Home | History | Annotate | Download | only in trees
      1 // Copyright 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "cc/trees/layer_tree_host_common.h"
      6 
      7 #include <algorithm>
      8 
      9 #include "base/debug/trace_event.h"
     10 #include "cc/base/math_util.h"
     11 #include "cc/layers/heads_up_display_layer_impl.h"
     12 #include "cc/layers/layer.h"
     13 #include "cc/layers/layer_impl.h"
     14 #include "cc/layers/layer_iterator.h"
     15 #include "cc/layers/render_surface.h"
     16 #include "cc/layers/render_surface_impl.h"
     17 #include "cc/trees/layer_sorter.h"
     18 #include "cc/trees/layer_tree_impl.h"
     19 #include "ui/gfx/point_conversions.h"
     20 #include "ui/gfx/rect_conversions.h"
     21 #include "ui/gfx/transform.h"
     22 
     23 namespace cc {
     24 
     25 ScrollAndScaleSet::ScrollAndScaleSet() {}
     26 
     27 ScrollAndScaleSet::~ScrollAndScaleSet() {}
     28 
     29 static void SortLayers(LayerList::iterator forst,
     30                        LayerList::iterator end,
     31                        void* layer_sorter) {
     32   NOTREACHED();
     33 }
     34 
     35 static void SortLayers(LayerImplList::iterator first,
     36                        LayerImplList::iterator end,
     37                        LayerSorter* layer_sorter) {
     38   DCHECK(layer_sorter);
     39   TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
     40   layer_sorter->Sort(first, end);
     41 }
     42 
     43 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
     44     gfx::Rect target_surface_rect,
     45     gfx::Rect layer_bound_rect,
     46     gfx::Rect layer_rect_in_target_space,
     47     const gfx::Transform& transform) {
     48   if (layer_rect_in_target_space.IsEmpty())
     49     return gfx::Rect();
     50 
     51   // Is this layer fully contained within the target surface?
     52   if (target_surface_rect.Contains(layer_rect_in_target_space))
     53     return layer_bound_rect;
     54 
     55   // If the layer doesn't fill up the entire surface, then find the part of
     56   // the surface rect where the layer could be visible. This avoids trying to
     57   // project surface rect points that are behind the projection point.
     58   gfx::Rect minimal_surface_rect = target_surface_rect;
     59   minimal_surface_rect.Intersect(layer_rect_in_target_space);
     60 
     61   // Project the corners of the target surface rect into the layer space.
     62   // This bounding rectangle may be larger than it needs to be (being
     63   // axis-aligned), but is a reasonable filter on the space to consider.
     64   // Non-invertible transforms will create an empty rect here.
     65 
     66   gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
     67   if (!transform.GetInverse(&surface_to_layer)) {
     68     // TODO(shawnsingh): Some uninvertible transforms may be visible, but
     69     // their behaviour is undefined thoughout the compositor. Make their
     70     // behaviour well-defined and allow the visible content rect to be non-
     71     // empty when needed.
     72     return gfx::Rect();
     73   }
     74 
     75   gfx::Rect layer_rect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
     76       surface_to_layer, gfx::RectF(minimal_surface_rect)));
     77   layer_rect.Intersect(layer_bound_rect);
     78   return layer_rect;
     79 }
     80 
     81 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
     82     gfx::Rect target_surface_rect,
     83     gfx::Rect layer_bound_rect,
     84     const gfx::Transform& transform) {
     85   gfx::Rect layer_in_surface_space =
     86       MathUtil::MapClippedRect(transform, layer_bound_rect);
     87   return CalculateVisibleRectWithCachedLayerRect(
     88       target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
     89 }
     90 
     91 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) {
     92   return !layer->parent();
     93 }
     94 
     95 template <typename LayerType>
     96 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
     97   // According to current W3C spec on CSS transforms, a layer is part of an
     98   // established 3d rendering context if its parent has transform-style of
     99   // preserves-3d.
