Home | History | Annotate | Download | only in ext
      1 // Bitmap Allocator. -*- C++ -*-
      2 
      3 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file ext/bitmap_allocator.h
     27  *  This file is a GNU extension to the Standard C++ Library.
     28  */
     29 
     30 #ifndef _BITMAP_ALLOCATOR_H
     31 #define _BITMAP_ALLOCATOR_H 1
     32 
     33 #include <utility> // For std::pair.
     34 #include <bits/functexcept.h> // For __throw_bad_alloc().
     35 #include <functional> // For greater_equal, and less_equal.
     36 #include <new> // For operator new.
     37 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
     38 #include <ext/concurrence.h>
     39 #include <bits/move.h>
     40 
     41 /** @brief The constant in the expression below is the alignment
     42  * required in bytes.
     43  */
     44 #define _BALLOC_ALIGN_BYTES 8
     45 
     46 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
     47 {
     48   using std::size_t;
     49   using std::ptrdiff_t;
     50 
     51   namespace __detail
     52   {
     53   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     54     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
     55      *
     56      *  @brief  __mini_vector<> is a stripped down version of the
     57      *  full-fledged std::vector<>.
     58      *
     59      *  It is to be used only for built-in types or PODs. Notable
     60      *  differences are:
     61      *
     62      *  1. Not all accessor functions are present.
     63      *  2. Used ONLY for PODs.
     64      *  3. No Allocator template argument. Uses ::operator new() to get
     65      *  memory, and ::operator delete() to free it.
     66      *  Caveat: The dtor does NOT free the memory allocated, so this a
     67      *  memory-leaking vector!
     68      */
     69     template<typename _Tp>
     70       class __mini_vector
     71       {
     72 	__mini_vector(const __mini_vector&);
     73 	__mini_vector& operator=(const __mini_vector&);
     74 
     75       public:
     76 	typedef _Tp value_type;
     77 	typedef _Tp* pointer;
     78 	typedef _Tp& reference;
     79 	typedef const _Tp& const_reference;
     80 	typedef size_t size_type;
     81 	typedef ptrdiff_t difference_type;
     82 	typedef pointer iterator;
     83 
     84       private:
     85 	pointer _M_start;
     86 	pointer _M_finish;
     87 	pointer _M_end_of_storage;
     88 
     89 	size_type
     90 	_M_space_left() const throw()
     91 	{ return _M_end_of_storage - _M_finish; }
     92 
     93 	pointer
     94 	allocate(size_type __n)
     95 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
     96 
     97 	void
     98 	deallocate(pointer __p, size_type)
     99 	{ ::operator delete(__p); }
    100 
    101       public:
    102 	// Members used: size(), push_back(), pop_back(),
    103 	// insert(iterator, const_reference), erase(iterator),
    104 	// begin(), end(), back(), operator[].
    105 
    106 	__mini_vector()
    107         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
    108 
    109 	size_type
    110 	size() const throw()
    111 	{ return _M_finish - _M_start; }
    112 
    113 	iterator
    114 	begin() const throw()
    115 	{ return this->_M_start; }
    116 
    117 	iterator
    118 	end() const throw()
    119 	{ return this->_M_finish; }
    120 
    121 	reference
    122 	back() const throw()
    123 	{ return *(this->end() - 1); }
    124 
    125 	reference
    126 	operator[](const size_type __pos) const throw()
    127 	{ return this->_M_start[__pos]; }
    128 
    129 	void
    130 	insert(iterator __pos, const_reference __x);
    131 
    132 	void
    133 	push_back(const_reference __x)
    134 	{
    135 	  if (this->_M_space_left())
    136 	    {
    137 	      *this->end() = __x;
    138 	      ++this->_M_finish;
    139 	    }
    140 	  else
    141 	    this->insert(this->end(), __x);
    142 	}
    143 
    144 	void
    145 	pop_back() throw()
    146 	{ --this->_M_finish; }
    147 
    148 	void
    149 	erase(iterator __pos) throw();
    150 
    151 	void
    152 	clear() throw()
    153 	{ this->_M_finish = this->_M_start; }
    154       };
    155 
    156     // Out of line function definitions.
