Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
     29 #define V8_X64_MACRO_ASSEMBLER_X64_H_
     30 
     31 #include "assembler.h"
     32 #include "frames.h"
     33 #include "v8globals.h"
     34 
     35 namespace v8 {
     36 namespace internal {
     37 
     38 // Flags used for the AllocateInNewSpace functions.
     39 enum AllocationFlags {
     40   // No special flags.
     41   NO_ALLOCATION_FLAGS = 0,
     42   // Return the pointer to the allocated already tagged as a heap object.
     43   TAG_OBJECT = 1 << 0,
     44   // The content of the result register already contains the allocation top in
     45   // new space.
     46   RESULT_CONTAINS_TOP = 1 << 1
     47 };
     48 
     49 
     50 // Default scratch register used by MacroAssembler (and other code that needs
     51 // a spare register). The register isn't callee save, and not used by the
     52 // function calling convention.
     53 const Register kScratchRegister = { 10 };      // r10.
     54 const Register kSmiConstantRegister = { 12 };  // r12 (callee save).
     55 const Register kRootRegister = { 13 };         // r13 (callee save).
     56 // Value of smi in kSmiConstantRegister.
     57 const int kSmiConstantRegisterValue = 1;
     58 // Actual value of root register is offset from the root array's start
     59 // to take advantage of negitive 8-bit displacement values.
     60 const int kRootRegisterBias = 128;
     61 
     62 // Convenience for platform-independent signatures.
     63 typedef Operand MemOperand;
     64 
     65 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     66 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     67 
     68 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
     69 
     70 // Forward declaration.
     71 class JumpTarget;
     72 
     73 struct SmiIndex {
     74   SmiIndex(Register index_register, ScaleFactor scale)
     75       : reg(index_register),
     76         scale(scale) {}
     77   Register reg;
     78   ScaleFactor scale;
     79 };
     80 
     81 
     82 // MacroAssembler implements a collection of frequently used macros.
     83 class MacroAssembler: public Assembler {
     84  public:
     85   // The isolate parameter can be NULL if the macro assembler should
     86   // not use isolate-dependent functionality. In this case, it's the
     87   // responsibility of the caller to never invoke such function on the
     88   // macro assembler.
     89   MacroAssembler(Isolate* isolate, void* buffer, int size);
     90 
     91   // Prevent the use of the RootArray during the lifetime of this
     92   // scope object.
     93   class NoRootArrayScope BASE_EMBEDDED {
     94    public:
     95     explicit NoRootArrayScope(MacroAssembler* assembler)
     96         : variable_(&assembler->root_array_available_),
     97           old_value_(assembler->root_array_available_) {
     98       assembler->root_array_available_ = false;
     99     }
    100     ~NoRootArrayScope() {
    101       *variable_ = old_value_;
    102     }
    103    private:
    104     bool* variable_;
    105     bool old_value_;
    106   };
    107 
    108   // Operand pointing to an external reference.
    109   // May emit code to set up the scratch register. The operand is
    110   // only guaranteed to be correct as long as the scratch register
    111   // isn't changed.
    112   // If the operand is used more than once, use a scratch register
    113   // that is guaranteed not to be clobbered.
    114   Operand ExternalOperand(ExternalReference reference,
    115                           Register scratch = kScratchRegister);
    116   // Loads and stores the value of an external reference.
    117   // Special case code for load and store to take advantage of
    118   // load_rax/store_rax if possible/necessary.
    119   // For other operations, just use:
    120   //   Operand operand = ExternalOperand(extref);
    121   //   operation(operand, ..);
    122   void Load(Register destination, ExternalReference source);
    123   void Store(ExternalReference destination, Register source);
    124   // Loads the address of the external reference into the destination
    125   // register.
    126   void LoadAddress(Register destination, ExternalReference source);
    127   // Returns the size of the code generated by LoadAddress.
    128   // Used by CallSize(ExternalReference) to find the size of a call.
    129   int LoadAddressSize(ExternalReference source);
    130 
    131   // Operations on roots in the root-array.
    132   void LoadRoot(Register destination, Heap::RootListIndex index);
    133   void StoreRoot(Register source, Heap::RootListIndex index);
    134   // Load a root value where the index (or part of it) is variable.
    135   // The variable_offset register is added to the fixed_offset value
    136   // to get the index into the root-array.
    137   void LoadRootIndexed(Register destination,
    138                        Register variable_offset,
    139                        int fixed_offset);
    140   void CompareRoot(Register with, Heap::RootListIndex index);
    141   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    142   void PushRoot(Heap::RootListIndex index);
    143 
    144   // These functions do not arrange the registers in any particular order so
    145   // they are not useful for calls that can cause a GC.  The caller can
    146   // exclude up to 3 registers that do not need to be saved and restored.
    147   void PushCallerSaved(SaveFPRegsMode fp_mode,
    148                        Register exclusion1 = no_reg,
    149                        Register exclusion2 = no_reg,
    150                        Register exclusion3 = no_reg);
    151   void PopCallerSaved(SaveFPRegsMode fp_mode,
    152                       Register exclusion1 = no_reg,
    153                       Register exclusion2 = no_reg,
    154                       Register exclusion3 = no_reg);
    155 
    156 // ---------------------------------------------------------------------------
    157 // GC Support
    158 
    159 
    160   enum RememberedSetFinalAction {
    161     kReturnAtEnd,
    162     kFallThroughAtEnd
    163   };
    164 
    165   // Record in the remembered set the fact that we have a pointer to new space
    166   // at the address pointed to by the addr register.  Only works if addr is not
    167   // in new space.
    168   void RememberedSetHelper(Register object,  // Used for debug code.
    169                            Register addr,
    170                            Register scratch,
    171                            SaveFPRegsMode save_fp,
    172                            RememberedSetFinalAction and_then);
    173 
    174   void CheckPageFlag(Register object,
    175                      Register scratch,
    176                      int mask,
    177                      Condition cc,
    178                      Label* condition_met,
    179                      Label::Distance condition_met_distance = Label::kFar);
    180 
    181   // Check if object is in new space.  Jumps if the object is not in new space.
    182   // The register scratch can be object itself, but scratch will be clobbered.
    183   void JumpIfNotInNewSpace(Register object,
    184                            Register scratch,
    185                            Label* branch,
    186                            Label::Distance distance = Label::kFar) {
    187     InNewSpace(object, scratch, not_equal, branch, distance);
    188   }
    189 
    190   // Check if object is in new space.  Jumps if the object is in new space.
    191   // The register scratch can be object itself, but it will be clobbered.
    192   void JumpIfInNewSpace(Register object,
    193                         Register scratch,
    194                         Label* branch,
    195                         Label::Distance distance = Label::kFar) {
    196     InNewSpace(object, scratch, equal, branch, distance);
    197   }
    198 
    199   // Check if an object has the black incremental marking color.  Also uses rcx!
    200   void JumpIfBlack(Register object,
    201                    Register scratch0,
    202                    Register scratch1,
    203                    Label* on_black,
    204                    Label::Distance on_black_distance = Label::kFar);
    205 
    206   // Detects conservatively whether an object is data-only, i.e. it does need to
    207   // be scanned by the garbage collector.
