917       __ pop(eax);  // Restore value.
   1918       __ mov(ecx, prop->key()->AsLiteral()->handle());
   1919       Handle<Code> ic = is_classic_mode()
   1920           ? isolate()->builtins()->StoreIC_Initialize()
   1921           : isolate()->builtins()->StoreIC_Initialize_Strict();
   1922       CallIC(ic);
   1923       break;
   1924     }
   1925     case KEYED_PROPERTY: {
   1926       __ push(eax);  // Preserve value.
   1927       VisitForStackValue(prop->obj());
   1928       VisitForAccumulatorValue(prop->key());
   1929       __ mov(ecx, eax);
   1930       __ pop(edx);
   1931       __ pop(eax);  // Restore value.
   1932       Handle<Code> ic = is_classic_mode()
   1933           ? isolate()->builtins()->KeyedStoreIC_Initialize()
   1934           : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   1935       CallIC(ic);
   1936       break;
   1937     }
   1938   }
   1939   context()->Plug(eax);
   1940 }
   1941 
   1942 
   1943 void FullCodeGenerator::EmitVariableAssignment(Variable* var,
   1944                                                Token::Value op) {
   1945   if (var->IsUnallocated()) {
   1946     // Global var, const, or let.
   1947     __ mov(ecx, var->name());
   1948     __ mov(edx, GlobalObjectOperand());
   1949     Handle<Code> ic = is_classic_mode()
   1950         ? isolate()->builtins()->StoreIC_Initialize()
   1951         : isolate()->builtins()->StoreIC_Initialize_Strict();
   1952     CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
   1953 
   1954   } else if (op == Token::INIT_CONST) {
   1955     // Const initializers need a write barrier.
   1956     ASSERT(!var->IsParameter());  // No const parameters.
   1957     if (var->IsStackLocal()) {
   1958       Label skip;
   1959       __ mov(edx, StackOperand(var));
   1960       __ cmp(edx, isolate()->factory()->the_hole_value());
   1961       __ j(not_equal, &skip);
   1962       __ mov(StackOperand(var), eax);
   1963       __ bind(&skip);
   1964     } else {
   1965       ASSERT(var->IsContextSlot() || var->IsLookupSlot());
   1966       // Like var declarations, const declarations are hoisted to function
   1967       // scope.  However, unlike var initializers, const initializers are
   1968       // able to drill a hole to that function context, even from inside a
   1969       // 'with' context.  We thus bypass the normal static scope lookup for
   1970       // var->IsContextSlot().
   1971       __ push(eax);
   1972       __ push(esi);
   1973       __ push(Immediate(var->name()));
   1974       __ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
   1975     }
   1976 
   1977   } else if (var->mode() == LET && op != Token::INIT_LET) {
   1978     // Non-initializing assignment to let variable needs a write barrier.
   1979     if (var->IsLookupSlot()) {
   1980       __ push(eax);  // Value.
   1981       __ push(esi);  // Context.
   1982       __ push(Immediate(var->name()));
   1983       __ push(Immediate(Smi::FromInt(language_mode())));
   1984       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   1985     } else {
   1986       ASSERT(var->IsStackAllocated() || var->IsContextSlot());
   1987       Label assign;
   1988       MemOperand location = VarOperand(var, ecx);
   1989       __ mov(edx, location);
   1990       __ cmp(edx, isolate()->factory()->the_hole_value());
   1991       __ j(not_equal, &assign, Label::kNear);
   1992       __ push(Immediate(var->name()));
   1993       __ CallRuntime(Runtime::kThrowReferenceError, 1);
   1994       __ bind(&assign);
   1995       __ mov(location, eax);
   1996       if (var->IsContextSlot()) {
   1997         __ mov(edx, eax);
   1998         int offset = Context::SlotOffset(var->index());
   1999         __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
   2000       }
   2001     }
   2002 
   2003   } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
   2004     // Assignment to var or initializing assignment to let/const
   2005     // in harmony mode.
   2006     if (var->IsStackAllocated() || var->IsContextSlot()) {
   2007       MemOperand location = VarOperand(var, ecx);
   2008       if (FLAG_debug_code && op == Token::INIT_LET) {
   2009         // Check for an uninitialized let binding.
   2010         __ mov(edx, location);
   2011         __ cmp(edx, isolate()->factory()->the_hole_value());
   2012         __ Check(equal, "Let binding re-initialization.");
   2013       }
   2014       // Perform the assignment.
   2015       __ mov(location, eax);
   2016       if (var->IsContextSlot()) {
   2017         __ mov(edx, eax);
   2018         int offset = Context::SlotOffset(var->index());
   2019         __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs);
   2020       }
   2021     } else {
   2022       ASSERT(var->IsLookupSlot());
   2023       __ push(eax);  // Value.
   2024       __ push(esi);  // Context.
   2025       __ push(Immediate(var->name()));
   2026       __ push(Immediate(Smi::FromInt(language_mode())));
   2027       __ CallRuntime(Runtime::kStoreContextSlot, 4);
   2028     }
   2029   }
   2030   // Non-initializing assignments to consts are ignored.
   2031 }
   2032 
   2033 
   2034 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
   2035   // Assignment to a property, using a named store IC.
   2036   Property* prop = expr->target()->AsProperty();
   2037   ASSERT(prop != NULL);
   2038   ASSERT(prop->key()->AsLiteral() != NULL);
   2039 
   2040   // If the assignment starts a block of assignments to the same object,
   2041   // change to slow case to avoid the quadratic behavior of repeatedly
   2042   // adding fast properties.
   2043   if (expr->starts_initialization_block()) {
   2044     __ push(result_register());
   2045     __ push(Operand(esp, kPointerSize));  // Receiver is now under value.
   2046     __ CallRuntime(Runtime::kToSlowProperties, 1);
   2047     __ pop(result_register());
   2048   }
   2049 
   2050   // Record source code position before IC call.
   2051   SetSourcePosition(expr->position());
   2052   __ mov(ecx, prop->key()->AsLiteral()->handle());
   2053   if (expr->ends_initialization_block()) {
   2054     __ mov(edx, Operand(esp, 0));
   2055   } else {
   2056     __ pop(edx);
   2057   }
   2058   Handle<Code> ic = is_classic_mode()
   2059       ? isolate()->builtins()->StoreIC_Initialize()
   2060       : isolate()->builtins()->StoreIC_Initialize_Strict();
   2061   CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   2062 
   2063   // If the assignment ends an initialization block, revert to fast case.
   2064   if (expr->ends_initialization_block()) {
   2065     __ push(eax);  // Result of assignment, saved even if not needed.
   2066     __ push(Operand(esp, kPointerSize));  // Receiver is under value.
   2067     __ CallRuntime(Runtime::kToFastProperties, 1);
   2068     __ pop(eax);
   2069     __ Drop(1);
   2070   }
   2071   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2072   context()->Plug(eax);
   2073 }
   2074 
   2075 
   2076 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
   2077   // Assignment to a property, using a keyed store IC.
   2078 
   2079   // If the assignment starts a block of assignments to the same object,
   2080   // change to slow case to avoid the quadratic behavior of repeatedly
   2081   // adding fast properties.
   2082   if (expr->starts_initialization_block()) {
   2083     __ push(result_register());
   2084     // Receiver is now under the key and value.
   2085     __ push(Operand(esp, 2 * kPointerSize));
   2086     __ CallRuntime(Runtime::kToSlowProperties, 1);
   2087     __ pop(result_register());
   2088   }
   2089 
   2090   __ pop(ecx);
   2091   if (expr->ends_initialization_block()) {
   2092     __ mov(edx, Operand(esp, 0));  // Leave receiver on the stack for later.
   2093   } else {
   2094     __ pop(edx);
   2095   }
   2096   // Record source code position before IC call.
   2097   SetSourcePosition(expr->position());
   2098   Handle<Code> ic = is_classic_mode()
   2099       ? isolate()->builtins()->KeyedStoreIC_Initialize()
   2100       : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   2101   CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   2102 
   2103   // If the assignment ends an initialization block, revert to fast case.
   2104   if (expr->ends_initialization_block()) {
   2105     __ pop(edx);
   2106     __ push(eax);  // Result of assignment, saved even if not needed.
   2107     __ push(edx);
   2108     __ CallRuntime(Runtime::kToFastProperties, 1);
   2109     __ pop(eax);
   2110   }
   2111 
   2112   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   2113   context()->Plug(eax);
   2114 }
   2115 
   2116 
   2117 void FullCodeGenerator::VisitProperty(Property* expr) {
   2118   Comment cmnt(masm_, "[ Property");
   2119   Expression* key = expr->key();
   2120 
   2121   if (key->IsPropertyName()) {
   2122     VisitForAccumulatorValue(expr->obj());
   2123     EmitNamedPropertyLoad(expr);
   2124     context()->Plug(eax);
   2125   } else {
   2126     VisitForStackValue(expr->obj());
   2127     VisitForAccumulatorValue(expr->key());
   2128     __ pop(edx);
   2129     EmitKeyedPropertyLoad(expr);
   2130     context()->Plug(eax);
   2131   }
   2132 }
   2133 
   2134 
   2135 void FullCodeGenerator::CallIC(Handle<Code> code,
   2136                                RelocInfo::Mode rmode,
   2137                                unsigned ast_id) {
   2138   ic_total_count_++;
   2139   __ call(code, rmode, ast_id);
   2140 }
   2141 
   2142 
   2143 
   2144 
   2145 void FullCodeGenerator::EmitCallWithIC(Call* expr,
   2146                                        Handle<Object> name,
   2147                                        RelocInfo::Mode mode) {
   2148   // Code common for calls using the IC.
   2149   ZoneList<Expression*>* args = expr->arguments();
   2150   int arg_count = args->length();
   2151   { PreservePositionScope scope(masm()->positions_recorder());
   2152     for (int i = 0; i < arg_count; i++) {
   2153       VisitForStackValue(args->at(i));
   2154     }
   2155     __ Set(ecx, Immediate(name));
   2156   }
   2157   // Record source position of the IC call.
   2158   SetSourcePosition(expr->position());
   2159   Handle<Code> ic =
   2160       isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   2161   CallIC(ic, mode, expr->id());
   2162   RecordJSReturnSite(expr);
   2163   // Restore context register.
   2164   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2165   context()->Plug(eax);
   2166 }
   2167 
   2168 
   2169 void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
   2170                                             Expression* key) {
   2171   // Load the key.
   2172   VisitForAccumulatorValue(key);
   2173 
   2174   // Swap the name of the function and the receiver on the stack to follow
   2175   // the calling convention for call ICs.
   2176   __ pop(ecx);
   2177   __ push(eax);
   2178   __ push(ecx);
   2179 
   2180   // Load the arguments.
   2181   ZoneList<Expression*>* args = expr->arguments();
   2182   int arg_count = args->length();
   2183   { PreservePositionScope scope(masm()->positions_recorder());
   2184     for (int i = 0; i < arg_count; i++) {
   2185       VisitForStackValue(args->at(i));
   2186     }
   2187   }
   2188   // Record source position of the IC call.
   2189   SetSourcePosition(expr->position());
   2190   Handle<Code> ic =
   2191       isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
   2192   __ mov(ecx, Operand(esp, (arg_count + 1) * kPointerSize));  // Key.
   2193   CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   2194   RecordJSReturnSite(expr);
   2195   // Restore context register.
   2196   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2197   context()->DropAndPlug(1, eax);  // Drop the key still on the stack.
   2198 }
   2199 
   2200 
   2201 void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
   2202   // Code common for calls using the call stub.
   2203   ZoneList<Expression*>* args = expr->arguments();
   2204   int arg_count = args->length();
   2205   { PreservePositionScope scope(masm()->positions_recorder());
   2206     for (int i = 0; i < arg_count; i++) {
   2207       VisitForStackValue(args->at(i));
   2208     }
   2209   }
   2210   // Record source position for debugger.
   2211   SetSourcePosition(expr->position());
   2212 
   2213   // Record call targets in unoptimized code, but not in the snapshot.