    100   return layer->parent() && layer->parent()->preserves_3d();
    101 }
    102 
    103 template <typename LayerType>
    104 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
    105   // According to current W3C spec on CSS transforms (Section 6.1), a layer is
    106   // the beginning of 3d rendering context if its parent does not have
    107   // transform-style: preserve-3d, but this layer itself does.
    108   if (layer->parent())
    109     return !layer->parent()->preserves_3d() && layer->preserves_3d();
    110 
    111   return layer->preserves_3d();
    112 }
    113 
    114 template <typename LayerType>
    115 static bool IsLayerBackFaceVisible(LayerType* layer) {
    116   // The current W3C spec on CSS transforms says that backface visibility should
    117   // be determined differently depending on whether the layer is in a "3d
    118   // rendering context" or not. For Chromium code, we can determine whether we
    119   // are in a 3d rendering context by checking if the parent preserves 3d.
    120 
    121   if (LayerIsInExisting3DRenderingContext(layer))
    122     return layer->draw_transform().IsBackFaceVisible();
    123 
    124   // In this case, either the layer establishes a new 3d rendering context, or
    125   // is not in a 3d rendering context at all.
    126   return layer->transform().IsBackFaceVisible();
    127 }
    128 
    129 template <typename LayerType>
    130 static bool IsSurfaceBackFaceVisible(LayerType* layer,
    131                                      const gfx::Transform& draw_transform) {
    132   if (LayerIsInExisting3DRenderingContext(layer))
    133     return draw_transform.IsBackFaceVisible();
    134 
    135   if (IsRootLayerOfNewRenderingContext(layer))
    136     return layer->transform().IsBackFaceVisible();
    137 
    138   // If the render_surface is not part of a new or existing rendering context,
    139   // then the layers that contribute to this surface will decide back-face
    140   // visibility for themselves.
    141   return false;
    142 }
    143 
    144 template <typename LayerType>
    145 static inline bool LayerClipsSubtree(LayerType* layer) {
    146   return layer->masks_to_bounds() || layer->mask_layer();
    147 }
    148 
    149 template <typename LayerType>
    150 static gfx::Rect CalculateVisibleContentRect(
    151     LayerType* layer,
    152     gfx::Rect clip_rect_of_target_surface_in_target_space,
    153     gfx::Rect layer_rect_in_target_space) {
    154   DCHECK(layer->render_target());
    155 
    156   // Nothing is visible if the layer bounds are empty.
    157   if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() ||
    158       layer->drawable_content_rect().IsEmpty())
    159     return gfx::Rect();
    160 
    161   // Compute visible bounds in target surface space.
    162   gfx::Rect visible_rect_in_target_surface_space =
    163       layer->drawable_content_rect();
    164 
    165   if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
    166     // The |layer| L has a target T which owns a surface Ts. The surface Ts
    167     // has a target TsT.
    168     //
    169     // In this case the target surface Ts does clip the layer L that contributes
    170     // to it. So, we have to convert the clip rect of Ts from the target space
    171     // of Ts (that is the space of TsT), to the current render target's space
    172     // (that is the space of T). This conversion is done outside this function
    173     // so that it can be cached instead of computing it redundantly for every
    174     // layer.
    175     visible_rect_in_target_surface_space.Intersect(
    176         clip_rect_of_target_surface_in_target_space);
    177   }
    178 
    179   if (visible_rect_in_target_surface_space.IsEmpty())
    180     return gfx::Rect();
    181 
    182   return CalculateVisibleRectWithCachedLayerRect(
    183       visible_rect_in_target_surface_space,
    184       gfx::Rect(layer->content_bounds()),
    185       layer_rect_in_target_space,
    186       layer->draw_transform());
    187 }
    188 
    189 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; }
    190 
    191 static inline bool TransformToParentIsKnown(Layer* layer) {
    192   return !layer->TransformIsAnimating();
    193 }
    194 
    195 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; }
    196 
    197 static inline bool TransformToScreenIsKnown(Layer* layer) {
    198   return !layer->screen_space_transform_is_animating();
    199 }
    200 
    201 template <typename LayerType>
    202 static bool LayerShouldBeSkipped(LayerType* layer,
    203                                  bool layer_is_visible) {
    204   // Layers can be skipped if any of these conditions are met.