    157     template<typename _Tp>
    158       void __mini_vector<_Tp>::
    159       insert(iterator __pos, const_reference __x)
    160       {
    161 	if (this->_M_space_left())
    162 	  {
    163 	    size_type __to_move = this->_M_finish - __pos;
    164 	    iterator __dest = this->end();
    165 	    iterator __src = this->end() - 1;
    166 
    167 	    ++this->_M_finish;
    168 	    while (__to_move)
    169 	      {
    170 		*__dest = *__src;
    171 		--__dest; --__src; --__to_move;
    172 	      }
    173 	    *__pos = __x;
    174 	  }
    175 	else
    176 	  {
    177 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
    178 	    iterator __new_start = this->allocate(__new_size);
    179 	    iterator __first = this->begin();
    180 	    iterator __start = __new_start;
    181 	    while (__first != __pos)
    182 	      {
    183 		*__start = *__first;
    184 		++__start; ++__first;
    185 	      }
    186 	    *__start = __x;
    187 	    ++__start;
    188 	    while (__first != this->end())
    189 	      {
    190 		*__start = *__first;
    191 		++__start; ++__first;
    192 	      }
    193 	    if (this->_M_start)
    194 	      this->deallocate(this->_M_start, this->size());
    195 
    196 	    this->_M_start = __new_start;
    197 	    this->_M_finish = __start;
    198 	    this->_M_end_of_storage = this->_M_start + __new_size;
    199 	  }
    200       }
    201 
    202     template<typename _Tp>
    203       void __mini_vector<_Tp>::
    204       erase(iterator __pos) throw()
    205       {
    206 	while (__pos + 1 != this->end())
    207 	  {
    208 	    *__pos = __pos[1];
    209 	    ++__pos;
    210 	  }
    211 	--this->_M_finish;
    212       }
    213 
    214 
    215     template<typename _Tp>
    216       struct __mv_iter_traits
    217       {
    218 	typedef typename _Tp::value_type value_type;
    219 	typedef typename _Tp::difference_type difference_type;
    220       };
    221 
    222     template<typename _Tp>
    223       struct __mv_iter_traits<_Tp*>
    224       {
    225 	typedef _Tp value_type;
    226 	typedef ptrdiff_t difference_type;
    227       };
    228 
    229     enum
    230       {
    231 	bits_per_byte = 8,
    232 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
    233       };
    234 
    235     template<typename _ForwardIterator, typename _Tp, typename _Compare>
    236       _ForwardIterator
    237       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
    238 		    const _Tp& __val, _Compare __comp)
    239       {
    240 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
    241 	  _DistanceType;
    242 
    243 	_DistanceType __len = __last - __first;
    244 	_DistanceType __half;
    245 	_ForwardIterator __middle;
    246 
    247 	while (__len > 0)
    248 	  {
    249 	    __half = __len >> 1;
    250 	    __middle = __first;
    251 	    __middle += __half;
    252 	    if (__comp(*__middle, __val))
    253 	      {
    254 		__first = __middle;
    255 		++__first;
    256 		__len = __len - __half - 1;
    257 	      }
    258 	    else
    259 	      __len = __half;
    260 	  }
    261 	return __first;
    262       }
    263 
    264     /** @brief The number of Blocks pointed to by the address pair
    265      *  passed to the function.
    266      */
    267     template<typename _AddrPair>
    268       inline size_t
    269       __num_blocks(_AddrPair __ap)
    270       { return (__ap.second - __ap.first) + 1; }
    271 
    272     /** @brief The number of Bit-maps pointed to by the address pair
    273      *  passed to the function.
    274      */
    275     template<typename _AddrPair>
    276       inline size_t
    277       __num_bitmaps(_AddrPair __ap)
    278       { return __num_blocks(__ap) / size_t(bits_per_block); }
    279 
    280     // _Tp should be a pointer type.
    281     template<typename _Tp>
    282       class _Inclusive_between
    283       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    284       {
    285 	typedef _Tp pointer;
    286 	pointer _M_ptr_value;
    287 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    288 
    289       public:
    290 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
    291 	{ }
    292 
    293 	bool
    294 	operator()(_Block_pair __bp) const throw()
    295 	{
    296 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
    297 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
    298 	    return true;
    299 	  else
    300 	    return false;
    301 	}
    302       };
    303 
    304     // Used to pass a Functor to functions by reference.