   2214   if (!Serializer::enabled()) {
   2215     flags = static_cast<CallFunctionFlags>(flags | RECORD_CALL_TARGET);
   2216     Handle<Object> uninitialized =
   2217         TypeFeedbackCells::UninitializedSentinel(isolate());
   2218     Handle<JSGlobalPropertyCell> cell =
   2219         isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
   2220     RecordTypeFeedbackCell(expr->id(), cell);
   2221     __ mov(ebx, cell);
   2222   }
   2223 
   2224   CallFunctionStub stub(arg_count, flags);
   2225   __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
   2226   __ CallStub(&stub, expr->id());
   2227 
   2228   RecordJSReturnSite(expr);
   2229   // Restore context register.
   2230   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2231   context()->DropAndPlug(1, eax);
   2232 }
   2233 
   2234 
   2235 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
   2236   // Push copy of the first argument or undefined if it doesn't exist.
   2237   if (arg_count > 0) {
   2238     __ push(Operand(esp, arg_count * kPointerSize));
   2239   } else {
   2240     __ push(Immediate(isolate()->factory()->undefined_value()));
   2241   }
   2242 
   2243   // Push the receiver of the enclosing function.
   2244   __ push(Operand(ebp, (2 + info_->scope()->num_parameters()) * kPointerSize));
   2245   // Push the language mode.
   2246   __ push(Immediate(Smi::FromInt(language_mode())));
   2247 
   2248   // Push the start position of the scope the calls resides in.
   2249   __ push(Immediate(Smi::FromInt(scope()->start_position())));
   2250 
   2251   // Do the runtime call.
   2252   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
   2253 }
   2254 
   2255 
   2256 void FullCodeGenerator::VisitCall(Call* expr) {
   2257 #ifdef DEBUG
   2258   // We want to verify that RecordJSReturnSite gets called on all paths
   2259   // through this function.  Avoid early returns.
   2260   expr->return_is_recorded_ = false;
   2261 #endif
   2262 
   2263   Comment cmnt(masm_, "[ Call");
   2264   Expression* callee = expr->expression();
   2265   VariableProxy* proxy = callee->AsVariableProxy();
   2266   Property* property = callee->AsProperty();
   2267 
   2268   if (proxy != NULL && proxy->var()->is_possibly_eval()) {
   2269     // In a call to eval, we first call %ResolvePossiblyDirectEval to
   2270     // resolve the function we need to call and the receiver of the call.
   2271     // Then we call the resolved function using the given arguments.
   2272     ZoneList<Expression*>* args = expr->arguments();
   2273     int arg_count = args->length();
   2274     { PreservePositionScope pos_scope(masm()->positions_recorder());
   2275       VisitForStackValue(callee);
   2276       // Reserved receiver slot.
   2277       __ push(Immediate(isolate()->factory()->undefined_value()));
   2278       // Push the arguments.
   2279       for (int i = 0; i < arg_count; i++) {
   2280         VisitForStackValue(args->at(i));
   2281       }
   2282 
   2283       // Push a copy of the function (found below the arguments) and
   2284       // resolve eval.
   2285       __ push(Operand(esp, (arg_count + 1) * kPointerSize));
   2286       EmitResolvePossiblyDirectEval(arg_count);
   2287 
   2288       // The runtime call returns a pair of values in eax (function) and
   2289       // edx (receiver). Touch up the stack with the right values.
   2290       __ mov(Operand(esp, (arg_count + 0) * kPointerSize), edx);
   2291       __ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax);
   2292     }
   2293     // Record source position for debugger.
   2294     SetSourcePosition(expr->position());
   2295     CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
   2296     __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize));
   2297     __ CallStub(&stub);
   2298     RecordJSReturnSite(expr);
   2299     // Restore context register.
   2300     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   2301     context()->DropAndPlug(1, eax);
   2302 
   2303   } else if (proxy != NULL && proxy->var()->IsUnallocated()) {
   2304     // Push global object as receiver for the call IC.
   2305     __ push(GlobalObjectOperand());
   2306     EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
   2307 
   2308   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   2309     // Call to a lookup slot (dynamically introduced variable).
   2310     Label slow, done;
   2311     { PreservePositionScope scope(masm()->positions_recorder());
   2312       // Generate code for loading from variables potentially shadowed by
   2313       // eval-introduced variables.
   2314       EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
   2315     }
   2316     __ bind(&slow);
   2317     // Call the runtime to find the function to call (returned in eax) and
   2318     // the object holding it (returned in edx).
   2319     __ push(context_register());
   2320     __ push(Immediate(proxy->name()));
   2321     __ CallRuntime(Runtime::kLoadContextSlot, 2);
   2322     __ push(eax);  // Function.
   2323     __ push(edx);  // Receiver.
   2324 
   2325     // If fast case code has been generated, emit code to push the function
   2326     // and receiver and have the slow path jump around this code.
   2327     if (done.is_linked()) {
   2328       Label call;
   2329       __ jmp(&call, Label::kNear);
   2330       __ bind(&done);
   2331       // Push function.
   2332       __ push(eax);
   2333       // The receiver is implicitly the global receiver. Indicate this by
   2334       // passing the hole to the call function stub.
   2335       __ push(Immediate(isolate()->factory()->the_hole_value()));
   2336       __ bind(&call);
   2337     }
   2338 
   2339     // The receiver is either the global receiver or an object found by
   2340     // LoadContextSlot. That object could be the hole if the receiver is
   2341     // implicitly the global object.
   2342     EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
   2343 
   2344   } else if (property != NULL) {
   2345     { PreservePositionScope scope(masm()->positions_recorder());
   2346       VisitForStackValue(property->obj());
   2347     }
   2348     if (property->key()->IsPropertyName()) {
   2349       EmitCallWithIC(expr,
   2350                      property->key()->AsLiteral()->handle(),
   2351                      RelocInfo::CODE_TARGET);
   2352     } else {
   2353       EmitKeyedCallWithIC(expr, property->key());
   2354     }
   2355 
   2356   } else {
   2357     // Call to an arbitrary expression not handled specially above.
   2358     { PreservePositionScope scope(masm()->positions_recorder());
   2359       VisitForStackValue(callee);
   2360     }
   2361     // Load global receiver object.
   2362     __ mov(ebx, GlobalObjectOperand());
   2363     __ push(FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
   2364     // Emit function call.
   2365     EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
   2366   }
   2367 
   2368 #ifdef DEBUG
   2369   // RecordJSReturnSite should have been called.
   2370   ASSERT(expr->return_is_recorded_);
   2371 #endif
   2372 }
   2373 
   2374 
   2375 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
   2376   Comment cmnt(masm_, "[ CallNew");
   2377   // According to ECMA-262, section 11.2.2, page 44, the function
   2378   // expression in new calls must be evaluated before the
   2379   // arguments.
   2380 
   2381   // Push constructor on the stack.  If it's not a function it's used as
   2382   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
   2383   // ignored.
   2384   VisitForStackValue(expr->expression());
   2385 
   2386   // Push the arguments ("left-to-right") on the stack.
   2387   ZoneList<Expression*>* args = expr->arguments();
   2388   int arg_count = args->length();
   2389   for (int i = 0; i < arg_count; i++) {
   2390     VisitForStackValue(args->at(i));
   2391   }
   2392 
   2393   // Call the construct call builtin that handles allocation and
   2394   // constructor invocation.
   2395   SetSourcePosition(expr->position());
   2396 
   2397   // Load function and argument count into edi and eax.
   2398   __ SafeSet(eax, Immediate(arg_count));
   2399   __ mov(edi, Operand(esp, arg_count * kPointerSize));
   2400 
   2401   // Record call targets in unoptimized code, but not in the snapshot.
   2402   CallFunctionFlags flags;
   2403   if (!Serializer::enabled()) {
   2404     flags = RECORD_CALL_TARGET;
   2405     Handle<Object> uninitialized =
   2406         TypeFeedbackCells::UninitializedSentinel(isolate());
   2407     Handle<JSGlobalPropertyCell> cell =
   2408         isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
   2409     RecordTypeFeedbackCell(expr->id(), cell);
   2410     __ mov(ebx, cell);
   2411   } else {
   2412     flags = NO_CALL_FUNCTION_FLAGS;
   2413   }
   2414 
   2415   CallConstructStub stub(flags);
   2416   __ call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
   2417   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
   2418   context()->Plug(eax);
   2419 }
   2420 
   2421 
   2422 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
   2423   ZoneList<Expression*>* args = expr->arguments();
   2424   ASSERT(args->length() == 1);
   2425 
   2426   VisitForAccumulatorValue(args->at(0));
   2427 
   2428   Label materialize_true, materialize_false;
   2429   Label* if_true = NULL;
   2430   Label* if_false = NULL;
   2431   Label* fall_through = NULL;
   2432   context()->PrepareTest(&materialize_true, &materialize_false,
   2433                          &if_true, &if_false, &fall_through);
   2434 
   2435   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2436   __ test(eax, Immediate(kSmiTagMask));
   2437   Split(zero, if_true, if_false, fall_through);
   2438 
   2439   context()->Plug(if_true, if_false);
   2440 }
   2441 
   2442 
   2443 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
   2444   ZoneList<Expression*>* args = expr->arguments();
   2445   ASSERT(args->length() == 1);
   2446 
   2447   VisitForAccumulatorValue(args->at(0));
   2448 
   2449   Label materialize_true, materialize_false;
   2450   Label* if_true = NULL;
   2451   Label* if_false = NULL;
   2452   Label* fall_through = NULL;
   2453   context()->PrepareTest(&materialize_true, &materialize_false,
   2454                          &if_true, &if_false, &fall_through);
   2455 
   2456   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2457   __ test(eax, Immediate(kSmiTagMask | 0x80000000));
   2458   Split(zero, if_true, if_false, fall_through);
   2459 
   2460   context()->Plug(if_true, if_false);
   2461 }
   2462 
   2463 
   2464 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
   2465   ZoneList<Expression*>* args = expr->arguments();
   2466   ASSERT(args->length() == 1);
   2467 
   2468   VisitForAccumulatorValue(args->at(0));
   2469 
   2470   Label materialize_true, materialize_false;
   2471   Label* if_true = NULL;
   2472   Label* if_false = NULL;
   2473   Label* fall_through = NULL;
   2474   context()->PrepareTest(&materialize_true, &materialize_false,
   2475                          &if_true, &if_false, &fall_through);
   2476 
   2477   __ JumpIfSmi(eax, if_false);
   2478   __ cmp(eax, isolate()->factory()->null_value());
   2479   __ j(equal, if_true);
   2480   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   2481   // Undetectable objects behave like undefined when tested with typeof.
   2482   __ movzx_b(ecx, FieldOperand(ebx, Map::kBitFieldOffset));
   2483   __ test(ecx, Immediate(1 << Map::kIsUndetectable));
   2484   __ j(not_zero, if_false);
   2485   __ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceTypeOffset));
   2486   __ cmp(ecx, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2487   __ j(below, if_false);
   2488   __ cmp(ecx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   2489   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2490   Split(below_equal, if_true, if_false, fall_through);
   2491 
   2492   context()->Plug(if_true, if_false);
   2493 }
   2494 
   2495 
   2496 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
   2497   ZoneList<Expression*>* args = expr->arguments();
   2498   ASSERT(args->length() == 1);
   2499 
   2500   VisitForAccumulatorValue(args->at(0));
   2501 
   2502   Label materialize_true, materialize_false;
   2503   Label* if_true = NULL;
   2504   Label* if_false = NULL;
   2505   Label* fall_through = NULL;
   2506   context()->PrepareTest(&materialize_true, &materialize_false,
   2507                          &if_true, &if_false, &fall_through);
   2508 
   2509   __ JumpIfSmi(eax, if_false);
   2510   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ebx);
   2511   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2512   Split(above_equal, if_true, if_false, fall_through);
   2513 
   2514   context()->Plug(if_true, if_false);
   2515 }
   2516 
   2517 
   2518 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
   2519   ZoneList<Expression*>* args = expr->arguments();
   2520   ASSERT(args->length() == 1);
   2521 
   2522   VisitForAccumulatorValue(args->at(0));
   2523 
   2524   Label materialize_true, materialize_false;
   2525   Label* if_true = NULL;
   2526   Label* if_false = NULL;
   2527   Label* fall_through = NULL;
   2528   context()->PrepareTest(&materialize_true, &materialize_false,
   2529                          &if_true, &if_false, &fall_through);
   2530 
   2531   __ JumpIfSmi(eax, if_false);
   2532   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   2533   __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
   2534   __ test(ebx, Immediate(1 << Map::kIsUndetectable));
   2535   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2536   Split(not_zero, if_true, if_false, fall_through);
   2537 
   2538   context()->Plug(if_true, if_false);
   2539 }
   2540 
   2541 
   2542 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
   2543     CallRuntime* expr) {
   2544   ZoneList<Expression*>* args = expr->arguments();
   2545   ASSERT(args->length() == 1);
   2546 
   2547   VisitForAccumulatorValue(args->at(0));
   2548 
   2549   Label materialize_true, materialize_false;
   2550   Label* if_true = NULL;
   2551   Label* if_false = NULL;
   2552   Label* fall_through = NULL;
   2553   context()->PrepareTest(&materialize_true, &materialize_false,
   2554                          &if_true, &if_false, &fall_through);
   2555 
   2556   if (FLAG_debug_code) __ AbortIfSmi(eax);
   2557 
   2558   // Check whether this map has already been checked to be safe for default
   2559   // valueOf.