    208   void JumpIfDataObject(Register value,
    209                         Register scratch,
    210                         Label* not_data_object,
    211                         Label::Distance not_data_object_distance);
    212 
    213   // Checks the color of an object.  If the object is already grey or black
    214   // then we just fall through, since it is already live.  If it is white and
    215   // we can determine that it doesn't need to be scanned, then we just mark it
    216   // black and fall through.  For the rest we jump to the label so the
    217   // incremental marker can fix its assumptions.
    218   void EnsureNotWhite(Register object,
    219                       Register scratch1,
    220                       Register scratch2,
    221                       Label* object_is_white_and_not_data,
    222                       Label::Distance distance);
    223 
    224   // Notify the garbage collector that we wrote a pointer into an object.
    225   // |object| is the object being stored into, |value| is the object being
    226   // stored.  value and scratch registers are clobbered by the operation.
    227   // The offset is the offset from the start of the object, not the offset from
    228   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    229   void RecordWriteField(
    230       Register object,
    231       int offset,
    232       Register value,
    233       Register scratch,
    234       SaveFPRegsMode save_fp,
    235       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    236       SmiCheck smi_check = INLINE_SMI_CHECK);
    237 
    238   // As above, but the offset has the tag presubtracted.  For use with
    239   // Operand(reg, off).
    240   void RecordWriteContextSlot(
    241       Register context,
    242       int offset,
    243       Register value,
    244       Register scratch,
    245       SaveFPRegsMode save_fp,
    246       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    247       SmiCheck smi_check = INLINE_SMI_CHECK) {
    248     RecordWriteField(context,
    249                      offset + kHeapObjectTag,
    250                      value,
    251                      scratch,
    252                      save_fp,
    253                      remembered_set_action,
    254                      smi_check);
    255   }
    256 
    257   // Notify the garbage collector that we wrote a pointer into a fixed array.
    258   // |array| is the array being stored into, |value| is the
    259   // object being stored.  |index| is the array index represented as a non-smi.
    260   // All registers are clobbered by the operation RecordWriteArray
    261   // filters out smis so it does not update the write barrier if the
    262   // value is a smi.
    263   void RecordWriteArray(
    264       Register array,
    265       Register value,
    266       Register index,
    267       SaveFPRegsMode save_fp,
    268       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    269       SmiCheck smi_check = INLINE_SMI_CHECK);
    270 
    271   // For page containing |object| mark region covering |address|
    272   // dirty. |object| is the object being stored into, |value| is the
    273   // object being stored. The address and value registers are clobbered by the
    274   // operation.  RecordWrite filters out smis so it does not update
    275   // the write barrier if the value is a smi.
    276   void RecordWrite(
    277       Register object,
    278       Register address,
    279       Register value,
    280       SaveFPRegsMode save_fp,
    281       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    282       SmiCheck smi_check = INLINE_SMI_CHECK);
    283 
    284 #ifdef ENABLE_DEBUGGER_SUPPORT
    285   // ---------------------------------------------------------------------------
    286   // Debugger Support
    287 
    288   void DebugBreak();
    289 #endif
    290 
    291   // Enter specific kind of exit frame; either in normal or
    292   // debug mode. Expects the number of arguments in register rax and
    293   // sets up the number of arguments in register rdi and the pointer
    294   // to the first argument in register rsi.
    295   //
    296   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    297   // accessible via StackSpaceOperand.
    298   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
    299 
    300   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    301   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    302   void EnterApiExitFrame(int arg_stack_space);
    303 
    304   // Leave the current exit frame. Expects/provides the return value in
    305   // register rax:rdx (untouched) and the pointer to the first
    306   // argument in register rsi.
    307   void LeaveExitFrame(bool save_doubles = false);
    308 
    309   // Leave the current exit frame. Expects/provides the return value in
    310   // register rax (untouched).
    311   void LeaveApiExitFrame();
    312 
    313   // Push and pop the registers that can hold pointers.
    314   void PushSafepointRegisters() { Pushad(); }
    315   void PopSafepointRegisters() { Popad(); }
    316   // Store the value in register src in the safepoint register stack
    317   // slot for register dst.
    318   void StoreToSafepointRegisterSlot(Register dst, Register src);
    319   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    320 
    321   void InitializeRootRegister() {
    322     ExternalReference roots_array_start =
    323         ExternalReference::roots_array_start(isolate());
    324     movq(kRootRegister, roots_array_start);
    325     addq(kRootRegister, Immediate(kRootRegisterBias));
    326   }
    327 
    328   // ---------------------------------------------------------------------------
    329   // JavaScript invokes
    330 
    331   // Set up call kind marking in rcx. The method takes rcx as an
    332   // explicit first parameter to make the code more readable at the
    333   // call sites.
    334   void SetCallKind(Register dst, CallKind kind);
    335 
    336   // Invoke the JavaScript function code by either calling or jumping.
    337   void InvokeCode(Register code,
    338                   const ParameterCount& expected,
    339                   const ParameterCount& actual,
    340                   InvokeFlag flag,
    341                   const CallWrapper& call_wrapper,
    342                   CallKind call_kind);
    343 
    344   void InvokeCode(Handle<Code> code,
    345                   const ParameterCount& expected,
    346                   const ParameterCount& actual,
    347                   RelocInfo::Mode rmode,
    348                   InvokeFlag flag,
    349                   const CallWrapper& call_wrapper,
    350                   CallKind call_kind);
    351 
    352   // Invoke the JavaScript function in the given register. Changes the
    353   // current context to the context in the function before invoking.
    354   void InvokeFunction(Register function,
    355                       const ParameterCount& actual,
    356                       InvokeFlag flag,
    357                       const CallWrapper& call_wrapper,
    358                       CallKind call_kind);
    359 
    360   void InvokeFunction(Handle<JSFunction> function,
    361                       const ParameterCount& actual,
    362                       InvokeFlag flag,
    363                       const CallWrapper& call_wrapper,
    364                       CallKind call_kind);
    365 
    366   // Invoke specified builtin JavaScript function. Adds an entry to
    367   // the unresolved list if the name does not resolve.
    368   void InvokeBuiltin(Builtins::JavaScript id,
    369                      InvokeFlag flag,
    370                      const CallWrapper& call_wrapper = NullCallWrapper());
    371 
    372   // Store the function for the given builtin in the target register.
    373   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
    374 
    375   // Store the code object for the given builtin in the target register.
    376   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
    377 
    378 
    379   // ---------------------------------------------------------------------------
    380   // Smi tagging, untagging and operations on tagged smis.
    381 
    382   void InitializeSmiConstantRegister() {
    383     movq(kSmiConstantRegister,
    384          reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
    385          RelocInfo::NONE);
    386   }
    387 
    388   // Conversions between tagged smi values and non-tagged integer values.
    389 
    390   // Tag an integer value. The result must be known to be a valid smi value.
    391   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    392   // based on the value of the resulting smi.
    393   void Integer32ToSmi(Register dst, Register src);
    394 
    395   // Stores an integer32 value into a memory field that already holds a smi.