    305     template<typename _Functor>
    306       class _Functor_Ref
    307       : public std::unary_function<typename _Functor::argument_type,
    308 				   typename _Functor::result_type>
    309       {
    310 	_Functor& _M_fref;
    311 
    312       public:
    313 	typedef typename _Functor::argument_type argument_type;
    314 	typedef typename _Functor::result_type result_type;
    315 
    316 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
    317 	{ }
    318 
    319 	result_type
    320 	operator()(argument_type __arg)
    321 	{ return _M_fref(__arg); }
    322       };
    323 
    324     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
    325      *
    326      *  @brief  The class which acts as a predicate for applying the
    327      *  first-fit memory allocation policy for the bitmap allocator.
    328      */
    329     // _Tp should be a pointer type, and _Alloc is the Allocator for
    330     // the vector.
    331     template<typename _Tp>
    332       class _Ffit_finder
    333       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    334       {
    335 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    336 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    337 	typedef typename _BPVector::difference_type _Counter_type;
    338 
    339 	size_t* _M_pbitmap;
    340 	_Counter_type _M_data_offset;
    341 
    342       public:
    343 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
    344 	{ }
    345 
    346 	bool
    347 	operator()(_Block_pair __bp) throw()
    348 	{
    349 	  // Set the _rover to the last physical location bitmap,
    350 	  // which is the bitmap which belongs to the first free
    351 	  // block. Thus, the bitmaps are in exact reverse order of
    352 	  // the actual memory layout. So, we count down the bitmaps,
    353 	  // which is the same as moving up the memory.
    354 
    355 	  // If the used count stored at the start of the Bit Map headers
    356 	  // is equal to the number of Objects that the current Block can
    357 	  // store, then there is definitely no space for another single
    358 	  // object, so just return false.
    359 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
    360 
    361 	  if (*(reinterpret_cast<size_t*>
    362 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
    363 	    return false;
    364 
    365 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
    366 
    367 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
    368 	    {
    369 	      _M_data_offset = __i;
    370 	      if (*__rover)
    371 		{
    372 		  _M_pbitmap = __rover;
    373 		  return true;
    374 		}
    375 	      --__rover;
    376 	    }
    377 	  return false;
    378 	}
    379 
    380 	size_t*
    381 	_M_get() const throw()
    382 	{ return _M_pbitmap; }
    383 
    384 	_Counter_type
    385 	_M_offset() const throw()
    386 	{ return _M_data_offset * size_t(bits_per_block); }
    387       };
    388 
    389     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
    390      *
    391      *  @brief  The bitmap counter which acts as the bitmap
    392      *  manipulator, and manages the bit-manipulation functions and
    393      *  the searching and identification functions on the bit-map.
    394      */
    395     // _Tp should be a pointer type.
    396     template<typename _Tp>
    397       class _Bitmap_counter
    398       {
    399 	typedef typename
    400 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
    401 	typedef typename _BPVector::size_type _Index_type;
    402 	typedef _Tp pointer;
    403 
    404 	_BPVector& _M_vbp;
    405 	size_t* _M_curr_bmap;
    406 	size_t* _M_last_bmap_in_block;
    407 	_Index_type _M_curr_index;
    408 
    409       public:
    410 	// Use the 2nd parameter with care. Make sure that such an
    411 	// entry exists in the vector before passing that particular
    412 	// index to this ctor.
    413 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
    414 	{ this->_M_reset(__index); }
    415 
    416 	void
    417 	_M_reset(long __index = -1) throw()
    418 	{
    419 	  if (__index == -1)
    420 	    {
    421 	      _M_curr_bmap = 0;
    422 	      _M_curr_index = static_cast<_Index_type>(-1);
    423 	      return;
    424 	    }
    425 
    426 	  _M_curr_index = __index;
    427 	  _M_curr_bmap = reinterpret_cast<size_t*>
    428 	    (_M_vbp[_M_curr_index].first) - 1;
    429 
    430 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
    431 
    432 	  _M_last_bmap_in_block = _M_curr_bmap
    433 	    - ((_M_vbp[_M_curr_index].second
    434 		- _M_vbp[_M_curr_index].first + 1)
    435 	       / size_t(bits_per_block) - 1);
    436 	}
    437 
    438 	// Dangerous Function! Use with extreme care. Pass to this
    439 	// function ONLY those values that are known to be correct,
    440 	// otherwise this will mess up big time.