    205   //   - is not visible due to it or one of its ancestors being hidden.
    206   //   - does not draw content.
    207   //   - is transparent
    208   //   - has empty bounds
    209   //   - the layer is not double-sided, but its back face is visible.
    210   //
    211   // Some additional conditions need to be computed at a later point after the
    212   // recursion is finished.
    213   //   - the intersection of render_surface content and layer clip_rect is empty
    214   //   - the visible_content_rect is empty
    215   //
    216   // Note, if the layer should not have been drawn due to being fully
    217   // transparent, we would have skipped the entire subtree and never made it
    218   // into this function, so it is safe to omit this check here.
    219 
    220   if (!layer_is_visible)
    221     return true;
    222 
    223   if (!layer->DrawsContent() || layer->bounds().IsEmpty())
    224     return true;
    225 
    226   LayerType* backface_test_layer = layer;
    227   if (layer->use_parent_backface_visibility()) {
    228     DCHECK(layer->parent());
    229     DCHECK(!layer->parent()->use_parent_backface_visibility());
    230     backface_test_layer = layer->parent();
    231   }
    232 
    233   // The layer should not be drawn if (1) it is not double-sided and (2) the
    234   // back of the layer is known to be facing the screen.
    235   if (!backface_test_layer->double_sided() &&
    236       TransformToScreenIsKnown(backface_test_layer) &&
    237       IsLayerBackFaceVisible(backface_test_layer))
    238     return true;
    239 
    240   return false;
    241 }
    242 
    243 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
    244                                           bool layer_is_visible) {
    245   // When we need to do a readback/copy of a layer's output, we can not skip
    246   // it or any of its ancestors.
    247   if (layer->draw_properties().layer_or_descendant_has_copy_request)
    248     return false;
    249 
    250   // If the layer is not visible, then skip it and its subtree.
    251   if (!layer_is_visible)
    252     return true;
    253 
    254   // If layer is on the pending tree and opacity is being animated then
    255   // this subtree can't be skipped as we need to create, prioritize and
    256   // include tiles for this layer when deciding if tree can be activated.
    257   if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating())
    258     return false;
    259 
    260   // The opacity of a layer always applies to its children (either implicitly
    261   // via a render surface or explicitly if the parent preserves 3D), so the
    262   // entire subtree can be skipped if this layer is fully transparent.
    263   return !layer->opacity();
    264 }
    265 
    266 static inline bool SubtreeShouldBeSkipped(Layer* layer,
    267                                           bool layer_is_visible) {
    268   // When we need to do a readback/copy of a layer's output, we can not skip
    269   // it or any of its ancestors.
    270   if (layer->draw_properties().layer_or_descendant_has_copy_request)
    271     return false;
    272 
    273   // If the layer is not visible, then skip it and its subtree.
    274   if (!layer_is_visible)
    275     return true;
    276 
    277   // If the opacity is being animated then the opacity on the main thread is
    278   // unreliable (since the impl thread may be using a different opacity), so it
    279   // should not be trusted.
    280   // In particular, it should not cause the subtree to be skipped.
    281   // Similarly, for layers that might animate opacity using an impl-only
    282   // animation, their subtree should also not be skipped.
    283   return !layer->opacity() && !layer->OpacityIsAnimating() &&
    284          !layer->OpacityCanAnimateOnImplThread();
    285 }
    286 
    287 // Called on each layer that could be drawn after all information from
    288 // CalcDrawProperties has been updated on that layer.  May have some false
    289 // positives (e.g. layers get this called on them but don't actually get drawn).