    396   void Integer32ToSmiField(const Operand& dst, Register src);
    397 
    398   // Adds constant to src and tags the result as a smi.
    399   // Result must be a valid smi.
    400   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    401 
    402   // Convert smi to 32-bit integer. I.e., not sign extended into
    403   // high 32 bits of destination.
    404   void SmiToInteger32(Register dst, Register src);
    405   void SmiToInteger32(Register dst, const Operand& src);
    406 
    407   // Convert smi to 64-bit integer (sign extended if necessary).
    408   void SmiToInteger64(Register dst, Register src);
    409   void SmiToInteger64(Register dst, const Operand& src);
    410 
    411   // Multiply a positive smi's integer value by a power of two.
    412   // Provides result as 64-bit integer value.
    413   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    414                                              Register src,
    415                                              int power);
    416 
    417   // Divide a positive smi's integer value by a power of two.
    418   // Provides result as 32-bit integer value.
    419   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    420                                            Register src,
    421                                            int power);
    422 
    423   // Perform the logical or of two smi values and return a smi value.
    424   // If either argument is not a smi, jump to on_not_smis and retain
    425   // the original values of source registers. The destination register
    426   // may be changed if it's not one of the source registers.
    427   void SmiOrIfSmis(Register dst,
    428                    Register src1,
    429                    Register src2,
    430                    Label* on_not_smis,
    431                    Label::Distance near_jump = Label::kFar);
    432 
    433 
    434   // Simple comparison of smis.  Both sides must be known smis to use these,
    435   // otherwise use Cmp.
    436   void SmiCompare(Register smi1, Register smi2);
    437   void SmiCompare(Register dst, Smi* src);
    438   void SmiCompare(Register dst, const Operand& src);
    439   void SmiCompare(const Operand& dst, Register src);
    440   void SmiCompare(const Operand& dst, Smi* src);
    441   // Compare the int32 in src register to the value of the smi stored at dst.
    442   void SmiCompareInteger32(const Operand& dst, Register src);
    443   // Sets sign and zero flags depending on value of smi in register.
    444   void SmiTest(Register src);
    445 
    446   // Functions performing a check on a known or potential smi. Returns
    447   // a condition that is satisfied if the check is successful.
    448 
    449   // Is the value a tagged smi.
    450   Condition CheckSmi(Register src);
    451   Condition CheckSmi(const Operand& src);
    452 
    453   // Is the value a non-negative tagged smi.
    454   Condition CheckNonNegativeSmi(Register src);
    455 
    456   // Are both values tagged smis.
    457   Condition CheckBothSmi(Register first, Register second);
    458 
    459   // Are both values non-negative tagged smis.
    460   Condition CheckBothNonNegativeSmi(Register first, Register second);
    461 
    462   // Are either value a tagged smi.
    463   Condition CheckEitherSmi(Register first,
    464                            Register second,
    465                            Register scratch = kScratchRegister);
    466 
    467   // Is the value the minimum smi value (since we are using
    468   // two's complement numbers, negating the value is known to yield
    469   // a non-smi value).
    470   Condition CheckIsMinSmi(Register src);
    471 
    472   // Checks whether an 32-bit integer value is a valid for conversion
    473   // to a smi.
    474   Condition CheckInteger32ValidSmiValue(Register src);
    475 
    476   // Checks whether an 32-bit unsigned integer value is a valid for
    477   // conversion to a smi.
    478   Condition CheckUInteger32ValidSmiValue(Register src);
    479 
    480   // Check whether src is a Smi, and set dst to zero if it is a smi,
    481   // and to one if it isn't.
    482   void CheckSmiToIndicator(Register dst, Register src);
    483   void CheckSmiToIndicator(Register dst, const Operand& src);
    484 
    485   // Test-and-jump functions. Typically combines a check function
    486   // above with a conditional jump.
    487 
    488   // Jump if the value cannot be represented by a smi.
    489   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    490                               Label::Distance near_jump = Label::kFar);
    491 
    492   // Jump if the unsigned integer value cannot be represented by a smi.
    493   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    494                                   Label::Distance near_jump = Label::kFar);
    495 
    496   // Jump to label if the value is a tagged smi.
    497   void JumpIfSmi(Register src,
    498                  Label* on_smi,
    499                  Label::Distance near_jump = Label::kFar);
    500 
    501   // Jump to label if the value is not a tagged smi.
    502   void JumpIfNotSmi(Register src,
    503                     Label* on_not_smi,
    504                     Label::Distance near_jump = Label::kFar);
    505 
    506   // Jump to label if the value is not a non-negative tagged smi.
    507   void JumpUnlessNonNegativeSmi(Register src,
    508                                 Label* on_not_smi,
    509                                 Label::Distance near_jump = Label::kFar);
    510 
    511   // Jump to label if the value, which must be a tagged smi, has value equal
    512   // to the constant.
    513   void JumpIfSmiEqualsConstant(Register src,
    514                                Smi* constant,
    515                                Label* on_equals,
    516                                Label::Distance near_jump = Label::kFar);
    517 
    518   // Jump if either or both register are not smi values.
    519   void JumpIfNotBothSmi(Register src1,
    520                         Register src2,
    521                         Label* on_not_both_smi,
    522                         Label::Distance near_jump = Label::kFar);
    523 
    524   // Jump if either or both register are not non-negative smi values.
    525   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    526                                     Label* on_not_both_smi,
    527                                     Label::Distance near_jump = Label::kFar);
    528 
    529   // Operations on tagged smi values.
    530 
    531   // Smis represent a subset of integers. The subset is always equivalent to
    532   // a two's complement interpretation of a fixed number of bits.
    533 
    534   // Optimistically adds an integer constant to a supposed smi.
    535   // If the src is not a smi, or the result is not a smi, jump to
    536   // the label.
    537   void SmiTryAddConstant(Register dst,
    538                          Register src,
    539                          Smi* constant,
    540                          Label* on_not_smi_result,
    541                          Label::Distance near_jump = Label::kFar);
    542 
    543   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    544   // No overflow testing on the result is done.
    545   void SmiAddConstant(Register dst, Register src, Smi* constant);
    546 
    547   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    548   // No overflow testing on the result is done.
    549   void SmiAddConstant(const Operand& dst, Smi* constant);
    550 
    551   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    552   // or jumping to a label if the result cannot be represented by a smi.
    553   void SmiAddConstant(Register dst,
    554                       Register src,
    555                       Smi* constant,
    556                       Label* on_not_smi_result,
    557                       Label::Distance near_jump = Label::kFar);
    558 
    559   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    560   // result. No testing on the result is done. Sets the N and Z flags
    561   // based on the value of the resulting integer.
    562   void SmiSubConstant(Register dst, Register src, Smi* constant);
    563 
    564   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    565   // result, or jumping to a label if the result cannot be represented by a smi.
    566   void SmiSubConstant(Register dst,
    567                       Register src,
    568                       Smi* constant,
    569                       Label* on_not_smi_result,
    570                       Label::Distance near_jump = Label::kFar);
    571 
    572   // Negating a smi can give a negative zero or too large positive value.
    573   // NOTICE: This operation jumps on success, not failure!