    441 	void
    442 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
    443 	{ _M_curr_bmap = __new_internal_marker; }
    444 
    445 	bool
    446 	_M_finished() const throw()
    447 	{ return(_M_curr_bmap == 0); }
    448 
    449 	_Bitmap_counter&
    450 	operator++() throw()
    451 	{
    452 	  if (_M_curr_bmap == _M_last_bmap_in_block)
    453 	    {
    454 	      if (++_M_curr_index == _M_vbp.size())
    455 		_M_curr_bmap = 0;
    456 	      else
    457 		this->_M_reset(_M_curr_index);
    458 	    }
    459 	  else
    460 	    --_M_curr_bmap;
    461 	  return *this;
    462 	}
    463 
    464 	size_t*
    465 	_M_get() const throw()
    466 	{ return _M_curr_bmap; }
    467 
    468 	pointer
    469 	_M_base() const throw()
    470 	{ return _M_vbp[_M_curr_index].first; }
    471 
    472 	_Index_type
    473 	_M_offset() const throw()
    474 	{
    475 	  return size_t(bits_per_block)
    476 	    * ((reinterpret_cast<size_t*>(this->_M_base())
    477 		- _M_curr_bmap) - 1);
    478 	}
    479 
    480 	_Index_type
    481 	_M_where() const throw()
    482 	{ return _M_curr_index; }
    483       };
    484 
    485     /** @brief  Mark a memory address as allocated by re-setting the
    486      *  corresponding bit in the bit-map.
    487      */
    488     inline void
    489     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
    490     {
    491       size_t __mask = 1 << __pos;
    492       __mask = ~__mask;
    493       *__pbmap &= __mask;
    494     }
    495 
    496     /** @brief  Mark a memory address as free by setting the
    497      *  corresponding bit in the bit-map.
    498      */
    499     inline void
    500     __bit_free(size_t* __pbmap, size_t __pos) throw()
    501     {
    502       size_t __mask = 1 << __pos;
    503       *__pbmap |= __mask;
    504     }
    505 
    506   _GLIBCXX_END_NAMESPACE_VERSION
    507   } // namespace __detail
    508 
    509 _GLIBCXX_BEGIN_NAMESPACE_VERSION
    510 
    511   /** @brief  Generic Version of the bsf instruction.
    512    */
    513   inline size_t
    514   _Bit_scan_forward(size_t __num)
    515   { return static_cast<size_t>(__builtin_ctzl(__num)); }
    516 
    517   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
    518    *
    519    *  @brief  The free list class for managing chunks of memory to be
    520    *  given to and returned by the bitmap_allocator.
    521    */
    522   class free_list
    523   {
    524   public:
    525     typedef size_t* 				value_type;
    526     typedef __detail::__mini_vector<value_type> vector_type;
    527     typedef vector_type::iterator 		iterator;
    528     typedef __mutex				__mutex_type;
    529 
    530   private:
    531     struct _LT_pointer_compare
    532     {
    533       bool
    534       operator()(const size_t* __pui,
    535 		 const size_t __cui) const throw()
    536       { return *__pui < __cui; }
    537     };
    538 
    539 #if defined __GTHREADS
    540     __mutex_type&
    541     _M_get_mutex()
    542     {
    543       static __mutex_type _S_mutex;
    544       return _S_mutex;
    545     }
    546 #endif
    547 
    548     vector_type&
    549     _M_get_free_list()
    550     {
    551       static vector_type _S_free_list;
    552       return _S_free_list;
    553     }
    554 
    555     /** @brief  Performs validation of memory based on their size.
    556      *
    557      *  @param  __addr The pointer to the memory block to be
    558      *  validated.
    559      *
    560      *  Validates the memory block passed to this function and
    561      *  appropriately performs the action of managing the free list of
    562      *  blocks by adding this block to the free list or deleting this
    563      *  or larger blocks from the free list.
    564      */
    565     void
    566     _M_validate(size_t* __addr) throw()
    567     {
    568       vector_type& __free_list = _M_get_free_list();
    569       const vector_type::size_type __max_size = 64;
    570       if (__free_list.size() >= __max_size)
    571 	{
    572 	  // Ok, the threshold value has been reached.  We determine
    573 	  // which block to remove from the list of free blocks.
    574 	  if (*__addr >= *__free_list.back())
    575 	    {
    576 	      // Ok, the new block is greater than or equal to the
    577 	      // last block in the list of free blocks. We just free
    578 	      // the new block.
    579 	      ::operator delete(static_cast<void*>(__addr));
    580 	      return;
    581 	    }
    582 	  else
    583 	    {
    584 	      // Deallocate the last block in the list of free lists,
    585 	      // and insert the new one in its correct position.