   2560   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   2561   __ test_b(FieldOperand(ebx, Map::kBitField2Offset),
   2562             1 << Map::kStringWrapperSafeForDefaultValueOf);
   2563   __ j(not_zero, if_true);
   2564 
   2565   // Check for fast case object. Return false for slow case objects.
   2566   __ mov(ecx, FieldOperand(eax, JSObject::kPropertiesOffset));
   2567   __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
   2568   __ cmp(ecx, FACTORY->hash_table_map());
   2569   __ j(equal, if_false);
   2570 
   2571   // Look for valueOf symbol in the descriptor array, and indicate false if
   2572   // found. The type is not checked, so if it is a transition it is a false
   2573   // negative.
   2574   __ LoadInstanceDescriptors(ebx, ebx);
   2575   __ mov(ecx, FieldOperand(ebx, FixedArray::kLengthOffset));
   2576   // ebx: descriptor array
   2577   // ecx: length of descriptor array
   2578   // Calculate the end of the descriptor array.
   2579   STATIC_ASSERT(kSmiTag == 0);
   2580   STATIC_ASSERT(kSmiTagSize == 1);
   2581   STATIC_ASSERT(kPointerSize == 4);
   2582   __ lea(ecx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
   2583   // Calculate location of the first key name.
   2584   __ add(ebx,
   2585          Immediate(FixedArray::kHeaderSize +
   2586                    DescriptorArray::kFirstIndex * kPointerSize));
   2587   // Loop through all the keys in the descriptor array. If one of these is the
   2588   // symbol valueOf the result is false.
   2589   Label entry, loop;
   2590   __ jmp(&entry);
   2591   __ bind(&loop);
   2592   __ mov(edx, FieldOperand(ebx, 0));
   2593   __ cmp(edx, FACTORY->value_of_symbol());
   2594   __ j(equal, if_false);
   2595   __ add(ebx, Immediate(kPointerSize));
   2596   __ bind(&entry);
   2597   __ cmp(ebx, ecx);
   2598   __ j(not_equal, &loop);
   2599 
   2600   // Reload map as register ebx was used as temporary above.
   2601   __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
   2602 
   2603   // If a valueOf property is not found on the object check that it's
   2604   // prototype is the un-modified String prototype. If not result is false.
   2605   __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
   2606   __ JumpIfSmi(ecx, if_false);
   2607   __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset));
   2608   __ mov(edx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
   2609   __ mov(edx,
   2610          FieldOperand(edx, GlobalObject::kGlobalContextOffset));
   2611   __ cmp(ecx,
   2612          ContextOperand(edx,
   2613                         Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
   2614   __ j(not_equal, if_false);
   2615   // Set the bit in the map to indicate that it has been checked safe for
   2616   // default valueOf and set true result.
   2617   __ or_(FieldOperand(ebx, Map::kBitField2Offset),
   2618          Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf));
   2619   __ jmp(if_true);
   2620 
   2621   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2622   context()->Plug(if_true, if_false);
   2623 }
   2624 
   2625 
   2626 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
   2627   ZoneList<Expression*>* args = expr->arguments();
   2628   ASSERT(args->length() == 1);
   2629 
   2630   VisitForAccumulatorValue(args->at(0));
   2631 
   2632   Label materialize_true, materialize_false;
   2633   Label* if_true = NULL;
   2634   Label* if_false = NULL;
   2635   Label* fall_through = NULL;
   2636   context()->PrepareTest(&materialize_true, &materialize_false,
   2637                          &if_true, &if_false, &fall_through);
   2638 
   2639   __ JumpIfSmi(eax, if_false);
   2640   __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
   2641   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2642   Split(equal, if_true, if_false, fall_through);
   2643 
   2644   context()->Plug(if_true, if_false);
   2645 }
   2646 
   2647 
   2648 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
   2649   ZoneList<Expression*>* args = expr->arguments();
   2650   ASSERT(args->length() == 1);
   2651 
   2652   VisitForAccumulatorValue(args->at(0));
   2653 
   2654   Label materialize_true, materialize_false;
   2655   Label* if_true = NULL;
   2656   Label* if_false = NULL;
   2657   Label* fall_through = NULL;
   2658   context()->PrepareTest(&materialize_true, &materialize_false,
   2659                          &if_true, &if_false, &fall_through);
   2660 
   2661   __ JumpIfSmi(eax, if_false);
   2662   __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
   2663   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2664   Split(equal, if_true, if_false, fall_through);
   2665 
   2666   context()->Plug(if_true, if_false);
   2667 }
   2668 
   2669 
   2670 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
   2671   ZoneList<Expression*>* args = expr->arguments();
   2672   ASSERT(args->length() == 1);
   2673 
   2674   VisitForAccumulatorValue(args->at(0));
   2675 
   2676   Label materialize_true, materialize_false;
   2677   Label* if_true = NULL;
   2678   Label* if_false = NULL;
   2679   Label* fall_through = NULL;
   2680   context()->PrepareTest(&materialize_true, &materialize_false,
   2681                          &if_true, &if_false, &fall_through);
   2682 
   2683   __ JumpIfSmi(eax, if_false);
   2684   __ CmpObjectType(eax, JS_REGEXP_TYPE, ebx);
   2685   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2686   Split(equal, if_true, if_false, fall_through);
   2687 
   2688   context()->Plug(if_true, if_false);
   2689 }
   2690 
   2691 
   2692 
   2693 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
   2694   ASSERT(expr->arguments()->length() == 0);
   2695 
   2696   Label materialize_true, materialize_false;
   2697   Label* if_true = NULL;
   2698   Label* if_false = NULL;
   2699   Label* fall_through = NULL;
   2700   context()->PrepareTest(&materialize_true, &materialize_false,
   2701                          &if_true, &if_false, &fall_through);
   2702 
   2703   // Get the frame pointer for the calling frame.
   2704   __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   2705 
   2706   // Skip the arguments adaptor frame if it exists.
   2707   Label check_frame_marker;
   2708   __ cmp(Operand(eax, StandardFrameConstants::kContextOffset),
   2709          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   2710   __ j(not_equal, &check_frame_marker);
   2711   __ mov(eax, Operand(eax, StandardFrameConstants::kCallerFPOffset));
   2712 
   2713   // Check the marker in the calling frame.
   2714   __ bind(&check_frame_marker);
   2715   __ cmp(Operand(eax, StandardFrameConstants::kMarkerOffset),
   2716          Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
   2717   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2718   Split(equal, if_true, if_false, fall_through);
   2719 
   2720   context()->Plug(if_true, if_false);
   2721 }
   2722 
   2723 
   2724 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
   2725   ZoneList<Expression*>* args = expr->arguments();
   2726   ASSERT(args->length() == 2);
   2727 
   2728   // Load the two objects into registers and perform the comparison.
   2729   VisitForStackValue(args->at(0));
   2730   VisitForAccumulatorValue(args->at(1));
   2731 
   2732   Label materialize_true, materialize_false;
   2733   Label* if_true = NULL;
   2734   Label* if_false = NULL;
   2735   Label* fall_through = NULL;
   2736   context()->PrepareTest(&materialize_true, &materialize_false,
   2737                          &if_true, &if_false, &fall_through);
   2738 
   2739   __ pop(ebx);
   2740   __ cmp(eax, ebx);
   2741   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   2742   Split(equal, if_true, if_false, fall_through);
   2743 
   2744   context()->Plug(if_true, if_false);
   2745 }
   2746 
   2747 
   2748 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
   2749   ZoneList<Expression*>* args = expr->arguments();
   2750   ASSERT(args->length() == 1);
   2751 
   2752   // ArgumentsAccessStub expects the key in edx and the formal
   2753   // parameter count in eax.
   2754   VisitForAccumulatorValue(args->at(0));
   2755   __ mov(edx, eax);
   2756   __ SafeSet(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
   2757   ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
   2758   __ CallStub(&stub);
   2759   context()->Plug(eax);
   2760 }
   2761 
   2762 
   2763 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
   2764   ASSERT(expr->arguments()->length() == 0);
   2765 
   2766   Label exit;
   2767   // Get the number of formal parameters.
   2768   __ SafeSet(eax, Immediate(Smi::FromInt(info_->scope()->num_parameters())));
   2769 
   2770   // Check if the calling frame is an arguments adaptor frame.
   2771   __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
   2772   __ cmp(Operand(ebx, StandardFrameConstants::kContextOffset),
   2773          Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   2774   __ j(not_equal, &exit);
   2775 
   2776   // Arguments adaptor case: Read the arguments length from the
   2777   // adaptor frame.
   2778   __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
   2779 
   2780   __ bind(&exit);
   2781   if (FLAG_debug_code) __ AbortIfNotSmi(eax);
   2782   context()->Plug(eax);
   2783 }
   2784 
   2785 
   2786 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
   2787   ZoneList<Expression*>* args = expr->arguments();
   2788   ASSERT(args->length() == 1);
   2789   Label done, null, function, non_function_constructor;
   2790 
   2791   VisitForAccumulatorValue(args->at(0));
   2792 
   2793   // If the object is a smi, we return null.
   2794   __ JumpIfSmi(eax, &null);
   2795 
   2796   // Check that the object is a JS object but take special care of JS
   2797   // functions to make sure they have 'Function' as their class.
   2798   // Assume that there are only two callable types, and one of them is at
   2799   // either end of the type range for JS object types. Saves extra comparisons.
   2800   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   2801   __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, eax);
   2802   // Map is now in eax.
   2803   __ j(below, &null);
   2804   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2805                 FIRST_SPEC_OBJECT_TYPE + 1);
   2806   __ j(equal, &function);
   2807 
   2808   __ CmpInstanceType(eax, LAST_SPEC_OBJECT_TYPE);
   2809   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
   2810                 LAST_SPEC_OBJECT_TYPE - 1);
   2811   __ j(equal, &function);
   2812   // Assume that there is no larger type.
   2813   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
   2814 
   2815   // Check if the constructor in the map is a JS function.
   2816   __ mov(eax, FieldOperand(eax, Map::kConstructorOffset));
   2817   __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
   2818   __ j(not_equal, &non_function_constructor);
   2819 
   2820   // eax now contains the constructor function. Grab the
   2821   // instance class name from there.
   2822   __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
   2823   __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset));
   2824   __ jmp(&done);
   2825 
   2826   // Functions have class 'Function'.
   2827   __ bind(&function);
   2828   __ mov(eax, isolate()->factory()->function_class_symbol());
   2829   __ jmp(&done);
   2830 
   2831   // Objects with a non-function constructor have class 'Object'.
   2832   __ bind(&non_function_constructor);
   2833   __ mov(eax, isolate()->factory()->Object_symbol());
   2834   __ jmp(&done);
   2835 
   2836   // Non-JS objects have class null.
   2837   __ bind(&null);
   2838   __ mov(eax, isolate()->factory()->null_value());
   2839 
   2840   // All done.