    574   void SmiNeg(Register dst,
    575               Register src,
    576               Label* on_smi_result,
    577               Label::Distance near_jump = Label::kFar);
    578 
    579   // Adds smi values and return the result as a smi.
    580   // If dst is src1, then src1 will be destroyed, even if
    581   // the operation is unsuccessful.
    582   void SmiAdd(Register dst,
    583               Register src1,
    584               Register src2,
    585               Label* on_not_smi_result,
    586               Label::Distance near_jump = Label::kFar);
    587   void SmiAdd(Register dst,
    588               Register src1,
    589               const Operand& src2,
    590               Label* on_not_smi_result,
    591               Label::Distance near_jump = Label::kFar);
    592 
    593   void SmiAdd(Register dst,
    594               Register src1,
    595               Register src2);
    596 
    597   // Subtracts smi values and return the result as a smi.
    598   // If dst is src1, then src1 will be destroyed, even if
    599   // the operation is unsuccessful.
    600   void SmiSub(Register dst,
    601               Register src1,
    602               Register src2,
    603               Label* on_not_smi_result,
    604               Label::Distance near_jump = Label::kFar);
    605 
    606   void SmiSub(Register dst,
    607               Register src1,
    608               Register src2);
    609 
    610   void SmiSub(Register dst,
    611               Register src1,
    612               const Operand& src2,
    613               Label* on_not_smi_result,
    614               Label::Distance near_jump = Label::kFar);
    615 
    616   void SmiSub(Register dst,
    617               Register src1,
    618               const Operand& src2);
    619 
    620   // Multiplies smi values and return the result as a smi,
    621   // if possible.
    622   // If dst is src1, then src1 will be destroyed, even if
    623   // the operation is unsuccessful.
    624   void SmiMul(Register dst,
    625               Register src1,
    626               Register src2,
    627               Label* on_not_smi_result,
    628               Label::Distance near_jump = Label::kFar);
    629 
    630   // Divides one smi by another and returns the quotient.
    631   // Clobbers rax and rdx registers.
    632   void SmiDiv(Register dst,
    633               Register src1,
    634               Register src2,
    635               Label* on_not_smi_result,
    636               Label::Distance near_jump = Label::kFar);
    637 
    638   // Divides one smi by another and returns the remainder.
    639   // Clobbers rax and rdx registers.
    640   void SmiMod(Register dst,
    641               Register src1,
    642               Register src2,
    643               Label* on_not_smi_result,
    644               Label::Distance near_jump = Label::kFar);
    645 
    646   // Bitwise operations.
    647   void SmiNot(Register dst, Register src);
    648   void SmiAnd(Register dst, Register src1, Register src2);
    649   void SmiOr(Register dst, Register src1, Register src2);
    650   void SmiXor(Register dst, Register src1, Register src2);
    651   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    652   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    653   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    654 
    655   void SmiShiftLeftConstant(Register dst,
    656                             Register src,
    657                             int shift_value);
    658   void SmiShiftLogicalRightConstant(Register dst,
    659                                   Register src,
    660                                   int shift_value,
    661                                   Label* on_not_smi_result,
    662                                   Label::Distance near_jump = Label::kFar);
    663   void SmiShiftArithmeticRightConstant(Register dst,
    664                                        Register src,
    665                                        int shift_value);
    666 
    667   // Shifts a smi value to the left, and returns the result if that is a smi.
    668   // Uses and clobbers rcx, so dst may not be rcx.
    669   void SmiShiftLeft(Register dst,
    670                     Register src1,
    671                     Register src2);
    672   // Shifts a smi value to the right, shifting in zero bits at the top, and
    673   // returns the unsigned intepretation of the result if that is a smi.
    674   // Uses and clobbers rcx, so dst may not be rcx.
    675   void SmiShiftLogicalRight(Register dst,
    676                             Register src1,
    677                             Register src2,
    678                             Label* on_not_smi_result,
    679                             Label::Distance near_jump = Label::kFar);
    680   // Shifts a smi value to the right, sign extending the top, and
    681   // returns the signed intepretation of the result. That will always
    682   // be a valid smi value, since it's numerically smaller than the
    683   // original.
    684   // Uses and clobbers rcx, so dst may not be rcx.
    685   void SmiShiftArithmeticRight(Register dst,
    686                                Register src1,
    687                                Register src2);
    688 
    689   // Specialized operations
    690 
    691   // Select the non-smi register of two registers where exactly one is a
    692   // smi. If neither are smis, jump to the failure label.
    693   void SelectNonSmi(Register dst,
    694                     Register src1,
    695                     Register src2,
    696                     Label* on_not_smis,
    697                     Label::Distance near_jump = Label::kFar);
    698 
    699   // Converts, if necessary, a smi to a combination of number and
    700   // multiplier to be used as a scaled index.
    701   // The src register contains a *positive* smi value. The shift is the
    702   // power of two to multiply the index value by (e.g.
    703   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    704   // The returned index register may be either src or dst, depending
    705   // on what is most efficient. If src and dst are different registers,
    706   // src is always unchanged.
    707   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    708 
    709   // Converts a positive smi to a negative index.
    710   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    711 
    712   // Add the value of a smi in memory to an int32 register.
    713   // Sets flags as a normal add.
    714   void AddSmiField(Register dst, const Operand& src);
    715 
    716   // Basic Smi operations.
    717   void Move(Register dst, Smi* source) {
    718     LoadSmiConstant(dst, source);
    719   }
    720 
    721   void Move(const Operand& dst, Smi* source) {
    722     Register constant = GetSmiConstant(source);
    723     movq(dst, constant);
    724   }
    725 
    726   void Push(Smi* smi);
    727   void Test(const Operand& dst, Smi* source);
    728 
    729 
    730   // ---------------------------------------------------------------------------
    731   // String macros.
    732 
    733   // If object is a string, its map is loaded into object_map.
    734   void JumpIfNotString(Register object,
    735                        Register object_map,
    736                        Label* not_string,
    737                        Label::Distance near_jump = Label::kFar);
    738 
    739 
    740   void JumpIfNotBothSequentialAsciiStrings(
    741       Register first_object,
    742       Register second_object,
    743       Register scratch1,
    744       Register scratch2,
    745       Label* on_not_both_flat_ascii,
    746       Label::Distance near_jump = Label::kFar);
    747 
    748   // Check whether the instance type represents a flat ASCII string. Jump to the
    749   // label if not. If the instance type can be scratched specify same register
    750   // for both instance type and scratch.
    751   void JumpIfInstanceTypeIsNotSequentialAscii(
    752       Register instance_type,
    753       Register scratch,
    754       Label*on_not_flat_ascii_string,
    755       Label::Distance near_jump = Label::kFar);
    756 
    757   void JumpIfBothInstanceTypesAreNotSequentialAscii(
    758       Register first_object_instance_type,
    759       Register second_object_instance_type,
    760       Register scratch1,
    761       Register scratch2,
    762       Label* on_fail,
    763       Label::Distance near_jump = Label::kFar);
    764 
    765   // ---------------------------------------------------------------------------
    766   // Macro instructions.
    767 
    768   // Load a register with a long value as efficiently as possible.