    586 	      ::operator delete(static_cast<void*>(__free_list.back()));
    587 	      __free_list.pop_back();
    588 	    }
    589 	}
    590 
    591       // Just add the block to the list of free lists unconditionally.
    592       iterator __temp = __detail::__lower_bound
    593 	(__free_list.begin(), __free_list.end(),
    594 	 *__addr, _LT_pointer_compare());
    595 
    596       // We may insert the new free list before _temp;
    597       __free_list.insert(__temp, __addr);
    598     }
    599 
    600     /** @brief  Decides whether the wastage of memory is acceptable for
    601      *  the current memory request and returns accordingly.
    602      *
    603      *  @param __block_size The size of the block available in the free
    604      *  list.
    605      *
    606      *  @param __required_size The required size of the memory block.
    607      *
    608      *  @return true if the wastage incurred is acceptable, else returns
    609      *  false.
    610      */
    611     bool
    612     _M_should_i_give(size_t __block_size,
    613 		     size_t __required_size) throw()
    614     {
    615       const size_t __max_wastage_percentage = 36;
    616       if (__block_size >= __required_size &&
    617 	  (((__block_size - __required_size) * 100 / __block_size)
    618 	   < __max_wastage_percentage))
    619 	return true;
    620       else
    621 	return false;
    622     }
    623 
    624   public:
    625     /** @brief This function returns the block of memory to the
    626      *  internal free list.
    627      *
    628      *  @param  __addr The pointer to the memory block that was given
    629      *  by a call to the _M_get function.
    630      */
    631     inline void
    632     _M_insert(size_t* __addr) throw()
    633     {
    634 #if defined __GTHREADS
    635       __scoped_lock __bfl_lock(_M_get_mutex());
    636 #endif
    637       // Call _M_validate to decide what should be done with
    638       // this particular free list.
    639       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
    640       // See discussion as to why this is 1!
    641     }
    642 
    643     /** @brief  This function gets a block of memory of the specified
    644      *  size from the free list.
    645      *
    646      *  @param  __sz The size in bytes of the memory required.
    647      *
    648      *  @return  A pointer to the new memory block of size at least
    649      *  equal to that requested.
    650      */
    651     size_t*
    652     _M_get(size_t __sz) throw(std::bad_alloc);
    653 
    654     /** @brief  This function just clears the internal Free List, and
    655      *  gives back all the memory to the OS.
    656      */
    657     void
    658     _M_clear();
    659   };
    660 
    661 
    662   // Forward declare the class.
    663   template<typename _Tp>
    664     class bitmap_allocator;
    665 
    666   // Specialize for void:
    667   template<>
    668     class bitmap_allocator<void>
    669     {
    670     public:
    671       typedef void*       pointer;
    672       typedef const void* const_pointer;
    673 
    674       // Reference-to-void members are impossible.
    675       typedef void  value_type;
    676       template<typename _Tp1>
    677         struct rebind
    678 	{
    679 	  typedef bitmap_allocator<_Tp1> other;
    680 	};
    681     };
    682 
    683   /**
    684    * @brief Bitmap Allocator, primary template.
    685    * @ingroup allocators
    686    */
    687   template<typename _Tp>
    688     class bitmap_allocator : private free_list
    689     {
    690     public:
    691       typedef size_t    		size_type;
    692       typedef ptrdiff_t 		difference_type;
    693       typedef _Tp*        		pointer;
    694       typedef const _Tp*  		const_pointer;
    695       typedef _Tp&        		reference;
    696       typedef const _Tp&  		const_reference;
    697       typedef _Tp         		value_type;
    698       typedef free_list::__mutex_type 	__mutex_type;
    699 
    700       template<typename _Tp1>
    701         struct rebind
    702 	{
    703 	  typedef bitmap_allocator<_Tp1> other;
    704 	};
    705 
    706     private:
    707       template<size_t _BSize, size_t _AlignSize>
    708         struct aligned_size
    709 	{
    710 	  enum
    711 	    {
    712 	      modulus = _BSize % _AlignSize,
    713 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
    714 	    };
    715 	};
    716 
    717       struct _Alloc_block
    718       {
    719 	char __M_unused[aligned_size<sizeof(value_type),
    720 			_BALLOC_ALIGN_BYTES>::value];
    721       };
    722 
    723 
    724       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
    725 
    726       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    727       typedef typename _BPVector::iterator _BPiter;
    728 
    729       template<typename _Predicate>
    730         static _BPiter
    731         _S_find(_Predicate __p)
    732         {
    733 	  _BPiter __first = _S_mem_blocks.begin();
    734 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
    735 	    ++__first;
    736 	  return __first;
    737 	}
    738 
    739 #if defined _GLIBCXX_DEBUG
    740       // Complexity: O(lg(N)). Where, N is the number of block of size
    741       // sizeof(value_type).