   2841   __ bind(&done);
   2842 
   2843   context()->Plug(eax);
   2844 }
   2845 
   2846 
   2847 void FullCodeGenerator::EmitLog(CallRuntime* expr) {
   2848   // Conditionally generate a log call.
   2849   // Args:
   2850   //   0 (literal string): The type of logging (corresponds to the flags).
   2851   //     This is used to determine whether or not to generate the log call.
   2852   //   1 (string): Format string.  Access the string at argument index 2
   2853   //     with '%2s' (see Logger::LogRuntime for all the formats).
   2854   //   2 (array): Arguments to the format string.
   2855   ZoneList<Expression*>* args = expr->arguments();
   2856   ASSERT_EQ(args->length(), 3);
   2857   if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
   2858     VisitForStackValue(args->at(1));
   2859     VisitForStackValue(args->at(2));
   2860     __ CallRuntime(Runtime::kLog, 2);
   2861   }
   2862   // Finally, we're expected to leave a value on the top of the stack.
   2863   __ mov(eax, isolate()->factory()->undefined_value());
   2864   context()->Plug(eax);
   2865 }
   2866 
   2867 
   2868 void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) {
   2869   ASSERT(expr->arguments()->length() == 0);
   2870 
   2871   Label slow_allocate_heapnumber;
   2872   Label heapnumber_allocated;
   2873 
   2874   __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber);
   2875   __ jmp(&heapnumber_allocated);
   2876 
   2877   __ bind(&slow_allocate_heapnumber);
   2878   // Allocate a heap number.
   2879   __ CallRuntime(Runtime::kNumberAlloc, 0);
   2880   __ mov(edi, eax);
   2881 
   2882   __ bind(&heapnumber_allocated);
   2883 
   2884   __ PrepareCallCFunction(1, ebx);
   2885   __ mov(eax, ContextOperand(context_register(), Context::GLOBAL_INDEX));
   2886   __ mov(eax, FieldOperand(eax, GlobalObject::kGlobalContextOffset));
   2887   __ mov(Operand(esp, 0), eax);
   2888   __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
   2889 
   2890   // Convert 32 random bits in eax to 0.(32 random bits) in a double
   2891   // by computing:
   2892   // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
   2893   // This is implemented on both SSE2 and FPU.
   2894   if (CpuFeatures::IsSupported(SSE2)) {
   2895     CpuFeatures::Scope fscope(SSE2);
   2896     __ mov(ebx, Immediate(0x49800000));  // 1.0 x 2^20 as single.
   2897     __ movd(xmm1, ebx);
   2898     __ movd(xmm0, eax);
   2899     __ cvtss2sd(xmm1, xmm1);
   2900     __ xorps(xmm0, xmm1);
   2901     __ subsd(xmm0, xmm1);
   2902     __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0);
   2903   } else {
   2904     // 0x4130000000000000 is 1.0 x 2^20 as a double.
   2905     __ mov(FieldOperand(edi, HeapNumber::kExponentOffset),
   2906            Immediate(0x41300000));
   2907     __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax);
   2908     __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
   2909     __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0));
   2910     __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset));
   2911     __ fsubp(1);
   2912     __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset));
   2913   }
   2914   __ mov(eax, edi);
   2915   context()->Plug(eax);
   2916 }
   2917 
   2918 
   2919 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
   2920   // Load the arguments on the stack and call the stub.
   2921   SubStringStub stub;
   2922   ZoneList<Expression*>* args = expr->arguments();
   2923   ASSERT(args->length() == 3);
   2924   VisitForStackValue(args->at(0));
   2925   VisitForStackValue(args->at(1));
   2926   VisitForStackValue(args->at(2));
   2927   __ CallStub(&stub);
   2928   context()->Plug(eax);
   2929 }
   2930 
   2931 
   2932 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
   2933   // Load the arguments on the stack and call the stub.
   2934   RegExpExecStub stub;
   2935   ZoneList<Expression*>* args = expr->arguments();
   2936   ASSERT(args->length() == 4);
   2937   VisitForStackValue(args->at(0));
   2938   VisitForStackValue(args->at(1));
   2939   VisitForStackValue(args->at(2));
   2940   VisitForStackValue(args->at(3));
   2941   __ CallStub(&stub);
   2942   context()->Plug(eax);
   2943 }
   2944 
   2945 
   2946 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
   2947   ZoneList<Expression*>* args = expr->arguments();
   2948   ASSERT(args->length() == 1);
   2949 
   2950   VisitForAccumulatorValue(args->at(0));  // Load the object.
   2951 
   2952   Label done;
   2953   // If the object is a smi return the object.
   2954   __ JumpIfSmi(eax, &done, Label::kNear);
   2955   // If the object is not a value type, return the object.
   2956   __ CmpObjectType(eax, JS_VALUE_TYPE, ebx);
   2957   __ j(not_equal, &done, Label::kNear);
   2958   __ mov(eax, FieldOperand(eax, JSValue::kValueOffset));
   2959 
   2960   __ bind(&done);
   2961   context()->Plug(eax);
   2962 }
   2963 
   2964 
   2965 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
   2966   ZoneList<Expression*>* args = expr->arguments();
   2967   ASSERT(args->length() == 2);
   2968   ASSERT_NE(NULL, args->at(1)->AsLiteral());
   2969   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle()));
   2970 
   2971   VisitForAccumulatorValue(args->at(0));  // Load the object.
   2972 
   2973   Label runtime, done;
   2974   Register object = eax;
   2975   Register result = eax;
   2976   Register scratch = ecx;
   2977 
   2978 #ifdef DEBUG
   2979   __ AbortIfSmi(object);
   2980   __ CmpObjectType(object, JS_DATE_TYPE, scratch);
   2981   __ Assert(equal, "Trying to get date field from non-date.");
   2982 #endif
   2983 
   2984   if (index->value() == 0) {
   2985     __ mov(result, FieldOperand(object, JSDate::kValueOffset));
   2986   } else {
   2987     if (index->value() < JSDate::kFirstUncachedField) {
   2988       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
   2989       __ mov(scratch, Operand::StaticVariable(stamp));
   2990       __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
   2991       __ j(not_equal, &runtime, Label::kNear);
   2992       __ mov(result, FieldOperand(object, JSDate::kValueOffset +
   2993                                           kPointerSize * index->value()));
   2994       __ jmp(&done);
   2995     }
   2996     __ bind(&runtime);
   2997     __ PrepareCallCFunction(2, scratch);
   2998     __ mov(Operand(esp, 0), object);
   2999     __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
   3000     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
   3001     __ bind(&done);
   3002   }
   3003   context()->Plug(result);
   3004 }
   3005 
   3006 
   3007 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
   3008   // Load the arguments on the stack and call the runtime function.
   3009   ZoneList<Expression*>* args = expr->arguments();
   3010   ASSERT(args->length() == 2);
   3011   VisitForStackValue(args->at(0));
   3012   VisitForStackValue(args->at(1));
   3013 
   3014   if (CpuFeatures::IsSupported(SSE2)) {
   3015     MathPowStub stub(MathPowStub::ON_STACK);
   3016     __ CallStub(&stub);
   3017   } else {
   3018     __ CallRuntime(Runtime::kMath_pow, 2);
   3019   }
   3020   context()->Plug(eax);
   3021 }
   3022 
   3023 
   3024 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
   3025   ZoneList<Expression*>* args = expr->arguments();
   3026   ASSERT(args->length() == 2);
   3027 
   3028   VisitForStackValue(args->at(0));  // Load the object.
   3029   VisitForAccumulatorValue(args->at(1));  // Load the value.
   3030   __ pop(ebx);  // eax = value. ebx = object.
   3031 
   3032   Label done;
   3033   // If the object is a smi, return the value.
   3034   __ JumpIfSmi(ebx, &done, Label::kNear);
   3035 
   3036   // If the object is not a value type, return the value.
   3037   __ CmpObjectType(ebx, JS_VALUE_TYPE, ecx);
   3038   __ j(not_equal, &done, Label::kNear);
   3039 
   3040   // Store the value.
   3041   __ mov(FieldOperand(ebx, JSValue::kValueOffset), eax);
   3042 
   3043   // Update the write barrier.  Save the value as it will be
   3044   // overwritten by the write barrier code and is needed afterward.
   3045   __ mov(edx, eax);
   3046   __ RecordWriteField(ebx, JSValue::kValueOffset, edx, ecx, kDontSaveFPRegs);
   3047 
   3048   __ bind(&done);
   3049   context()->Plug(eax);
   3050 }
   3051 
   3052 
   3053 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
   3054   ZoneList<Expression*>* args = expr->arguments();
   3055   ASSERT_EQ(args->length(), 1);
   3056 
   3057   // Load the argument on the stack and call the stub.
   3058   VisitForStackValue(args->at(0));
   3059 
   3060   NumberToStringStub stub;
   3061   __ CallStub(&stub);
   3062   context()->Plug(eax);
   3063 }
   3064 
   3065 
   3066 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
   3067   ZoneList<Expression*>* args = expr->arguments();
   3068   ASSERT(args->length() == 1);
   3069 
   3070   VisitForAccumulatorValue(args->at(0));
   3071 
   3072   Label done;
   3073   StringCharFromCodeGenerator generator(eax, ebx);
   3074   generator.GenerateFast(masm_);
   3075   __ jmp(&done);
   3076 
   3077   NopRuntimeCallHelper call_helper;
   3078   generator.GenerateSlow(masm_, call_helper);
   3079 
   3080   __ bind(&done);
   3081   context()->Plug(ebx);
   3082 }
   3083 
   3084 
   3085 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
   3086   ZoneList<Expression*>* args = expr->arguments();
   3087   ASSERT(args->length() == 2);
   3088 
   3089   VisitForStackValue(args->at(0));
   3090   VisitForAccumulatorValue(args->at(1));
   3091 
   3092   Register object = ebx;
   3093   Register index = eax;
   3094   Register result = edx;
   3095 
   3096   __ pop(object);
   3097 
   3098   Label need_conversion;
   3099   Label index_out_of_range;
   3100   Label done;
   3101   StringCharCodeAtGenerator generator(object,
   3102                                       index,
   3103                                       result,
   3104                                       &need_conversion,
   3105                                       &need_conversion,
   3106                                       &index_out_of_range,
   3107                                       STRING_INDEX_IS_NUMBER);
   3108   generator.GenerateFast(masm_);
   3109   __ jmp(&done);
   3110 
   3111   __ bind(&index_out_of_range);
   3112   // When the index is out of range, the spec requires us to return
   3113   // NaN.
   3114   __ Set(result, Immediate(isolate()->factory()->nan_value()));
   3115   __ jmp(&done);
   3116 
   3117   __ bind(&need_conversion);
   3118   // Move the undefined value into the result register, which will
   3119   // trigger conversion.
   3120   __ Set(result, Immediate(isolate()->factory()->undefined_value()));
   3121   __ jmp(&done);
   3122 
   3123   NopRuntimeCallHelper call_helper;
   3124   generator.GenerateSlow(masm_, call_helper);
   3125 
   3126   __ bind(&done);
   3127   context()->Plug(result);
   3128 }
   3129 
   3130 
   3131 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
   3132   ZoneList<Expression*>* args = expr->arguments();
   3133   ASSERT(args->length() == 2);
   3134 
   3135   VisitForStackValue(args->at(0));
   3136   VisitForAccumulatorValue(args->at(1));
   3137 
   3138   Register object = ebx;
   3139   Register index = eax;
   3140   Register scratch = edx;
   3141   Register result = eax;
   3142 
   3143   __ pop(object);
   3144 
   3145   Label need_conversion;
   3146   Label index_out_of_range;
   3147   Label done;
   3148   StringCharAtGenerator generator(object,
   3149                                   index,
   3150                                   scratch,
   3151                                   result,
   3152                                   &need_conversion,
   3153                                   &need_conversion,
   3154                                   &index_out_of_range,
   3155                                   STRING_INDEX_IS_NUMBER);
   3156   generator.GenerateFast(masm_);
   3157   __ jmp(&done);
   3158 
   3159   __ bind(&index_out_of_range);
   3160   // When the index is out of range, the spec requires us to return
   3161   // the empty string.