    290 static inline void UpdateTilePrioritiesForLayer(LayerImpl* layer) {
    291   layer->UpdateTilePriorities();
    292 
    293   // Mask layers don't get this call, so explicitly update them so they can
    294   // kick off tile rasterization.
    295   if (layer->mask_layer())
    296     layer->mask_layer()->UpdateTilePriorities();
    297   if (layer->replica_layer() && layer->replica_layer()->mask_layer())
    298     layer->replica_layer()->mask_layer()->UpdateTilePriorities();
    299 }
    300 
    301 static inline void UpdateTilePrioritiesForLayer(Layer* layer) {}
    302 
    303 static inline void SavePaintPropertiesLayer(LayerImpl* layer) {}
    304 
    305 static inline void SavePaintPropertiesLayer(Layer* layer) {
    306   layer->SavePaintProperties();
    307 
    308   if (layer->mask_layer())
    309     layer->mask_layer()->SavePaintProperties();
    310   if (layer->replica_layer() && layer->replica_layer()->mask_layer())
    311     layer->replica_layer()->mask_layer()->SavePaintProperties();
    312 }
    313 
    314 template <typename LayerType>
    315 static bool SubtreeShouldRenderToSeparateSurface(
    316     LayerType* layer,
    317     bool axis_aligned_with_respect_to_parent) {
    318   //
    319   // A layer and its descendants should render onto a new RenderSurfaceImpl if
    320   // any of these rules hold:
    321   //
    322 
    323   // The root layer owns a render surface, but it never acts as a contributing
    324   // surface to another render target. Compositor features that are applied via
    325   // a contributing surface can not be applied to the root layer. In order to
    326   // use these effects, another child of the root would need to be introduced
    327   // in order to act as a contributing surface to the root layer's surface.
    328   bool is_root = IsRootLayer(layer);
    329 
    330   // If the layer uses a mask.
    331   if (layer->mask_layer()) {
    332     DCHECK(!is_root);
    333     return true;
    334   }
    335 
    336   // If the layer has a reflection.
    337   if (layer->replica_layer()) {
    338     DCHECK(!is_root);
    339     return true;
    340   }
    341 
    342   // If the layer uses a CSS filter.
    343   if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty() ||
    344       layer->filter()) {
    345     DCHECK(!is_root);
    346     return true;
    347   }
    348 
    349   int num_descendants_that_draw_content =
    350       layer->draw_properties().num_descendants_that_draw_content;
    351 
    352   // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but
    353   // it is treated as a 3D object by its parent (i.e. parent does preserve-3d).
    354   if (LayerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() &&
    355       num_descendants_that_draw_content > 0) {
    356     TRACE_EVENT_INSTANT0(
    357         "cc",
    358         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening",
    359         TRACE_EVENT_SCOPE_THREAD);
    360     DCHECK(!is_root);
    361     return true;
    362   }
    363 
    364   // If the layer clips its descendants but it is not axis-aligned with respect
    365   // to its parent.
    366   bool layer_clips_external_content =
    367       LayerClipsSubtree(layer) || layer->HasDelegatedContent();
    368   if (layer_clips_external_content && !axis_aligned_with_respect_to_parent &&
    369       !layer->draw_properties().descendants_can_clip_selves) {
    370     TRACE_EVENT_INSTANT0(
    371         "cc",
    372         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping",
    373         TRACE_EVENT_SCOPE_THREAD);
    374     DCHECK(!is_root);
    375     return true;
    376   }
    377 
    378   // If the layer has some translucency and does not have a preserves-3d
    379   // transform style.  This condition only needs a render surface if two or more
    380   // layers in the subtree overlap. But checking layer overlaps is unnecessarily
    381   // costly so instead we conservatively create a surface whenever at least two
    382   // layers draw content for this subtree.