    742       void
    743       _S_check_for_free_blocks() throw()
    744       {
    745 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    746 	_BPiter __bpi = _S_find(_FFF());
    747 
    748 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
    749       }
    750 #endif
    751 
    752       /** @brief  Responsible for exponentially growing the internal
    753        *  memory pool.
    754        *
    755        *  @throw  std::bad_alloc. If memory can not be allocated.
    756        *
    757        *  Complexity: O(1), but internally depends upon the
    758        *  complexity of the function free_list::_M_get. The part where
    759        *  the bitmap headers are written has complexity: O(X),where X
    760        *  is the number of blocks of size sizeof(value_type) within
    761        *  the newly acquired block. Having a tight bound.
    762        */
    763       void
    764       _S_refill_pool() throw(std::bad_alloc)
    765       {
    766 #if defined _GLIBCXX_DEBUG
    767 	_S_check_for_free_blocks();
    768 #endif
    769 
    770 	const size_t __num_bitmaps = (_S_block_size
    771 				      / size_t(__detail::bits_per_block));
    772 	const size_t __size_to_allocate = sizeof(size_t)
    773 	  + _S_block_size * sizeof(_Alloc_block)
    774 	  + __num_bitmaps * sizeof(size_t);
    775 
    776 	size_t* __temp =
    777 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
    778 	*__temp = 0;
    779 	++__temp;
    780 
    781 	// The Header information goes at the Beginning of the Block.
    782 	_Block_pair __bp =
    783 	  std::make_pair(reinterpret_cast<_Alloc_block*>
    784 			 (__temp + __num_bitmaps),
    785 			 reinterpret_cast<_Alloc_block*>
    786 			 (__temp + __num_bitmaps)
    787 			 + _S_block_size - 1);
    788 
    789 	// Fill the Vector with this information.
    790 	_S_mem_blocks.push_back(__bp);
    791 
    792 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
    793 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
    794 
    795 	_S_block_size *= 2;
    796       }
    797 
    798       static _BPVector _S_mem_blocks;
    799       static size_t _S_block_size;
    800       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
    801       static typename _BPVector::size_type _S_last_dealloc_index;
    802 #if defined __GTHREADS
    803       static __mutex_type _S_mut;
    804 #endif
    805 
    806     public:
    807 
    808       /** @brief  Allocates memory for a single object of size
    809        *  sizeof(_Tp).
    810        *
    811        *  @throw  std::bad_alloc. If memory can not be allocated.
    812        *
    813        *  Complexity: Worst case complexity is O(N), but that
    814        *  is hardly ever hit. If and when this particular case is
    815        *  encountered, the next few cases are guaranteed to have a
    816        *  worst case complexity of O(1)!  That's why this function
    817        *  performs very well on average. You can consider this
    818        *  function to have a complexity referred to commonly as:
    819        *  Amortized Constant time.
    820        */
    821       pointer
    822       _M_allocate_single_object() throw(std::bad_alloc)
    823       {
    824 #if defined __GTHREADS
    825 	__scoped_lock __bit_lock(_S_mut);
    826 #endif
    827 
    828 	// The algorithm is something like this: The last_request
    829 	// variable points to the last accessed Bit Map. When such a
    830 	// condition occurs, we try to find a free block in the
    831 	// current bitmap, or succeeding bitmaps until the last bitmap
    832 	// is reached. If no free block turns up, we resort to First
    833 	// Fit method.
    834 
    835 	// WARNING: Do not re-order the condition in the while
    836 	// statement below, because it relies on C++'s short-circuit
    837 	// evaluation. The return from _S_last_request->_M_get() will
    838 	// NOT be dereference able if _S_last_request->_M_finished()
    839 	// returns true. This would inevitably lead to a NULL pointer
    840 	// dereference if tinkered with.
    841 	while (_S_last_request._M_finished() == false
    842 	       && (*(_S_last_request._M_get()) == 0))
    843 	  _S_last_request.operator++();
    844 
    845 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
    846 	  {
    847 	    // Fall Back to First Fit algorithm.