   3162   __ Set(result, Immediate(isolate()->factory()->empty_string()));
   3163   __ jmp(&done);
   3164 
   3165   __ bind(&need_conversion);
   3166   // Move smi zero into the result register, which will trigger
   3167   // conversion.
   3168   __ Set(result, Immediate(Smi::FromInt(0)));
   3169   __ jmp(&done);
   3170 
   3171   NopRuntimeCallHelper call_helper;
   3172   generator.GenerateSlow(masm_, call_helper);
   3173 
   3174   __ bind(&done);
   3175   context()->Plug(result);
   3176 }
   3177 
   3178 
   3179 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
   3180   ZoneList<Expression*>* args = expr->arguments();
   3181   ASSERT_EQ(2, args->length());
   3182 
   3183   VisitForStackValue(args->at(0));
   3184   VisitForStackValue(args->at(1));
   3185 
   3186   StringAddStub stub(NO_STRING_ADD_FLAGS);
   3187   __ CallStub(&stub);
   3188   context()->Plug(eax);
   3189 }
   3190 
   3191 
   3192 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
   3193   ZoneList<Expression*>* args = expr->arguments();
   3194   ASSERT_EQ(2, args->length());
   3195 
   3196   VisitForStackValue(args->at(0));
   3197   VisitForStackValue(args->at(1));
   3198 
   3199   StringCompareStub stub;
   3200   __ CallStub(&stub);
   3201   context()->Plug(eax);
   3202 }
   3203 
   3204 
   3205 void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
   3206   // Load the argument on the stack and call the stub.
   3207   TranscendentalCacheStub stub(TranscendentalCache::SIN,
   3208                                TranscendentalCacheStub::TAGGED);
   3209   ZoneList<Expression*>* args = expr->arguments();
   3210   ASSERT(args->length() == 1);
   3211   VisitForStackValue(args->at(0));
   3212   __ CallStub(&stub);
   3213   context()->Plug(eax);
   3214 }
   3215 
   3216 
   3217 void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
   3218   // Load the argument on the stack and call the stub.
   3219   TranscendentalCacheStub stub(TranscendentalCache::COS,
   3220                                TranscendentalCacheStub::TAGGED);
   3221   ZoneList<Expression*>* args = expr->arguments();
   3222   ASSERT(args->length() == 1);
   3223   VisitForStackValue(args->at(0));
   3224   __ CallStub(&stub);
   3225   context()->Plug(eax);
   3226 }
   3227 
   3228 
   3229 void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
   3230   // Load the argument on the stack and call the stub.
   3231   TranscendentalCacheStub stub(TranscendentalCache::TAN,
   3232                                TranscendentalCacheStub::TAGGED);
   3233   ZoneList<Expression*>* args = expr->arguments();
   3234   ASSERT(args->length() == 1);
   3235   VisitForStackValue(args->at(0));
   3236   __ CallStub(&stub);
   3237   context()->Plug(eax);
   3238 }
   3239 
   3240 
   3241 void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
   3242   // Load the argument on the stack and call the stub.
   3243   TranscendentalCacheStub stub(TranscendentalCache::LOG,
   3244                                TranscendentalCacheStub::TAGGED);
   3245   ZoneList<Expression*>* args = expr->arguments();
   3246   ASSERT(args->length() == 1);
   3247   VisitForStackValue(args->at(0));
   3248   __ CallStub(&stub);
   3249   context()->Plug(eax);
   3250 }
   3251 
   3252 
   3253 void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
   3254   // Load the argument on the stack and call the runtime function.
   3255   ZoneList<Expression*>* args = expr->arguments();
   3256   ASSERT(args->length() == 1);
   3257   VisitForStackValue(args->at(0));
   3258   __ CallRuntime(Runtime::kMath_sqrt, 1);
   3259   context()->Plug(eax);
   3260 }
   3261 
   3262 
   3263 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
   3264   ZoneList<Expression*>* args = expr->arguments();
   3265   ASSERT(args->length() >= 2);
   3266 
   3267   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
   3268   for (int i = 0; i < arg_count + 1; ++i) {
   3269     VisitForStackValue(args->at(i));
   3270   }
   3271   VisitForAccumulatorValue(args->last());  // Function.
   3272 
   3273   // Check for proxy.
   3274   Label proxy, done;
   3275   __ CmpObjectType(eax, JS_FUNCTION_PROXY_TYPE, ebx);
   3276   __ j(equal, &proxy);
   3277 
   3278   // InvokeFunction requires the function in edi. Move it in there.
   3279   __ mov(edi, result_register());
   3280   ParameterCount count(arg_count);
   3281   __ InvokeFunction(edi, count, CALL_FUNCTION,
   3282                     NullCallWrapper(), CALL_AS_METHOD);
   3283   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   3284   __ jmp(&done);
   3285 
   3286   __ bind(&proxy);
   3287   __ push(eax);
   3288   __ CallRuntime(Runtime::kCall, args->length());
   3289   __ bind(&done);
   3290 
   3291   context()->Plug(eax);
   3292 }
   3293 
   3294 
   3295 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
   3296   // Load the arguments on the stack and call the stub.
   3297   RegExpConstructResultStub stub;
   3298   ZoneList<Expression*>* args = expr->arguments();
   3299   ASSERT(args->length() == 3);
   3300   VisitForStackValue(args->at(0));
   3301   VisitForStackValue(args->at(1));
   3302   VisitForStackValue(args->at(2));
   3303   __ CallStub(&stub);
   3304   context()->Plug(eax);
   3305 }
   3306 
   3307 
   3308 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
   3309   ZoneList<Expression*>* args = expr->arguments();
   3310   ASSERT_EQ(2, args->length());
   3311 
   3312   ASSERT_NE(NULL, args->at(0)->AsLiteral());
   3313   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
   3314 
   3315   Handle<FixedArray> jsfunction_result_caches(
   3316       isolate()->global_context()->jsfunction_result_caches());
   3317   if (jsfunction_result_caches->length() <= cache_id) {
   3318     __ Abort("Attempt to use undefined cache.");
   3319     __ mov(eax, isolate()->factory()->undefined_value());
   3320     context()->Plug(eax);
   3321     return;
   3322   }
   3323 
   3324   VisitForAccumulatorValue(args->at(1));
   3325 
   3326   Register key = eax;
   3327   Register cache = ebx;
   3328   Register tmp = ecx;
   3329   __ mov(cache, ContextOperand(esi, Context::GLOBAL_INDEX));
   3330   __ mov(cache,
   3331          FieldOperand(cache, GlobalObject::kGlobalContextOffset));
   3332   __ mov(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
   3333   __ mov(cache,
   3334          FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
   3335 
   3336   Label done, not_found;
   3337   // tmp now holds finger offset as a smi.
   3338   STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
   3339   __ mov(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset));
   3340   __ cmp(key, CodeGenerator::FixedArrayElementOperand(cache, tmp));
   3341   __ j(not_equal, &not_found);
   3342 
   3343   __ mov(eax, CodeGenerator::FixedArrayElementOperand(cache, tmp, 1));
   3344   __ jmp(&done);
   3345 
   3346   __ bind(&not_found);
   3347   // Call runtime to perform the lookup.
   3348   __ push(cache);
   3349   __ push(key);
   3350   __ CallRuntime(Runtime::kGetFromCache, 2);
   3351 
   3352   __ bind(&done);
   3353   context()->Plug(eax);
   3354 }
   3355 
   3356 
   3357 void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
   3358   ZoneList<Expression*>* args = expr->arguments();
   3359   ASSERT_EQ(2, args->length());
   3360 
   3361   Register right = eax;
   3362   Register left = ebx;
   3363   Register tmp = ecx;
   3364 
   3365   VisitForStackValue(args->at(0));
   3366   VisitForAccumulatorValue(args->at(1));
   3367   __ pop(left);
   3368 
   3369   Label done, fail, ok;
   3370   __ cmp(left, right);
   3371   __ j(equal, &ok);
   3372   // Fail if either is a non-HeapObject.
   3373   __ mov(tmp, left);
   3374   __ and_(tmp, right);
   3375   __ JumpIfSmi(tmp, &fail);
   3376   __ mov(tmp, FieldOperand(left, HeapObject::kMapOffset));
   3377   __ CmpInstanceType(tmp, JS_REGEXP_TYPE);
   3378   __ j(not_equal, &fail);
   3379   __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset));
   3380   __ j(not_equal, &fail);
   3381   __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset));
   3382   __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset));
   3383   __ j(equal, &ok);
   3384   __ bind(&fail);
   3385   __ mov(eax, Immediate(isolate()->factory()->false_value()));
   3386   __ jmp(&done);
   3387   __ bind(&ok);
   3388   __ mov(eax, Immediate(isolate()->factory()->true_value()));
   3389   __ bind(&done);
   3390 
   3391   context()->Plug(eax);
   3392 }
   3393 
   3394 
   3395 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
   3396   ZoneList<Expression*>* args = expr->arguments();
   3397   ASSERT(args->length() == 1);
   3398 
   3399   VisitForAccumulatorValue(args->at(0));
   3400 
   3401   if (FLAG_debug_code) {
   3402     __ AbortIfNotString(eax);
   3403   }
   3404 
   3405   Label materialize_true, materialize_false;
   3406   Label* if_true = NULL;
   3407   Label* if_false = NULL;
   3408   Label* fall_through = NULL;
   3409   context()->PrepareTest(&materialize_true, &materialize_false,
   3410                          &if_true, &if_false, &fall_through);
   3411 
   3412   __ test(FieldOperand(eax, String::kHashFieldOffset),
   3413           Immediate(String::kContainsCachedArrayIndexMask));
   3414   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   3415   Split(zero, if_true, if_false, fall_through);
   3416 
   3417   context()->Plug(if_true, if_false);
   3418 }
   3419 
   3420 
   3421 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
   3422   ZoneList<Expression*>* args = expr->arguments();
   3423   ASSERT(args->length() == 1);
   3424   VisitForAccumulatorValue(args->at(0));
   3425 
   3426   if (FLAG_debug_code) {
   3427     __ AbortIfNotString(eax);
   3428   }
   3429 
   3430   __ mov(eax, FieldOperand(eax, String::kHashFieldOffset));
   3431   __ IndexFromHash(eax, eax);
   3432 
   3433   context()->Plug(eax);
   3434 }
   3435 
   3436 
   3437 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
   3438   Label bailout, done, one_char_separator, long_separator,
   3439       non_trivial_array, not_size_one_array, loop,
   3440       loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
   3441 
   3442   ZoneList<Expression*>* args = expr->arguments();
   3443   ASSERT(args->length() == 2);
   3444   // We will leave the separator on the stack until the end of the function.
   3445   VisitForStackValue(args->at(1));
   3446   // Load this to eax (= array)
   3447   VisitForAccumulatorValue(args->at(0));
   3448   // All aliases of the same register have disjoint lifetimes.
   3449   Register array = eax;
   3450   Register elements = no_reg;  // Will be eax.
   3451 
   3452   Register index = edx;
   3453 
   3454   Register string_length = ecx;
   3455 
   3456   Register string = esi;
   3457 
   3458   Register scratch = ebx;
   3459 
   3460   Register array_length = edi;
   3461   Register result_pos = no_reg;  // Will be edi.
   3462 
   3463   // Separator operand is already pushed.
   3464   Operand separator_operand = Operand(esp, 2 * kPointerSize);
   3465   Operand result_operand = Operand(esp, 1 * kPointerSize);
   3466   Operand array_length_operand = Operand(esp, 0);
   3467   __ sub(esp, Immediate(2 * kPointerSize));
   3468   __ cld();
   3469   // Check that the array is a JSArray
   3470   __ JumpIfSmi(array, &bailout);
   3471   __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
   3472   __ j(not_equal, &bailout);
   3473 
   3474   // Check that the array has fast elements.
   3475   __ CheckFastElements(scratch, &bailout);
   3476 
   3477   // If the array has length zero, return the empty string.