    383   bool at_least_two_layers_in_subtree_draw_content =
    384       num_descendants_that_draw_content > 0 &&
    385       (layer->DrawsContent() || num_descendants_that_draw_content > 1);
    386 
    387   if (layer->opacity() != 1.f && !layer->preserves_3d() &&
    388       at_least_two_layers_in_subtree_draw_content) {
    389     TRACE_EVENT_INSTANT0(
    390         "cc",
    391         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity",
    392         TRACE_EVENT_SCOPE_THREAD);
    393     DCHECK(!is_root);
    394     return true;
    395   }
    396 
    397   // The root layer should always have a render_surface.
    398   if (is_root)
    399     return true;
    400 
    401   //
    402   // These are allowed on the root surface, as they don't require the surface to
    403   // be used as a contributing surface in order to apply correctly.
    404   //
    405 
    406   // If we force it.
    407   if (layer->force_render_surface())
    408     return true;
    409 
    410   // If we'll make a copy of the layer's contents.
    411   if (layer->HasCopyRequest())
    412     return true;
    413 
    414   return false;
    415 }
    416 
    417 static LayerImpl* NextTargetSurface(LayerImpl* layer) {
    418   return layer->parent() ? layer->parent()->render_target() : 0;
    419 }
    420 
    421 // This function returns a translation matrix that can be applied on a vector
    422 // that's in the layer's target surface coordinate, while the position offset is
    423 // specified in some ancestor layer's coordinate.
    424 gfx::Transform ComputeSizeDeltaCompensation(
    425     LayerImpl* layer,
    426     LayerImpl* container,
    427     gfx::Vector2dF position_offset) {
    428   gfx::Transform result_transform;
    429 
    430   // To apply a translate in the container's layer space,
    431   // the following steps need to be done:
    432   //     Step 1a. transform from target surface space to the container's target
    433   //              surface space
    434   //     Step 1b. transform from container's target surface space to the
    435   //              container's layer space
    436   //     Step 2. apply the compensation
    437   //     Step 3. transform back to target surface space
    438 
    439   gfx::Transform target_surface_space_to_container_layer_space;
    440   // Calculate step 1a
    441   LayerImpl* container_target_surface = container->render_target();
    442   for (LayerImpl* current_target_surface = NextTargetSurface(layer);
    443       current_target_surface &&
    444           current_target_surface != container_target_surface;
    445       current_target_surface = NextTargetSurface(current_target_surface)) {
    446     // Note: Concat is used here to convert the result coordinate space from
    447     //       current render surface to the next render surface.
    448     target_surface_space_to_container_layer_space.ConcatTransform(
    449         current_target_surface->render_surface()->draw_transform());
    450   }
    451   // Calculate step 1b
    452   gfx::Transform container_layer_space_to_container_target_surface_space =
    453       container->draw_transform();
    454   container_layer_space_to_container_target_surface_space.Scale(
    455       container->contents_scale_x(), container->contents_scale_y());
    456 
    457   gfx::Transform container_target_surface_space_to_container_layer_space;
    458   if (container_layer_space_to_container_target_surface_space.GetInverse(
    459       &container_target_surface_space_to_container_layer_space)) {
    460     // Note: Again, Concat is used to conver the result coordinate space from
    461     //       the container render surface to the container layer.
    462     target_surface_space_to_container_layer_space.ConcatTransform(
    463         container_target_surface_space_to_container_layer_space);
    464   }
    465 
    466   // Apply step 3
    467   gfx::Transform container_layer_space_to_target_surface_space;
    468   if (target_surface_space_to_container_layer_space.GetInverse(
    469           &container_layer_space_to_target_surface_space)) {
    470     result_transform.PreconcatTransform(
    471         container_layer_space_to_target_surface_space);
    472   } else {
    473     // TODO(shawnsingh): A non-invertible matrix could still make meaningful
    474     // projection.  For example ScaleZ(0) is non-invertible but the layer is
    475     // still visible.