    769   void Set(Register dst, int64_t x);
    770   void Set(const Operand& dst, int64_t x);
    771 
    772   // Move if the registers are not identical.
    773   void Move(Register target, Register source);
    774 
    775   // Bit-field support.
    776   void TestBit(const Operand& dst, int bit_index);
    777 
    778   // Handle support
    779   void Move(Register dst, Handle<Object> source);
    780   void Move(const Operand& dst, Handle<Object> source);
    781   void Cmp(Register dst, Handle<Object> source);
    782   void Cmp(const Operand& dst, Handle<Object> source);
    783   void Cmp(Register dst, Smi* src);
    784   void Cmp(const Operand& dst, Smi* src);
    785   void Push(Handle<Object> source);
    786 
    787   // Load a heap object and handle the case of new-space objects by
    788   // indirecting via a global cell.
    789   void LoadHeapObject(Register result, Handle<HeapObject> object);
    790   void PushHeapObject(Handle<HeapObject> object);
    791 
    792   void LoadObject(Register result, Handle<Object> object) {
    793     if (object->IsHeapObject()) {
    794       LoadHeapObject(result, Handle<HeapObject>::cast(object));
    795     } else {
    796       Move(result, object);
    797     }
    798   }
    799 
    800   // Load a global cell into a register.
    801   void LoadGlobalCell(Register dst, Handle<JSGlobalPropertyCell> cell);
    802 
    803   // Emit code to discard a non-negative number of pointer-sized elements
    804   // from the stack, clobbering only the rsp register.
    805   void Drop(int stack_elements);
    806 
    807   void Call(Label* target) { call(target); }
    808 
    809   // Control Flow
    810   void Jump(Address destination, RelocInfo::Mode rmode);
    811   void Jump(ExternalReference ext);
    812   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
    813 
    814   void Call(Address destination, RelocInfo::Mode rmode);
    815   void Call(ExternalReference ext);
    816   void Call(Handle<Code> code_object,
    817             RelocInfo::Mode rmode,
    818             unsigned ast_id = kNoASTId);
    819 
    820   // The size of the code generated for different call instructions.
    821   int CallSize(Address destination, RelocInfo::Mode rmode) {
    822     return kCallInstructionLength;
    823   }
    824   int CallSize(ExternalReference ext);
    825   int CallSize(Handle<Code> code_object) {
    826     // Code calls use 32-bit relative addressing.
    827     return kShortCallInstructionLength;
    828   }
    829   int CallSize(Register target) {
    830     // Opcode: REX_opt FF /2 m64
    831     return (target.high_bit() != 0) ? 3 : 2;
    832   }
    833   int CallSize(const Operand& target) {
    834     // Opcode: REX_opt FF /2 m64
    835     return (target.requires_rex() ? 2 : 1) + target.operand_size();
    836   }
    837 
    838   // Emit call to the code we are currently generating.
    839   void CallSelf() {
    840     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    841     Call(self, RelocInfo::CODE_TARGET);
    842   }
    843 
    844   // Non-x64 instructions.
    845   // Push/pop all general purpose registers.
    846   // Does not push rsp/rbp nor any of the assembler's special purpose registers
    847   // (kScratchRegister, kSmiConstantRegister, kRootRegister).
    848   void Pushad();
    849   void Popad();
    850   // Sets the stack as after performing Popad, without actually loading the
    851   // registers.
    852   void Dropad();
    853 
    854   // Compare object type for heap object.
    855   // Always use unsigned comparisons: above and below, not less and greater.
    856   // Incoming register is heap_object and outgoing register is map.
    857   // They may be the same register, and may be kScratchRegister.
    858   void CmpObjectType(Register heap_object, InstanceType type, Register map);
    859 
    860   // Compare instance type for map.
    861   // Always use unsigned comparisons: above and below, not less and greater.
    862   void CmpInstanceType(Register map, InstanceType type);
    863 
    864   // Check if a map for a JSObject indicates that the object has fast elements.
    865   // Jump to the specified label if it does not.
    866   void CheckFastElements(Register map,
    867                          Label* fail,
    868                          Label::Distance distance = Label::kFar);
    869 
    870   // Check if a map for a JSObject indicates that the object can have both smi
    871   // and HeapObject elements.  Jump to the specified label if it does not.
    872   void CheckFastObjectElements(Register map,
    873                                Label* fail,
    874                                Label::Distance distance = Label::kFar);
    875 
    876   // Check if a map for a JSObject indicates that the object has fast smi only
    877   // elements.  Jump to the specified label if it does not.
    878   void CheckFastSmiOnlyElements(Register map,
    879                                 Label* fail,
    880                                 Label::Distance distance = Label::kFar);
    881 
    882   // Check to see if maybe_number can be stored as a double in
    883   // FastDoubleElements. If it can, store it at the index specified by index in
    884   // the FastDoubleElements array elements, otherwise jump to fail.  Note that
    885   // index must not be smi-tagged.
    886   void StoreNumberToDoubleElements(Register maybe_number,
    887                                    Register elements,
    888                                    Register index,
    889                                    XMMRegister xmm_scratch,
    890                                    Label* fail);
    891 
    892   // Compare an object's map with the specified map and its transitioned
    893   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with
    894   // result of map compare. If multiple map compares are required, the compare
    895   // sequences branches to early_success.
    896   void CompareMap(Register obj,
    897                   Handle<Map> map,
    898                   Label* early_success,
    899                   CompareMapMode mode = REQUIRE_EXACT_MAP);
    900 
    901   // Check if the map of an object is equal to a specified map and branch to
    902   // label if not. Skip the smi check if not required (object is known to be a
    903   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    904   // against maps that are ElementsKind transition maps of the specified map.
    905   void CheckMap(Register obj,
    906                 Handle<Map> map,
    907                 Label* fail,
    908                 SmiCheckType smi_check_type,
    909                 CompareMapMode mode = REQUIRE_EXACT_MAP);
    910 
    911   // Check if the map of an object is equal to a specified map and branch to a
    912   // specified target if equal. Skip the smi check if not required (object is
    913   // known to be a heap object)
    914   void DispatchMap(Register obj,
    915                    Handle<Map> map,
    916                    Handle<Code> success,
    917                    SmiCheckType smi_check_type);
    918 
    919   // Check if the object in register heap_object is a string. Afterwards the
    920   // register map contains the object map and the register instance_type
    921   // contains the instance_type. The registers map and instance_type can be the
    922   // same in which case it contains the instance type afterwards. Either of the
    923   // registers map and instance_type can be the same as heap_object.
    924   Condition IsObjectStringType(Register heap_object,
    925                                Register map,
    926                                Register instance_type);
    927 
    928   // FCmp compares and pops the two values on top of the FPU stack.
    929   // The flag results are similar to integer cmp, but requires unsigned
    930   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
    931   void FCmp();
    932 
    933   void ClampUint8(Register reg);
    934 
    935   void ClampDoubleToUint8(XMMRegister input_reg,
    936                           XMMRegister temp_xmm_reg,
    937                           Register result_reg,
    938                           Register temp_reg);
    939 
    940   void LoadInstanceDescriptors(Register map, Register descriptors);
    941 
    942   // Abort execution if argument is not a number. Used in debug code.