    848 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    849 	    _FFF __fff;
    850 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
    851 
    852 	    if (__bpi != _S_mem_blocks.end())
    853 	      {
    854 		// Search was successful. Ok, now mark the first bit from
    855 		// the right as 0, meaning Allocated. This bit is obtained
    856 		// by calling _M_get() on __fff.
    857 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
    858 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
    859 
    860 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
    861 
    862 		// Now, get the address of the bit we marked as allocated.
    863 		pointer __ret = reinterpret_cast<pointer>
    864 		  (__bpi->first + __fff._M_offset() + __nz_bit);
    865 		size_t* __puse_count =
    866 		  reinterpret_cast<size_t*>
    867 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
    868 
    869 		++(*__puse_count);
    870 		return __ret;
    871 	      }
    872 	    else
    873 	      {
    874 		// Search was unsuccessful. We Add more memory to the
    875 		// pool by calling _S_refill_pool().
    876 		_S_refill_pool();
    877 
    878 		// _M_Reset the _S_last_request structure to the first
    879 		// free block's bit map.
    880 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
    881 
    882 		// Now, mark that bit as allocated.
    883 	      }
    884 	  }
    885 
    886 	// _S_last_request holds a pointer to a valid bit map, that
    887 	// points to a free block in memory.
    888 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
    889 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
    890 
    891 	pointer __ret = reinterpret_cast<pointer>
    892 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
    893 
    894 	size_t* __puse_count = reinterpret_cast<size_t*>
    895 	  (_S_mem_blocks[_S_last_request._M_where()].first)
    896 	  - (__detail::
    897 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
    898 
    899 	++(*__puse_count);
    900 	return __ret;
    901       }
    902 
    903       /** @brief  Deallocates memory that belongs to a single object of
    904        *  size sizeof(_Tp).
    905        *
    906        *  Complexity: O(lg(N)), but the worst case is not hit
    907        *  often!  This is because containers usually deallocate memory
    908        *  close to each other and this case is handled in O(1) time by
    909        *  the deallocate function.
    910        */
    911       void
    912       _M_deallocate_single_object(pointer __p) throw()
    913       {
    914 #if defined __GTHREADS
    915 	__scoped_lock __bit_lock(_S_mut);
    916 #endif
    917 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
    918 
    919 	typedef typename _BPVector::iterator _Iterator;
    920 	typedef typename _BPVector::difference_type _Difference_type;
    921 
    922 	_Difference_type __diff;
    923 	long __displacement;
    924 
    925 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    926 
    927 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
    928 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
    929 	  {
    930 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
    931 				  <= _S_mem_blocks.size() - 1);
    932 
    933 	    // Initial Assumption was correct!
    934 	    __diff = _S_last_dealloc_index;
    935 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    936 	  }
    937 	else
    938 	  {
    939 	    _Iterator _iter = _S_find(__ibt);
    940 
    941 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
    942 
    943 	    __diff = _iter - _S_mem_blocks.begin();
    944 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    945 	    _S_last_dealloc_index = __diff;
    946 	  }
    947 
    948 	// Get the position of the iterator that has been found.
    949 	const size_t __rotate = (__displacement
    950 				 % size_t(__detail::bits_per_block));
    951 	size_t* __bitmapC =
    952 	  reinterpret_cast<size_t*>
    953 	  (_S_mem_blocks[__diff].first) - 1;
    954 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
    955 
    956 	__detail::__bit_free(__bitmapC, __rotate);
    957 	size_t* __puse_count = reinterpret_cast<size_t*>
    958 	  (_S_mem_blocks[__diff].first)
    959 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
    960 
    961 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
    962 
    963 	--(*__puse_count);
    964 
    965 	if (__builtin_expect(*__puse_count == 0, false))
    966 	  {
    967 	    _S_block_size /= 2;
    968 
    969 	    // We can safely remove this block.
    970 	    // _Block_pair __bp = _S_mem_blocks[__diff];
    971 	    this->_M_insert(__puse_count);
    972 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
    973 
    974 	    // Reset the _S_last_request variable to reflect the
    975 	    // erased block. We do this to protect future requests
    976 	    // after the last block has been removed from a particular
    977 	    // memory Chunk, which in turn has been returned to the
    978 	    // free list, and hence had been erased from the vector,
    979 	    // so the size of the vector gets reduced by 1.