    476     return gfx::Transform();
    477   }
    478 
    479   // Apply step 2
    480   result_transform.Translate(position_offset.x(), position_offset.y());
    481 
    482   // Apply step 1
    483   result_transform.PreconcatTransform(
    484       target_surface_space_to_container_layer_space);
    485 
    486   return result_transform;
    487 }
    488 
    489 void ApplyPositionAdjustment(
    490     Layer* layer,
    491     Layer* container,
    492     const gfx::Transform& scroll_compensation,
    493     gfx::Transform* combined_transform) {}
    494 void ApplyPositionAdjustment(
    495     LayerImpl* layer,
    496     LayerImpl* container,
    497     const gfx::Transform& scroll_compensation,
    498     gfx::Transform* combined_transform) {
    499   if (!layer->position_constraint().is_fixed_position())
    500     return;
    501 
    502   // Special case: this layer is a composited fixed-position layer; we need to
    503   // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
    504   // this layer fixed correctly.
    505   // Note carefully: this is Concat, not Preconcat
    506   // (current_scroll_compensation * combined_transform).
    507   combined_transform->ConcatTransform(scroll_compensation);
    508 
    509   // For right-edge or bottom-edge anchored fixed position layers,
    510   // the layer should relocate itself if the container changes its size.
    511   bool fixed_to_right_edge =
    512       layer->position_constraint().is_fixed_to_right_edge();
    513   bool fixed_to_bottom_edge =
    514       layer->position_constraint().is_fixed_to_bottom_edge();
    515   gfx::Vector2dF position_offset = container->fixed_container_size_delta();
    516   position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0);
    517   position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0);
    518   if (position_offset.IsZero())
    519     return;
    520 
    521   // Note: Again, this is Concat. The compensation matrix will be applied on
    522   //       the vector in target surface space.
    523   combined_transform->ConcatTransform(
    524       ComputeSizeDeltaCompensation(layer, container, position_offset));
    525 }
    526 
    527 gfx::Transform ComputeScrollCompensationForThisLayer(
    528     LayerImpl* scrolling_layer,
    529     const gfx::Transform& parent_matrix) {
    530   // For every layer that has non-zero scroll_delta, we have to compute a
    531   // transform that can undo the scroll_delta translation. In particular, we
    532   // want this matrix to premultiply a fixed-position layer's parent_matrix, so
    533   // we design this transform in three steps as follows. The steps described
    534   // here apply from right-to-left, so Step 1 would be the right-most matrix:
    535   //
    536   //     Step 1. transform from target surface space to the exact space where
    537   //           scroll_delta is actually applied.
    538   //           -- this is inverse of parent_matrix
    539   //     Step 2. undo the scroll_delta
    540   //           -- this is just a translation by scroll_delta.
    541   //     Step 3. transform back to target surface space.
    542   //           -- this transform is the parent_matrix
    543   //
    544   // These steps create a matrix that both start and end in target surface
    545   // space. So this matrix can pre-multiply any fixed-position layer's
    546   // draw_transform to undo the scroll_deltas -- as long as that fixed position
    547   // layer is fixed onto the same render_target as this scrolling_layer.
    548   //
    549 
    550   gfx::Transform scroll_compensation_for_this_layer = parent_matrix;  // Step 3
    551   scroll_compensation_for_this_layer.Translate(
    552       scrolling_layer->ScrollDelta().x(),
    553       scrolling_layer->ScrollDelta().y());  // Step 2
    554 
    555   gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization);
    556   if (!parent_matrix.GetInverse(&inverse_parent_matrix)) {
    557     // TODO(shawnsingh): Either we need to handle uninvertible transforms
    558     // here, or DCHECK that the transform is invertible.
    559   }
    560   scroll_compensation_for_this_layer.PreconcatTransform(
    561       inverse_parent_matrix);  // Step 1
    562   return scroll_compensation_for_this_layer;
    563 }
    564 
    565 gfx::Transform ComputeScrollCompensationMatrixForChildren(
    566     Layer* current_layer,
    567     const gfx::Transform& current_parent_matrix,
    568     const gfx::Transform& current_scroll_compensation) {
    569   // The main thread (i.e. Layer) does not need to worry about scroll
    570   // compensation.  So we can just return an identity matrix here.