    943   void AbortIfNotNumber(Register object);
    944 
    945   // Abort execution if argument is a smi. Used in debug code.
    946   void AbortIfSmi(Register object);
    947 
    948   // Abort execution if argument is not a smi. Used in debug code.
    949   void AbortIfNotSmi(Register object);
    950   void AbortIfNotSmi(const Operand& object);
    951 
    952   // Abort execution if a 64 bit register containing a 32 bit payload does not
    953   // have zeros in the top 32 bits.
    954   void AbortIfNotZeroExtended(Register reg);
    955 
    956   // Abort execution if argument is a string. Used in debug code.
    957   void AbortIfNotString(Register object);
    958 
    959   // Abort execution if argument is not the root value with the given index.
    960   void AbortIfNotRootValue(Register src,
    961                            Heap::RootListIndex root_value_index,
    962                            const char* message);
    963 
    964   // ---------------------------------------------------------------------------
    965   // Exception handling
    966 
    967   // Push a new try handler and link it into try handler chain.
    968   void PushTryHandler(StackHandler::Kind kind, int handler_index);
    969 
    970   // Unlink the stack handler on top of the stack from the try handler chain.
    971   void PopTryHandler();
    972 
    973   // Activate the top handler in the try hander chain and pass the
    974   // thrown value.
    975   void Throw(Register value);
    976 
    977   // Propagate an uncatchable exception out of the current JS stack.
    978   void ThrowUncatchable(Register value);
    979 
    980   // ---------------------------------------------------------------------------
    981   // Inline caching support
    982 
    983   // Generate code for checking access rights - used for security checks
    984   // on access to global objects across environments. The holder register
    985   // is left untouched, but the scratch register and kScratchRegister,
    986   // which must be different, are clobbered.
    987   void CheckAccessGlobalProxy(Register holder_reg,
    988                               Register scratch,
    989                               Label* miss);
    990 
    991   void GetNumberHash(Register r0, Register scratch);
    992 
    993   void LoadFromNumberDictionary(Label* miss,
    994                                 Register elements,
    995                                 Register key,
    996                                 Register r0,
    997                                 Register r1,
    998                                 Register r2,
    999                                 Register result);
   1000 
   1001 
   1002   // ---------------------------------------------------------------------------
   1003   // Allocation support
   1004 
   1005   // Allocate an object in new space. If the new space is exhausted control
   1006   // continues at the gc_required label. The allocated object is returned in
   1007   // result and end of the new object is returned in result_end. The register
   1008   // scratch can be passed as no_reg in which case an additional object
   1009   // reference will be added to the reloc info. The returned pointers in result
   1010   // and result_end have not yet been tagged as heap objects. If
   1011   // result_contains_top_on_entry is true the content of result is known to be
   1012   // the allocation top on entry (could be result_end from a previous call to
   1013   // AllocateInNewSpace). If result_contains_top_on_entry is true scratch
   1014   // should be no_reg as it is never used.
   1015   void AllocateInNewSpace(int object_size,
   1016                           Register result,
   1017                           Register result_end,
   1018                           Register scratch,
   1019                           Label* gc_required,
   1020                           AllocationFlags flags);
   1021 
   1022   void AllocateInNewSpace(int header_size,
   1023                           ScaleFactor element_size,
   1024                           Register element_count,
   1025                           Register result,
   1026                           Register result_end,
   1027                           Register scratch,
   1028                           Label* gc_required,
   1029                           AllocationFlags flags);
   1030 
   1031   void AllocateInNewSpace(Register object_size,
   1032                           Register result,
   1033                           Register result_end,
   1034                           Register scratch,
   1035                           Label* gc_required,
   1036                           AllocationFlags flags);
   1037 
   1038   // Undo allocation in new space. The object passed and objects allocated after
   1039   // it will no longer be allocated. Make sure that no pointers are left to the
   1040   // object(s) no longer allocated as they would be invalid when allocation is
   1041   // un-done.
   1042   void UndoAllocationInNewSpace(Register object);
   1043 
   1044   // Allocate a heap number in new space with undefined value. Returns
   1045   // tagged pointer in result register, or jumps to gc_required if new
   1046   // space is full.
   1047   void AllocateHeapNumber(Register result,
   1048                           Register scratch,
   1049                           Label* gc_required);
   1050 
   1051   // Allocate a sequential string. All the header fields of the string object
   1052   // are initialized.
   1053   void AllocateTwoByteString(Register result,
   1054                              Register length,
   1055                              Register scratch1,
   1056                              Register scratch2,
   1057                              Register scratch3,
   1058                              Label* gc_required);
   1059   void AllocateAsciiString(Register result,
   1060                            Register length,
   1061                            Register scratch1,
   1062                            Register scratch2,
   1063                            Register scratch3,
   1064                            Label* gc_required);
   1065 
   1066   // Allocate a raw cons string object. Only the map field of the result is
   1067   // initialized.
   1068   void AllocateTwoByteConsString(Register result,
   1069                           Register scratch1,
   1070                           Register scratch2,
   1071                           Label* gc_required);
   1072   void AllocateAsciiConsString(Register result,
   1073                                Register scratch1,
   1074                                Register scratch2,
   1075                                Label* gc_required);
   1076 
   1077   // Allocate a raw sliced string object. Only the map field of the result is
   1078   // initialized.
   1079   void AllocateTwoByteSlicedString(Register result,
   1080                             Register scratch1,
   1081                             Register scratch2,
   1082                             Label* gc_required);
   1083   void AllocateAsciiSlicedString(Register result,
   1084                                  Register scratch1,
   1085                                  Register scratch2,
   1086                                  Label* gc_required);
   1087 
   1088   // ---------------------------------------------------------------------------
   1089   // Support functions.
   1090 
   1091   // Check if result is zero and op is negative.
   1092   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1093 
   1094   // Check if result is zero and op is negative in code using jump targets.
   1095   void NegativeZeroTest(CodeGenerator* cgen,
   1096                         Register result,
   1097                         Register op,
   1098                         JumpTarget* then_target);
   1099 
   1100   // Check if result is zero and any of op1 and op2 are negative.
   1101   // Register scratch is destroyed, and it must be different from op2.
   1102   void NegativeZeroTest(Register result, Register op1, Register op2,
   1103                         Register scratch, Label* then_label);
   1104 
   1105   // Try to get function prototype of a function and puts the value in
   1106   // the result register. Checks that the function really is a
   1107   // function and jumps to the miss label if the fast checks fail. The
   1108   // function register will be untouched; the other register may be
   1109   // clobbered.
   1110   void TryGetFunctionPrototype(Register function,
   1111                                Register result,
   1112                                Label* miss,
   1113                                bool miss_on_bound_function = false);
   1114 
   1115   // Generates code for reporting that an illegal operation has
   1116   // occurred.
   1117   void IllegalOperation(int num_arguments);
   1118 
   1119   // Picks out an array index from the hash field.
   1120   // Register use:
   1121   //   hash - holds the index's hash. Clobbered.