   3478   __ mov(array_length, FieldOperand(array, JSArray::kLengthOffset));
   3479   __ SmiUntag(array_length);
   3480   __ j(not_zero, &non_trivial_array);
   3481   __ mov(result_operand, isolate()->factory()->empty_string());
   3482   __ jmp(&done);
   3483 
   3484   // Save the array length.
   3485   __ bind(&non_trivial_array);
   3486   __ mov(array_length_operand, array_length);
   3487 
   3488   // Save the FixedArray containing array's elements.
   3489   // End of array's live range.
   3490   elements = array;
   3491   __ mov(elements, FieldOperand(array, JSArray::kElementsOffset));
   3492   array = no_reg;
   3493 
   3494 
   3495   // Check that all array elements are sequential ASCII strings, and
   3496   // accumulate the sum of their lengths, as a smi-encoded value.
   3497   __ Set(index, Immediate(0));
   3498   __ Set(string_length, Immediate(0));
   3499   // Loop condition: while (index < length).
   3500   // Live loop registers: index, array_length, string,
   3501   //                      scratch, string_length, elements.
   3502   if (FLAG_debug_code) {
   3503     __ cmp(index, array_length);
   3504     __ Assert(less, "No empty arrays here in EmitFastAsciiArrayJoin");
   3505   }
   3506   __ bind(&loop);
   3507   __ mov(string, FieldOperand(elements,
   3508                               index,
   3509                               times_pointer_size,
   3510                               FixedArray::kHeaderSize));
   3511   __ JumpIfSmi(string, &bailout);
   3512   __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
   3513   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   3514   __ and_(scratch, Immediate(
   3515       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
   3516   __ cmp(scratch, kStringTag | kAsciiStringTag | kSeqStringTag);
   3517   __ j(not_equal, &bailout);
   3518   __ add(string_length,
   3519          FieldOperand(string, SeqAsciiString::kLengthOffset));
   3520   __ j(overflow, &bailout);
   3521   __ add(index, Immediate(1));
   3522   __ cmp(index, array_length);
   3523   __ j(less, &loop);
   3524 
   3525   // If array_length is 1, return elements[0], a string.
   3526   __ cmp(array_length, 1);
   3527   __ j(not_equal, &not_size_one_array);
   3528   __ mov(scratch, FieldOperand(elements, FixedArray::kHeaderSize));
   3529   __ mov(result_operand, scratch);
   3530   __ jmp(&done);
   3531 
   3532   __ bind(&not_size_one_array);
   3533 
   3534   // End of array_length live range.
   3535   result_pos = array_length;
   3536   array_length = no_reg;
   3537 
   3538   // Live registers:
   3539   // string_length: Sum of string lengths, as a smi.
   3540   // elements: FixedArray of strings.
   3541 
   3542   // Check that the separator is a flat ASCII string.
   3543   __ mov(string, separator_operand);
   3544   __ JumpIfSmi(string, &bailout);
   3545   __ mov(scratch, FieldOperand(string, HeapObject::kMapOffset));
   3546   __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
   3547   __ and_(scratch, Immediate(
   3548       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
   3549   __ cmp(scratch, ASCII_STRING_TYPE);
   3550   __ j(not_equal, &bailout);
   3551 
   3552   // Add (separator length times array_length) - separator length
   3553   // to string_length.
   3554   __ mov(scratch, separator_operand);
   3555   __ mov(scratch, FieldOperand(scratch, SeqAsciiString::kLengthOffset));
   3556   __ sub(string_length, scratch);  // May be negative, temporarily.
   3557   __ imul(scratch, array_length_operand);
   3558   __ j(overflow, &bailout);
   3559   __ add(string_length, scratch);
   3560   __ j(overflow, &bailout);
   3561 
   3562   __ shr(string_length, 1);
   3563   // Live registers and stack values:
   3564   //   string_length
   3565   //   elements
   3566   __ AllocateAsciiString(result_pos, string_length, scratch,
   3567                          index, string, &bailout);
   3568   __ mov(result_operand, result_pos);
   3569   __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize));
   3570 
   3571 
   3572   __ mov(string, separator_operand);
   3573   __ cmp(FieldOperand(string, SeqAsciiString::kLengthOffset),
   3574          Immediate(Smi::FromInt(1)));
   3575   __ j(equal, &one_char_separator);
   3576   __ j(greater, &long_separator);
   3577 
   3578 
   3579   // Empty separator case
   3580   __ mov(index, Immediate(0));
   3581   __ jmp(&loop_1_condition);
   3582   // Loop condition: while (index < length).
   3583   __ bind(&loop_1);
   3584   // Each iteration of the loop concatenates one string to the result.
   3585   // Live values in registers:
   3586   //   index: which element of the elements array we are adding to the result.
   3587   //   result_pos: the position to which we are currently copying characters.
   3588   //   elements: the FixedArray of strings we are joining.
   3589 
   3590   // Get string = array[index].
   3591   __ mov(string, FieldOperand(elements, index,
   3592                               times_pointer_size,
   3593                               FixedArray::kHeaderSize));
   3594   __ mov(string_length,
   3595          FieldOperand(string, String::kLengthOffset));
   3596   __ shr(string_length, 1);
   3597   __ lea(string,
   3598          FieldOperand(string, SeqAsciiString::kHeaderSize));
   3599   __ CopyBytes(string, result_pos, string_length, scratch);
   3600   __ add(index, Immediate(1));
   3601   __ bind(&loop_1_condition);
   3602   __ cmp(index, array_length_operand);
   3603   __ j(less, &loop_1);  // End while (index < length).
   3604   __ jmp(&done);
   3605 
   3606 
   3607 
   3608   // One-character separator case
   3609   __ bind(&one_char_separator);
   3610   // Replace separator with its ASCII character value.
   3611   __ mov_b(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize));
   3612   __ mov_b(separator_operand, scratch);
   3613 
   3614   __ Set(index, Immediate(0));
   3615   // Jump into the loop after the code that copies the separator, so the first
   3616   // element is not preceded by a separator
   3617   __ jmp(&loop_2_entry);
   3618   // Loop condition: while (index < length).
   3619   __ bind(&loop_2);
   3620   // Each iteration of the loop concatenates one string to the result.
   3621   // Live values in registers:
   3622   //   index: which element of the elements array we are adding to the result.
   3623   //   result_pos: the position to which we are currently copying characters.
   3624 
   3625   // Copy the separator character to the result.
   3626   __ mov_b(scratch, separator_operand);
   3627   __ mov_b(Operand(result_pos, 0), scratch);
   3628   __ inc(result_pos);
   3629 
   3630   __ bind(&loop_2_entry);
   3631   // Get string = array[index].
   3632   __ mov(string, FieldOperand(elements, index,
   3633                               times_pointer_size,
   3634                               FixedArray::kHeaderSize));
   3635   __ mov(string_length,
   3636          FieldOperand(string, String::kLengthOffset));
   3637   __ shr(string_length, 1);
   3638   __ lea(string,
   3639          FieldOperand(string, SeqAsciiString::kHeaderSize));
   3640   __ CopyBytes(string, result_pos, string_length, scratch);
   3641   __ add(index, Immediate(1));
   3642 
   3643   __ cmp(index, array_length_operand);
   3644   __ j(less, &loop_2);  // End while (index < length).
   3645   __ jmp(&done);
   3646 
   3647 
   3648   // Long separator case (separator is more than one character).
   3649   __ bind(&long_separator);
   3650 
   3651   __ Set(index, Immediate(0));
   3652   // Jump into the loop after the code that copies the separator, so the first
   3653   // element is not preceded by a separator
   3654   __ jmp(&loop_3_entry);
   3655   // Loop condition: while (index < length).
   3656   __ bind(&loop_3);
   3657   // Each iteration of the loop concatenates one string to the result.
   3658   // Live values in registers:
   3659   //   index: which element of the elements array we are adding to the result.
   3660   //   result_pos: the position to which we are currently copying characters.
   3661 
   3662   // Copy the separator to the result.
   3663   __ mov(string, separator_operand);
   3664   __ mov(string_length,
   3665          FieldOperand(string, String::kLengthOffset));
   3666   __ shr(string_length, 1);
   3667   __ lea(string,
   3668          FieldOperand(string, SeqAsciiString::kHeaderSize));
   3669   __ CopyBytes(string, result_pos, string_length, scratch);
   3670 
   3671   __ bind(&loop_3_entry);
   3672   // Get string = array[index].
   3673   __ mov(string, FieldOperand(elements, index,
   3674                               times_pointer_size,
   3675                               FixedArray::kHeaderSize));
   3676   __ mov(string_length,
   3677          FieldOperand(string, String::kLengthOffset));
   3678   __ shr(string_length, 1);
   3679   __ lea(string,
   3680          FieldOperand(string, SeqAsciiString::kHeaderSize));
   3681   __ CopyBytes(string, result_pos, string_length, scratch);
   3682   __ add(index, Immediate(1));
   3683 
   3684   __ cmp(index, array_length_operand);
   3685   __ j(less, &loop_3);  // End while (index < length).
   3686   __ jmp(&done);
   3687 
   3688 
   3689   __ bind(&bailout);
   3690   __ mov(result_operand, isolate()->factory()->undefined_value());
   3691   __ bind(&done);
   3692   __ mov(eax, result_operand);
   3693   // Drop temp values from the stack, and restore context register.
   3694   __ add(esp, Immediate(3 * kPointerSize));
   3695 
   3696   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   3697   context()->Plug(eax);
   3698 }
   3699 
   3700 
   3701 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
   3702   Handle<String> name = expr->name();
   3703   if (name->length() > 0 && name->Get(0) == '_') {
   3704     Comment cmnt(masm_, "[ InlineRuntimeCall");
   3705     EmitInlineRuntimeCall(expr);
   3706     return;
   3707   }
   3708 
   3709   Comment cmnt(masm_, "[ CallRuntime");
   3710   ZoneList<Expression*>* args = expr->arguments();
   3711 
   3712   if (expr->is_jsruntime()) {
   3713     // Prepare for calling JS runtime function.
   3714     __ mov(eax, GlobalObjectOperand());
   3715     __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset));
   3716   }
   3717 
   3718   // Push the arguments ("left-to-right").
   3719   int arg_count = args->length();
   3720   for (int i = 0; i < arg_count; i++) {
   3721     VisitForStackValue(args->at(i));
   3722   }
   3723 
   3724   if (expr->is_jsruntime()) {
   3725     // Call the JS runtime function via a call IC.
   3726     __ Set(ecx, Immediate(expr->name()));
   3727     RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
   3728     Handle<Code> ic =
   3729         isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
   3730     CallIC(ic, mode, expr->id());
   3731     // Restore context register.
   3732     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
   3733   } else {
   3734     // Call the C runtime function.
   3735     __ CallRuntime(expr->function(), arg_count);
   3736   }
   3737   context()->Plug(eax);
   3738 }
   3739 
   3740 
   3741 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
   3742   switch (expr->op()) {
   3743     case Token::DELETE: {
   3744       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
   3745       Property* property = expr->expression()->AsProperty();
   3746       VariableProxy* proxy = expr->expression()->AsVariableProxy();
   3747 
   3748       if (property != NULL) {
   3749         VisitForStackValue(property->obj());
   3750         VisitForStackValue(property->key());
   3751         StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
   3752             ? kNonStrictMode : kStrictMode;
   3753         __ push(Immediate(Smi::FromInt(strict_mode_flag)));
   3754         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   3755         context()->Plug(eax);
   3756       } else if (proxy != NULL) {
   3757         Variable* var = proxy->var();
   3758         // Delete of an unqualified identifier is disallowed in strict mode
   3759         // but "delete this" is allowed.
   3760         ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
   3761         if (var->IsUnallocated()) {
   3762           __ push(GlobalObjectOperand());
   3763           __ push(Immediate(var->name()));
   3764           __ push(Immediate(Smi::FromInt(kNonStrictMode)));
   3765           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
   3766           context()->Plug(eax);
   3767         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
   3768           // Result of deleting non-global variables is false.  'this' is
   3769           // not really a variable, though we implement it as one.  The
   3770           // subexpression does not have side effects.