    980 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
    981 	      _S_last_request._M_reset(__diff);
    982 
    983 	    // If the Index into the vector of the region of memory
    984 	    // that might hold the next address that will be passed to
    985 	    // deallocated may have been invalidated due to the above
    986 	    // erase procedure being called on the vector, hence we
    987 	    // try to restore this invariant too.
    988 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
    989 	      {
    990 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
    991 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    992 	      }
    993 	  }
    994       }
    995 
    996     public:
    997       bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
    998       { }
    999 
   1000       bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
   1001       { }
   1002 
   1003       template<typename _Tp1>
   1004         bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
   1005         { }
   1006 
   1007       ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
   1008       { }
   1009 
   1010       pointer
   1011       allocate(size_type __n)
   1012       {
   1013 	if (__n > this->max_size())
   1014 	  std::__throw_bad_alloc();
   1015 
   1016 	if (__builtin_expect(__n == 1, true))
   1017 	  return this->_M_allocate_single_object();
   1018 	else
   1019 	  {
   1020 	    const size_type __b = __n * sizeof(value_type);
   1021 	    return reinterpret_cast<pointer>(::operator new(__b));
   1022 	  }
   1023       }
   1024 
   1025       pointer
   1026       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
   1027       { return allocate(__n); }
   1028 
   1029       void
   1030       deallocate(pointer __p, size_type __n) throw()
   1031       {
   1032 	if (__builtin_expect(__p != 0, true))
   1033 	  {
   1034 	    if (__builtin_expect(__n == 1, true))
   1035 	      this->_M_deallocate_single_object(__p);
   1036 	    else
   1037 	      ::operator delete(__p);
   1038 	  }
   1039       }
   1040 
   1041       pointer
   1042       address(reference __r) const _GLIBCXX_NOEXCEPT
   1043       { return std::__addressof(__r); }
   1044 
   1045       const_pointer
   1046       address(const_reference __r) const _GLIBCXX_NOEXCEPT
   1047       { return std::__addressof(__r); }
   1048 
   1049       size_type
   1050       max_size() const _GLIBCXX_USE_NOEXCEPT
   1051       { return size_type(-1) / sizeof(value_type); }
   1052 
   1053 #ifdef __GXX_EXPERIMENTAL_CXX0X__
   1054       template<typename _Up, typename... _Args>
   1055         void
   1056         construct(_Up* __p, _Args&&... __args)
   1057 	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
   1058 
   1059       template<typename _Up>
   1060         void
   1061         destroy(_Up* __p)
   1062         { __p->~_Up(); }
   1063 #else
   1064       void
   1065       construct(pointer __p, const_reference __data)
   1066       { ::new((void *)__p) value_type(__data); }
   1067 
   1068       void
   1069       destroy(pointer __p)
   1070       { __p->~value_type(); }
   1071 #endif
   1072     };
   1073 
   1074   template<typename _Tp1, typename _Tp2>
   1075     bool
   1076     operator==(const bitmap_allocator<_Tp1>&,
   1077 	       const bitmap_allocator<_Tp2>&) throw()
   1078     { return true; }
   1079 
   1080   template<typename _Tp1, typename _Tp2>
   1081     bool
   1082     operator!=(const bitmap_allocator<_Tp1>&,
   1083 	       const bitmap_allocator<_Tp2>&) throw()
   1084   { return false; }
   1085 
   1086   // Static member definitions.
   1087   template<typename _Tp>
   1088     typename bitmap_allocator<_Tp>::_BPVector
   1089     bitmap_allocator<_Tp>::_S_mem_blocks;
   1090 
   1091   template<typename _Tp>
   1092     size_t bitmap_allocator<_Tp>::_S_block_size =
   1093     2 * size_t(__detail::bits_per_block);
   1094 
   1095   template<typename _Tp>
   1096     typename bitmap_allocator<_Tp>::_BPVector::size_type
   1097     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
   1098 
   1099   template<typename _Tp>
   1100     __detail::_Bitmap_counter
   1101       <typename bitmap_allocator<_Tp>::_Alloc_block*>
   1102     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
   1103 
   1104 #if defined __GTHREADS
   1105   template<typename _Tp>
   1106     typename bitmap_allocator<_Tp>::__mutex_type
   1107     bitmap_allocator<_Tp>::_S_mut;
   1108 #endif
   1109 
   1110 _GLIBCXX_END_NAMESPACE_VERSION
   1111 } // namespace __gnu_cxx
   1112 
   1113 #endif
   1114 
   1115