   1122   //   index - holds the overwritten index on exit.
   1123   void IndexFromHash(Register hash, Register index);
   1124 
   1125   // Find the function context up the context chain.
   1126   void LoadContext(Register dst, int context_chain_length);
   1127 
   1128   // Conditionally load the cached Array transitioned map of type
   1129   // transitioned_kind from the global context if the map in register
   1130   // map_in_out is the cached Array map in the global context of
   1131   // expected_kind.
   1132   void LoadTransitionedArrayMapConditional(
   1133       ElementsKind expected_kind,
   1134       ElementsKind transitioned_kind,
   1135       Register map_in_out,
   1136       Register scratch,
   1137       Label* no_map_match);
   1138 
   1139   // Load the initial map for new Arrays from a JSFunction.
   1140   void LoadInitialArrayMap(Register function_in,
   1141                            Register scratch,
   1142                            Register map_out);
   1143 
   1144   // Load the global function with the given index.
   1145   void LoadGlobalFunction(int index, Register function);
   1146 
   1147   // Load the initial map from the global function. The registers
   1148   // function and map can be the same.
   1149   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1150 
   1151   // ---------------------------------------------------------------------------
   1152   // Runtime calls
   1153 
   1154   // Call a code stub.
   1155   void CallStub(CodeStub* stub, unsigned ast_id = kNoASTId);
   1156 
   1157   // Tail call a code stub (jump).
   1158   void TailCallStub(CodeStub* stub);
   1159 
   1160   // Return from a code stub after popping its arguments.
   1161   void StubReturn(int argc);
   1162 
   1163   // Call a runtime routine.
   1164   void CallRuntime(const Runtime::Function* f, int num_arguments);
   1165 
   1166   // Call a runtime function and save the value of XMM registers.
   1167   void CallRuntimeSaveDoubles(Runtime::FunctionId id);
   1168 
   1169   // Convenience function: Same as above, but takes the fid instead.
   1170   void CallRuntime(Runtime::FunctionId id, int num_arguments);
   1171 
   1172   // Convenience function: call an external reference.
   1173   void CallExternalReference(const ExternalReference& ext,
   1174                              int num_arguments);
   1175 
   1176   // Tail call of a runtime routine (jump).
   1177   // Like JumpToExternalReference, but also takes care of passing the number
   1178   // of parameters.
   1179   void TailCallExternalReference(const ExternalReference& ext,
   1180                                  int num_arguments,
   1181                                  int result_size);
   1182 
   1183   // Convenience function: tail call a runtime routine (jump).
   1184   void TailCallRuntime(Runtime::FunctionId fid,
   1185                        int num_arguments,
   1186                        int result_size);
   1187 
   1188   // Jump to a runtime routine.
   1189   void JumpToExternalReference(const ExternalReference& ext, int result_size);
   1190 
   1191   // Prepares stack to put arguments (aligns and so on).  WIN64 calling
   1192   // convention requires to put the pointer to the return value slot into
   1193   // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
   1194   // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
   1195   // inside the exit frame (not GCed) accessible via StackSpaceOperand.
   1196   void PrepareCallApiFunction(int arg_stack_space);
   1197 
   1198   // Calls an API function.  Allocates HandleScope, extracts returned value
   1199   // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
   1200   // caller-save registers.  Restores context.  On return removes
   1201   // stack_space * kPointerSize (GCed).
   1202   void CallApiFunctionAndReturn(Address function_address, int stack_space);
   1203 
   1204   // Before calling a C-function from generated code, align arguments on stack.
   1205   // After aligning the frame, arguments must be stored in esp[0], esp[4],
   1206   // etc., not pushed. The argument count assumes all arguments are word sized.
   1207   // The number of slots reserved for arguments depends on platform. On Windows
   1208   // stack slots are reserved for the arguments passed in registers. On other
   1209   // platforms stack slots are only reserved for the arguments actually passed
   1210   // on the stack.
   1211   void PrepareCallCFunction(int num_arguments);
   1212 
   1213   // Calls a C function and cleans up the space for arguments allocated
   1214   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1215   // garbage collection, since that might move the code and invalidate the
   1216   // return address (unless this is somehow accounted for by the called
   1217   // function).
   1218   void CallCFunction(ExternalReference function, int num_arguments);
   1219   void CallCFunction(Register function, int num_arguments);
   1220 
   1221   // Calculate the number of stack slots to reserve for arguments when calling a
   1222   // C function.
   1223   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1224 
   1225   // ---------------------------------------------------------------------------
   1226   // Utilities
   1227 
   1228   void Ret();
   1229 
   1230   // Return and drop arguments from stack, where the number of arguments
   1231   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1232   void Ret(int bytes_dropped, Register scratch);
   1233 
   1234   Handle<Object> CodeObject() {
   1235     ASSERT(!code_object_.is_null());
   1236     return code_object_;
   1237   }
   1238 
   1239   // Copy length bytes from source to destination.
   1240   // Uses scratch register internally (if you have a low-eight register
   1241   // free, do use it, otherwise kScratchRegister will be used).
   1242   // The min_length is a minimum limit on the value that length will have.
   1243   // The algorithm has some special cases that might be omitted if the string
   1244   // is known to always be long.
   1245   void CopyBytes(Register destination,
   1246                  Register source,
   1247                  Register length,
   1248                  int min_length = 0,
   1249                  Register scratch = kScratchRegister);
   1250 
   1251   // Initialize fields with filler values.  Fields starting at |start_offset|
   1252   // not including end_offset are overwritten with the value in |filler|.  At
   1253   // the end the loop, |start_offset| takes the value of |end_offset|.
   1254   void InitializeFieldsWithFiller(Register start_offset,
   1255                                   Register end_offset,
   1256                                   Register filler);
   1257 
   1258 
   1259   // ---------------------------------------------------------------------------
   1260   // StatsCounter support
   1261 
   1262   void SetCounter(StatsCounter* counter, int value);
   1263   void IncrementCounter(StatsCounter* counter, int value);
   1264   void DecrementCounter(StatsCounter* counter, int value);
   1265 
   1266 
   1267   // ---------------------------------------------------------------------------
   1268   // Debugging
   1269 
   1270   // Calls Abort(msg) if the condition cc is not satisfied.
   1271   // Use --debug_code to enable.
   1272   void Assert(Condition cc, const char* msg);
   1273 
   1274   void AssertFastElements(Register elements);
   1275 
   1276   // Like Assert(), but always enabled.
   1277   void Check(Condition cc, const char* msg);
   1278 
   1279   // Print a message to stdout and abort execution.
   1280   void Abort(const char* msg);
   1281 
   1282   // Check that the stack is aligned.
   1283   void CheckStackAlignment();
   1284 
   1285   // Verify restrictions about code generated in stubs.
   1286   void set_generating_stub(bool value) { generating_stub_ = value; }
   1287   bool generating_stub() { return generating_stub_; }
   1288   void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
   1289   bool allow_stub_calls() { return allow_stub_calls_; }
   1290   void set_has_frame(bool value) { has_frame_ = value; }
   1291   bool has_frame() { return has_frame_; }
   1292   inline bool AllowThisStubCall(CodeStub* stub);
   1293 
   1294   static int SafepointRegisterStackIndex(Register reg) {
   1295     return SafepointRegisterStackIndex(reg.code());
   1296   }
   1297 
   1298   // Activation support.