   3771           context()->Plug(var->is_this());
   3772         } else {
   3773           // Non-global variable.  Call the runtime to try to delete from the
   3774           // context where the variable was introduced.
   3775           __ push(context_register());
   3776           __ push(Immediate(var->name()));
   3777           __ CallRuntime(Runtime::kDeleteContextSlot, 2);
   3778           context()->Plug(eax);
   3779         }
   3780       } else {
   3781         // Result of deleting non-property, non-variable reference is true.
   3782         // The subexpression may have side effects.
   3783         VisitForEffect(expr->expression());
   3784         context()->Plug(true);
   3785       }
   3786       break;
   3787     }
   3788 
   3789     case Token::VOID: {
   3790       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
   3791       VisitForEffect(expr->expression());
   3792       context()->Plug(isolate()->factory()->undefined_value());
   3793       break;
   3794     }
   3795 
   3796     case Token::NOT: {
   3797       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
   3798       if (context()->IsEffect()) {
   3799         // Unary NOT has no side effects so it's only necessary to visit the
   3800         // subexpression.  Match the optimizing compiler by not branching.
   3801         VisitForEffect(expr->expression());
   3802       } else if (context()->IsTest()) {
   3803         const TestContext* test = TestContext::cast(context());
   3804         // The labels are swapped for the recursive call.
   3805         VisitForControl(expr->expression(),
   3806                         test->false_label(),
   3807                         test->true_label(),
   3808                         test->fall_through());
   3809         context()->Plug(test->true_label(), test->false_label());
   3810       } else {
   3811         // We handle value contexts explicitly rather than simply visiting
   3812         // for control and plugging the control flow into the context,
   3813         // because we need to prepare a pair of extra administrative AST ids
   3814         // for the optimizing compiler.
   3815         ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
   3816         Label materialize_true, materialize_false, done;
   3817         VisitForControl(expr->expression(),
   3818                         &materialize_false,
   3819                         &materialize_true,
   3820                         &materialize_true);
   3821         __ bind(&materialize_true);
   3822         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
   3823         if (context()->IsAccumulatorValue()) {
   3824           __ mov(eax, isolate()->factory()->true_value());
   3825         } else {
   3826           __ Push(isolate()->factory()->true_value());
   3827         }
   3828         __ jmp(&done, Label::kNear);
   3829         __ bind(&materialize_false);
   3830         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
   3831         if (context()->IsAccumulatorValue()) {
   3832           __ mov(eax, isolate()->factory()->false_value());
   3833         } else {
   3834           __ Push(isolate()->factory()->false_value());
   3835         }
   3836         __ bind(&done);
   3837       }
   3838       break;
   3839     }
   3840 
   3841     case Token::TYPEOF: {
   3842       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
   3843       { StackValueContext context(this);
   3844         VisitForTypeofValue(expr->expression());
   3845       }
   3846       __ CallRuntime(Runtime::kTypeof, 1);
   3847       context()->Plug(eax);
   3848       break;
   3849     }
   3850 
   3851     case Token::ADD: {
   3852       Comment cmt(masm_, "[ UnaryOperation (ADD)");
   3853       VisitForAccumulatorValue(expr->expression());
   3854       Label no_conversion;
   3855       __ JumpIfSmi(result_register(), &no_conversion);
   3856       ToNumberStub convert_stub;
   3857       __ CallStub(&convert_stub);
   3858       __ bind(&no_conversion);
   3859       context()->Plug(result_register());
   3860       break;
   3861     }
   3862 
   3863     case Token::SUB:
   3864       EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
   3865       break;
   3866 
   3867     case Token::BIT_NOT:
   3868       EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
   3869       break;
   3870 
   3871     default:
   3872       UNREACHABLE();
   3873   }
   3874 }
   3875 
   3876 
   3877 void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
   3878                                            const char* comment) {
   3879   Comment cmt(masm_, comment);
   3880   bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
   3881   UnaryOverwriteMode overwrite =
   3882       can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
   3883   UnaryOpStub stub(expr->op(), overwrite);
   3884   // UnaryOpStub expects the argument to be in the
   3885   // accumulator register eax.
   3886   VisitForAccumulatorValue(expr->expression());
   3887   SetSourcePosition(expr->position());
   3888   CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
   3889   context()->Plug(eax);
   3890 }
   3891 
   3892 
   3893 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
   3894   Comment cmnt(masm_, "[ CountOperation");
   3895   SetSourcePosition(expr->position());
   3896 
   3897   // Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
   3898   // as the left-hand side.
   3899   if (!expr->expression()->IsValidLeftHandSide()) {
   3900     VisitForEffect(expr->expression());
   3901     return;
   3902   }
   3903 
   3904   // Expression can only be a property, a global or a (parameter or local)
   3905   // slot.
   3906   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
   3907   LhsKind assign_type = VARIABLE;
   3908   Property* prop = expr->expression()->AsProperty();
   3909   // In case of a property we use the uninitialized expression context
   3910   // of the key to detect a named property.
   3911   if (prop != NULL) {
   3912     assign_type =
   3913         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
   3914   }
   3915 
   3916   // Evaluate expression and get value.
   3917   if (assign_type == VARIABLE) {
   3918     ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
   3919     AccumulatorValueContext context(this);
   3920     EmitVariableLoad(expr->expression()->AsVariableProxy());
   3921   } else {
   3922     // Reserve space for result of postfix operation.
   3923     if (expr->is_postfix() && !context()->IsEffect()) {
   3924       __ push(Immediate(Smi::FromInt(0)));
   3925     }
   3926     if (assign_type == NAMED_PROPERTY) {
   3927       // Put the object both on the stack and in the accumulator.
   3928       VisitForAccumulatorValue(prop->obj());
   3929       __ push(eax);
   3930       EmitNamedPropertyLoad(prop);
   3931     } else {
   3932       VisitForStackValue(prop->obj());
   3933       VisitForAccumulatorValue(prop->key());
   3934       __ mov(edx, Operand(esp, 0));
   3935       __ push(eax);
   3936       EmitKeyedPropertyLoad(prop);
   3937     }
   3938   }
   3939 
   3940   // We need a second deoptimization point after loading the value
   3941   // in case evaluating the property load my have a side effect.
   3942   if (assign_type == VARIABLE) {
   3943     PrepareForBailout(expr->expression(), TOS_REG);
   3944   } else {
   3945     PrepareForBailoutForId(expr->CountId(), TOS_REG);
   3946   }
   3947 
   3948   // Call ToNumber only if operand is not a smi.
   3949   Label no_conversion;
   3950   if (ShouldInlineSmiCase(expr->op())) {
   3951     __ JumpIfSmi(eax, &no_conversion, Label::kNear);
   3952   }
   3953   ToNumberStub convert_stub;
   3954   __ CallStub(&convert_stub);
   3955   __ bind(&no_conversion);
   3956 
   3957   // Save result for postfix expressions.
   3958   if (expr->is_postfix()) {
   3959     if (!context()->IsEffect()) {
   3960       // Save the result on the stack. If we have a named or keyed property
   3961       // we store the result under the receiver that is currently on top
   3962       // of the stack.
   3963       switch (assign_type) {
   3964         case VARIABLE:
   3965           __ push(eax);
   3966           break;
   3967         case NAMED_PROPERTY:
   3968           __ mov(Operand(esp, kPointerSize), eax);
   3969           break;
   3970         case KEYED_PROPERTY:
   3971           __ mov(Operand(esp, 2 * kPointerSize), eax);
   3972           break;
   3973       }
   3974     }
   3975   }
   3976 
   3977   // Inline smi case if we are in a loop.
   3978   Label done, stub_call;
   3979   JumpPatchSite patch_site(masm_);
   3980 
   3981   if (ShouldInlineSmiCase(expr->op())) {
   3982     if (expr->op() == Token::INC) {
   3983       __ add(eax, Immediate(Smi::FromInt(1)));
   3984     } else {
   3985       __ sub(eax, Immediate(Smi::FromInt(1)));
   3986     }
   3987     __ j(overflow, &stub_call, Label::kNear);
   3988     // We could eliminate this smi check if we split the code at
   3989     // the first smi check before calling ToNumber.
   3990     patch_site.EmitJumpIfSmi(eax, &done, Label::kNear);
   3991 
   3992     __ bind(&stub_call);
   3993     // Call stub. Undo operation first.
   3994     if (expr->op() == Token::INC) {
   3995       __ sub(eax, Immediate(Smi::FromInt(1)));
   3996     } else {
   3997       __ add(eax, Immediate(Smi::FromInt(1)));
   3998     }
   3999   }
   4000 
   4001   // Record position before stub call.
   4002   SetSourcePosition(expr->position());
   4003 
   4004   // Call stub for +1/-1.
   4005   __ mov(edx, eax);
   4006   __ mov(eax, Immediate(Smi::FromInt(1)));
   4007   BinaryOpStub stub(expr->binary_op(), NO_OVERWRITE);
   4008   CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId());
   4009   patch_site.EmitPatchInfo();
   4010   __ bind(&done);
   4011 
   4012   // Store the value returned in eax.
   4013   switch (assign_type) {
   4014     case VARIABLE:
   4015       if (expr->is_postfix()) {
   4016         // Perform the assignment as if via '='.
   4017         { EffectContext context(this);
   4018           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4019                                  Token::ASSIGN);
   4020           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4021           context.Plug(eax);
   4022         }
   4023         // For all contexts except EffectContext We have the result on
   4024         // top of the stack.
   4025         if (!context()->IsEffect()) {
   4026           context()->PlugTOS();
   4027         }
   4028       } else {
   4029         // Perform the assignment as if via '='.
   4030         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
   4031                                Token::ASSIGN);
   4032         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4033         context()->Plug(eax);
   4034       }
   4035       break;
   4036     case NAMED_PROPERTY: {
   4037       __ mov(ecx, prop->key()->AsLiteral()->handle());
   4038       __ pop(edx);
   4039       Handle<Code> ic = is_classic_mode()
   4040           ? isolate()->builtins()->StoreIC_Initialize()
   4041           : isolate()->builtins()->StoreIC_Initialize_Strict();
   4042       CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   4043       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4044       if (expr->is_postfix()) {
   4045         if (!context()->IsEffect()) {
   4046           context()->PlugTOS();
   4047         }
   4048       } else {
   4049         context()->Plug(eax);
   4050       }
   4051       break;
   4052     }
   4053     case KEYED_PROPERTY: {
   4054       __ pop(ecx);
   4055       __ pop(edx);
   4056       Handle<Code> ic = is_classic_mode()
   4057           ? isolate()->builtins()->KeyedStoreIC_Initialize()
   4058           : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
   4059       CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   4060       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
   4061       if (expr->is_postfix()) {
   4062         // Result is on the stack
   4063         if (!context()->IsEffect()) {
   4064           context()->PlugTOS();
   4065         }
   4066       } else {
   4067         context()->Plug(eax);
   4068       }
   4069       break;
   4070     }
   4071   }
   4072 }
   4073 
   4074 
   4075 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
   4076   VariableProxy* proxy = expr->AsVariableProxy();
   4077   ASSERT(!context()->IsEffect());
   4078   ASSERT(!context()->IsTest());
   4079 
   4080   if (proxy != NULL && proxy->var()->IsUnallocated()) {
   4081     Comment cmnt(masm_, "Global variable");
   4082     __ mov(eax, GlobalObjectOperand());
   4083     __ mov(ecx, Immediate(proxy->name()));
   4084     Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
   4085     // Use a regular load, not a contextual load, to avoid a reference
   4086     // error.
   4087     CallIC(ic);
   4088     PrepareForBailout(expr, TOS_REG);
   4089     context()->Plug(eax);
   4090   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
   4091     Label done, slow;
   4092 
   4093     // Generate code for loading from variables potentially shadowed
   4094     // by eval-introduced variables.
   4095     EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
   4096 
   4097     __ bind(&slow);
   4098     __ push(esi);
   4099     __ push(Immediate(proxy->name()));
   4100     __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
   4101     PrepareForBailout(expr, TOS_REG);
   4102     __ bind(&done);
   4103 
   4104     context()->Plug(eax);
   4105   } else {
   4106     // This expression cannot throw a reference error at the top level.