   1299   void EnterFrame(StackFrame::Type type);
   1300   void LeaveFrame(StackFrame::Type type);
   1301 
   1302   // Expects object in rax and returns map with validated enum cache
   1303   // in rax.  Assumes that any other register can be used as a scratch.
   1304   void CheckEnumCache(Register null_value,
   1305                       Label* call_runtime);
   1306 
   1307  private:
   1308   // Order general registers are pushed by Pushad.
   1309   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
   1310   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1311   static const int kNumSafepointSavedRegisters = 11;
   1312   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1313 
   1314   bool generating_stub_;
   1315   bool allow_stub_calls_;
   1316   bool has_frame_;
   1317   bool root_array_available_;
   1318 
   1319   // Returns a register holding the smi value. The register MUST NOT be
   1320   // modified. It may be the "smi 1 constant" register.
   1321   Register GetSmiConstant(Smi* value);
   1322 
   1323   // Moves the smi value to the destination register.
   1324   void LoadSmiConstant(Register dst, Smi* value);
   1325 
   1326   // This handle will be patched with the code object on installation.
   1327   Handle<Object> code_object_;
   1328 
   1329   // Helper functions for generating invokes.
   1330   void InvokePrologue(const ParameterCount& expected,
   1331                       const ParameterCount& actual,
   1332                       Handle<Code> code_constant,
   1333                       Register code_register,
   1334                       Label* done,
   1335                       bool* definitely_mismatches,
   1336                       InvokeFlag flag,
   1337                       Label::Distance near_jump = Label::kFar,
   1338                       const CallWrapper& call_wrapper = NullCallWrapper(),
   1339                       CallKind call_kind = CALL_AS_METHOD);
   1340 
   1341   void EnterExitFramePrologue(bool save_rax);
   1342 
   1343   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1344   // accessible via StackSpaceOperand.
   1345   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1346 
   1347   void LeaveExitFrameEpilogue();
   1348 
   1349   // Allocation support helpers.
   1350   // Loads the top of new-space into the result register.
   1351   // Otherwise the address of the new-space top is loaded into scratch (if
   1352   // scratch is valid), and the new-space top is loaded into result.
   1353   void LoadAllocationTopHelper(Register result,
   1354                                Register scratch,
   1355                                AllocationFlags flags);
   1356   // Update allocation top with value in result_end register.
   1357   // If scratch is valid, it contains the address of the allocation top.
   1358   void UpdateAllocationTopHelper(Register result_end, Register scratch);
   1359 
   1360   // Helper for PopHandleScope.  Allowed to perform a GC and returns
   1361   // NULL if gc_allowed.  Does not perform a GC if !gc_allowed, and
   1362   // possibly returns a failure object indicating an allocation failure.
   1363   Object* PopHandleScopeHelper(Register saved,
   1364                                Register scratch,
   1365                                bool gc_allowed);
   1366 
   1367   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1368   void InNewSpace(Register object,
   1369                   Register scratch,
   1370                   Condition cc,
   1371                   Label* branch,
   1372                   Label::Distance distance = Label::kFar);
   1373 
   1374   // Helper for finding the mark bits for an address.  Afterwards, the
   1375   // bitmap register points at the word with the mark bits and the mask
   1376   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1377   // unchanged.
   1378   inline void GetMarkBits(Register addr_reg,
   1379                           Register bitmap_reg,
   1380                           Register mask_reg);
   1381 
   1382   // Helper for throwing exceptions.  Compute a handler address and jump to
   1383   // it.  See the implementation for register usage.
   1384   void JumpToHandlerEntry();
   1385 
   1386   // Compute memory operands for safepoint stack slots.
   1387   Operand SafepointRegisterSlot(Register reg);
   1388   static int SafepointRegisterStackIndex(int reg_code) {
   1389     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1390   }
   1391 
   1392   // Needs access to SafepointRegisterStackIndex for optimized frame
   1393   // traversal.
   1394   friend class OptimizedFrame;
   1395 };
   1396 
   1397 
   1398 // The code patcher is used to patch (typically) small parts of code e.g. for
   1399 // debugging and other types of instrumentation. When using the code patcher
   1400 // the exact number of bytes specified must be emitted. Is not legal to emit
   1401 // relocation information. If any of these constraints are violated it causes
   1402 // an assertion.
   1403 class CodePatcher {
   1404  public:
   1405   CodePatcher(byte* address, int size);
   1406   virtual ~CodePatcher();
   1407 
   1408   // Macro assembler to emit code.
   1409   MacroAssembler* masm() { return &masm_; }
   1410 
   1411  private:
   1412   byte* address_;  // The address of the code being patched.
   1413   int size_;  // Number of bytes of the expected patch size.
   1414   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1415 };
   1416 
   1417 
   1418 // -----------------------------------------------------------------------------
   1419 // Static helper functions.
   1420 
   1421 // Generate an Operand for loading a field from an object.
   1422 inline Operand FieldOperand(Register object, int offset) {
   1423   return Operand(object, offset - kHeapObjectTag);
   1424 }
   1425 
   1426 
   1427 // Generate an Operand for loading an indexed field from an object.
   1428 inline Operand FieldOperand(Register object,
   1429                             Register index,
   1430                             ScaleFactor scale,
   1431                             int offset) {
   1432   return Operand(object, index, scale, offset - kHeapObjectTag);
   1433 }
   1434 
   1435 
   1436 inline Operand ContextOperand(Register context, int index) {
   1437   return Operand(context, Context::SlotOffset(index));
   1438 }
   1439 
   1440 
   1441 inline Operand GlobalObjectOperand() {
   1442   return ContextOperand(rsi, Context::GLOBAL_INDEX);
   1443 }
   1444 
   1445 
   1446 // Provides access to exit frame stack space (not GCed).
   1447 inline Operand StackSpaceOperand(int index) {
   1448 #ifdef _WIN64
   1449   const int kShaddowSpace = 4;
   1450   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1451 #else
   1452   return Operand(rsp, index * kPointerSize);
   1453 #endif
   1454 }
   1455 
   1456 
   1457 
   1458 #ifdef GENERATED_CODE_COVERAGE
   1459 extern void LogGeneratedCodeCoverage(const char* file_line);
   1460 #define CODE_COVERAGE_STRINGIFY(x) #x
   1461 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1462 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1463 #define ACCESS_MASM(masm) {                                               \
   1464     byte* x64_coverage_function =                                         \
   1465         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
   1466     masm->pushfd();                                                       \
   1467     masm->pushad();                                                       \
   1468     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
   1469     masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY);          \
   1470     masm->pop(rax);                                                       \
   1471     masm->popad();                                                        \
   1472     masm->popfd();                                                        \
   1473   }                                                                       \
   1474   masm->
   1475 #else
   1476 #define ACCESS_MASM(masm) masm->
   1477 #endif
   1478 
   1479 } }  // namespace v8::internal
   1480 
   1481 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1482