   4107     VisitInDuplicateContext(expr);
   4108   }
   4109 }
   4110 
   4111 
   4112 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
   4113                                                  Expression* sub_expr,
   4114                                                  Handle<String> check) {
   4115   Label materialize_true, materialize_false;
   4116   Label* if_true = NULL;
   4117   Label* if_false = NULL;
   4118   Label* fall_through = NULL;
   4119   context()->PrepareTest(&materialize_true, &materialize_false,
   4120                          &if_true, &if_false, &fall_through);
   4121 
   4122   { AccumulatorValueContext context(this);
   4123     VisitForTypeofValue(sub_expr);
   4124   }
   4125   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4126 
   4127   if (check->Equals(isolate()->heap()->number_symbol())) {
   4128     __ JumpIfSmi(eax, if_true);
   4129     __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
   4130            isolate()->factory()->heap_number_map());
   4131     Split(equal, if_true, if_false, fall_through);
   4132   } else if (check->Equals(isolate()->heap()->string_symbol())) {
   4133     __ JumpIfSmi(eax, if_false);
   4134     __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
   4135     __ j(above_equal, if_false);
   4136     // Check for undetectable objects => false.
   4137     __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
   4138               1 << Map::kIsUndetectable);
   4139     Split(zero, if_true, if_false, fall_through);
   4140   } else if (check->Equals(isolate()->heap()->boolean_symbol())) {
   4141     __ cmp(eax, isolate()->factory()->true_value());
   4142     __ j(equal, if_true);
   4143     __ cmp(eax, isolate()->factory()->false_value());
   4144     Split(equal, if_true, if_false, fall_through);
   4145   } else if (FLAG_harmony_typeof &&
   4146              check->Equals(isolate()->heap()->null_symbol())) {
   4147     __ cmp(eax, isolate()->factory()->null_value());
   4148     Split(equal, if_true, if_false, fall_through);
   4149   } else if (check->Equals(isolate()->heap()->undefined_symbol())) {
   4150     __ cmp(eax, isolate()->factory()->undefined_value());
   4151     __ j(equal, if_true);
   4152     __ JumpIfSmi(eax, if_false);
   4153     // Check for undetectable objects => true.
   4154     __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
   4155     __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset));
   4156     __ test(ecx, Immediate(1 << Map::kIsUndetectable));
   4157     Split(not_zero, if_true, if_false, fall_through);
   4158   } else if (check->Equals(isolate()->heap()->function_symbol())) {
   4159     __ JumpIfSmi(eax, if_false);
   4160     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
   4161     __ CmpObjectType(eax, JS_FUNCTION_TYPE, edx);
   4162     __ j(equal, if_true);
   4163     __ CmpInstanceType(edx, JS_FUNCTION_PROXY_TYPE);
   4164     Split(equal, if_true, if_false, fall_through);
   4165   } else if (check->Equals(isolate()->heap()->object_symbol())) {
   4166     __ JumpIfSmi(eax, if_false);
   4167     if (!FLAG_harmony_typeof) {
   4168       __ cmp(eax, isolate()->factory()->null_value());
   4169       __ j(equal, if_true);
   4170     }
   4171     __ CmpObjectType(eax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, edx);
   4172     __ j(below, if_false);
   4173     __ CmpInstanceType(edx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
   4174     __ j(above, if_false);
   4175     // Check for undetectable objects => false.
   4176     __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
   4177               1 << Map::kIsUndetectable);
   4178     Split(zero, if_true, if_false, fall_through);
   4179   } else {
   4180     if (if_false != fall_through) __ jmp(if_false);
   4181   }
   4182   context()->Plug(if_true, if_false);
   4183 }
   4184 
   4185 
   4186 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
   4187   Comment cmnt(masm_, "[ CompareOperation");
   4188   SetSourcePosition(expr->position());
   4189 
   4190   // First we try a fast inlined version of the compare when one of
   4191   // the operands is a literal.
   4192   if (TryLiteralCompare(expr)) return;
   4193 
   4194   // Always perform the comparison for its control flow.  Pack the result
   4195   // into the expression's context after the comparison is performed.
   4196   Label materialize_true, materialize_false;
   4197   Label* if_true = NULL;
   4198   Label* if_false = NULL;
   4199   Label* fall_through = NULL;
   4200   context()->PrepareTest(&materialize_true, &materialize_false,
   4201                          &if_true, &if_false, &fall_through);
   4202 
   4203   Token::Value op = expr->op();
   4204   VisitForStackValue(expr->left());
   4205   switch (op) {
   4206     case Token::IN:
   4207       VisitForStackValue(expr->right());
   4208       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
   4209       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
   4210       __ cmp(eax, isolate()->factory()->true_value());
   4211       Split(equal, if_true, if_false, fall_through);
   4212       break;
   4213 
   4214     case Token::INSTANCEOF: {
   4215       VisitForStackValue(expr->right());
   4216       InstanceofStub stub(InstanceofStub::kNoFlags);
   4217       __ CallStub(&stub);
   4218       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4219       __ test(eax, eax);
   4220       // The stub returns 0 for true.
   4221       Split(zero, if_true, if_false, fall_through);
   4222       break;
   4223     }
   4224 
   4225     default: {
   4226       VisitForAccumulatorValue(expr->right());
   4227       Condition cc = no_condition;
   4228       switch (op) {
   4229         case Token::EQ_STRICT:
   4230         case Token::EQ:
   4231           cc = equal;
   4232           break;
   4233         case Token::LT:
   4234           cc = less;
   4235           break;
   4236         case Token::GT:
   4237           cc = greater;
   4238          break;
   4239         case Token::LTE:
   4240           cc = less_equal;
   4241           break;
   4242         case Token::GTE:
   4243           cc = greater_equal;
   4244           break;
   4245         case Token::IN:
   4246         case Token::INSTANCEOF:
   4247         default:
   4248           UNREACHABLE();
   4249       }
   4250       __ pop(edx);
   4251 
   4252       bool inline_smi_code = ShouldInlineSmiCase(op);
   4253       JumpPatchSite patch_site(masm_);
   4254       if (inline_smi_code) {
   4255         Label slow_case;
   4256         __ mov(ecx, edx);
   4257         __ or_(ecx, eax);
   4258         patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear);
   4259         __ cmp(edx, eax);
   4260         Split(cc, if_true, if_false, NULL);
   4261         __ bind(&slow_case);
   4262       }
   4263 
   4264       // Record position and call the compare IC.
   4265       SetSourcePosition(expr->position());
   4266       Handle<Code> ic = CompareIC::GetUninitialized(op);
   4267       CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
   4268       patch_site.EmitPatchInfo();
   4269 
   4270       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4271       __ test(eax, eax);
   4272       Split(cc, if_true, if_false, fall_through);
   4273     }
   4274   }
   4275 
   4276   // Convert the result of the comparison into one expected for this
   4277   // expression's context.
   4278   context()->Plug(if_true, if_false);
   4279 }
   4280 
   4281 
   4282 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
   4283                                               Expression* sub_expr,
   4284                                               NilValue nil) {
   4285   Label materialize_true, materialize_false;
   4286   Label* if_true = NULL;
   4287   Label* if_false = NULL;
   4288   Label* fall_through = NULL;
   4289   context()->PrepareTest(&materialize_true, &materialize_false,
   4290                          &if_true, &if_false, &fall_through);
   4291 
   4292   VisitForAccumulatorValue(sub_expr);
   4293   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
   4294   Handle<Object> nil_value = nil == kNullValue ?
   4295       isolate()->factory()->null_value() :
   4296       isolate()->factory()->undefined_value();
   4297   __ cmp(eax, nil_value);
   4298   if (expr->op() == Token::EQ_STRICT) {
   4299     Split(equal, if_true, if_false, fall_through);
   4300   } else {
   4301     Handle<Object> other_nil_value = nil == kNullValue ?
   4302         isolate()->factory()->undefined_value() :
   4303         isolate()->factory()->null_value();
   4304     __ j(equal, if_true);
   4305     __ cmp(eax, other_nil_value);
   4306     __ j(equal, if_true);
   4307     __ JumpIfSmi(eax, if_false);
   4308     // It can be an undetectable object.
   4309     __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
   4310     __ movzx_b(edx, FieldOperand(edx, Map::kBitFieldOffset));
   4311     __ test(edx, Immediate(1 << Map::kIsUndetectable));
   4312     Split(not_zero, if_true, if_false, fall_through);
   4313   }
   4314   context()->Plug(if_true, if_false);
   4315 }
   4316 
   4317 
   4318 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
   4319   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   4320   context()->Plug(eax);
   4321 }
   4322 
   4323 
   4324 Register FullCodeGenerator::result_register() {
   4325   return eax;
   4326 }
   4327 
   4328 
   4329 Register FullCodeGenerator::context_register() {
   4330   return esi;
   4331 }
   4332 
   4333 
   4334 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
   4335   ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
   4336   __ mov(Operand(ebp, frame_offset), value);
   4337 }
   4338 
   4339 
   4340 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
   4341   __ mov(dst, ContextOperand(esi, context_index));
   4342 }
   4343 
   4344 
   4345 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
   4346   Scope* declaration_scope = scope()->DeclarationScope();
   4347   if (declaration_scope->is_global_scope()) {
   4348     // Contexts nested in the global context have a canonical empty function
   4349     // as their closure, not the anonymous closure containing the global
   4350     // code.  Pass a smi sentinel and let the runtime look up the empty
   4351     // function.
   4352     __ push(Immediate(Smi::FromInt(0)));
   4353   } else if (declaration_scope->is_eval_scope()) {
   4354     // Contexts nested inside eval code have the same closure as the context
   4355     // calling eval, not the anonymous closure containing the eval code.
   4356     // Fetch it from the context.
   4357     __ push(ContextOperand(esi, Context::CLOSURE_INDEX));
   4358   } else {
   4359     ASSERT(declaration_scope->is_function_scope());
   4360     __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   4361   }
   4362 }
   4363 
   4364 
   4365 // ----------------------------------------------------------------------------
   4366 // Non-local control flow support.
   4367 
   4368 void FullCodeGenerator::EnterFinallyBlock() {
   4369   // Cook return address on top of stack (smi encoded Code* delta)
   4370   ASSERT(!result_register().is(edx));
   4371   __ pop(edx);
   4372   __ sub(edx, Immediate(masm_->CodeObject()));
   4373   STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
   4374   STATIC_ASSERT(kSmiTag == 0);
   4375   __ SmiTag(edx);
   4376   __ push(edx);
   4377   // Store result register while executing finally block.
   4378   __ push(result_register());
   4379 }
   4380 
   4381 
   4382 void FullCodeGenerator::ExitFinallyBlock() {
   4383   ASSERT(!result_register().is(edx));
   4384   __ pop(result_register());
   4385   // Uncook return address.
   4386   __ pop(edx);
   4387   __ SmiUntag(edx);
   4388   __ add(edx, Immediate(masm_->CodeObject()));
   4389   __ jmp(edx);
   4390 }
   4391 
   4392 
   4393 #undef __
   4394 
   4395 #define __ ACCESS_MASM(masm())
   4396 
   4397 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
   4398     int* stack_depth,
   4399     int* context_length) {
   4400   // The macros used here must preserve the result register.
   4401 
   4402   // Because the handler block contains the context of the finally
   4403   // code, we can restore it directly from there for the finally code
   4404   // rather than iteratively unwinding contexts via their previous
   4405   // links.
   4406   __ Drop(*stack_depth);  // Down to the handler block.
   4407   if (*context_length > 0) {
   4408     // Restore the context to its dedicated register and the stack.
   4409     __ mov(esi, Operand(esp, StackHandlerConstants::kContextOffset));
   4410     __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
   4411   }
   4412   __ PopTryHandler();
   4413   __ call(finally_entry_);
   4414 
   4415   *stack_depth = 0;
   4416   *context_length = 0;
   4417   return previous_;
   4418 }
   4419 
   4420 
   4421 #undef __
   4422 
   4423 } }  // namespace v8::internal
   4424 
   4425 #endif  // V8_TARGET_ARCH_IA32
   4426