    571   return gfx::Transform();
    572 }
    573 
    574 gfx::Transform ComputeScrollCompensationMatrixForChildren(
    575     LayerImpl* layer,
    576     const gfx::Transform& parent_matrix,
    577     const gfx::Transform& current_scroll_compensation_matrix) {
    578   // "Total scroll compensation" is the transform needed to cancel out all
    579   // scroll_delta translations that occurred since the nearest container layer,
    580   // even if there are render_surfaces in-between.
    581   //
    582   // There are some edge cases to be aware of, that are not explicit in the
    583   // code:
    584   //  - A layer that is both a fixed-position and container should not be its
    585   //  own container, instead, that means it is fixed to an ancestor, and is a
    586   //  container for any fixed-position descendants.
    587   //  - A layer that is a fixed-position container and has a render_surface
    588   //  should behave the same as a container without a render_surface, the
    589   //  render_surface is irrelevant in that case.
    590   //  - A layer that does not have an explicit container is simply fixed to the
    591   //  viewport.  (i.e. the root render_surface.)
    592   //  - If the fixed-position layer has its own render_surface, then the
    593   //  render_surface is the one who gets fixed.
    594   //
    595   // This function needs to be called AFTER layers create their own
    596   // render_surfaces.
    597   //
    598 
    599   // Avoid the overheads (including stack allocation and matrix
    600   // initialization/copy) if we know that the scroll compensation doesn't need
    601   // to be reset or adjusted.
    602   if (!layer->IsContainerForFixedPositionLayers() &&
    603       layer->ScrollDelta().IsZero() && !layer->render_surface())
    604     return current_scroll_compensation_matrix;
    605 
    606   // Start as identity matrix.
    607   gfx::Transform next_scroll_compensation_matrix;
    608 
    609   // If this layer is not a container, then it inherits the existing scroll
    610   // compensations.
    611   if (!layer->IsContainerForFixedPositionLayers())
    612     next_scroll_compensation_matrix = current_scroll_compensation_matrix;
    613 
    614   // If the current layer has a non-zero scroll_delta, then we should compute
    615   // its local scroll compensation and accumulate it to the
    616   // next_scroll_compensation_matrix.
    617   if (!layer->ScrollDelta().IsZero()) {
    618     gfx::Transform scroll_compensation_for_this_layer =
    619         ComputeScrollCompensationForThisLayer(
    620             layer, parent_matrix);
    621     next_scroll_compensation_matrix.PreconcatTransform(
    622         scroll_compensation_for_this_layer);
    623   }
    624 
    625   // If the layer created its own render_surface, we have to adjust
    626   // next_scroll_compensation_matrix.  The adjustment allows us to continue
    627   // using the scroll compensation on the next surface.
    628   //  Step 1 (right-most in the math): transform from the new surface to the
    629   //  original ancestor surface
    630   //  Step 2: apply the scroll compensation
    631   //  Step 3: transform back to the new surface.
    632   if (layer->render_surface() &&
    633       !next_scroll_compensation_matrix.IsIdentity()) {
    634     gfx::Transform inverse_surface_draw_transform(
    635         gfx::Transform::kSkipInitialization);
    636     if (!layer->render_surface()->draw_transform().GetInverse(
    637             &inverse_surface_draw_transform)) {
    638       // TODO(shawnsingh): Either we need to handle uninvertible transforms
    639       // here, or DCHECK that the transform is invertible.
    640     }
    641     next_scroll_compensation_matrix =
    642         inverse_surface_draw_transform * next_scroll_compensation_matrix *
    643         layer->render_surface()->draw_transform();
    644   }
    645 
    646   return next_scroll_compensation_matrix;
    647 }
    648 
    649 template <typename LayerType>
    650 static inline void CalculateContentsScale(LayerType* layer,
    651                                           float contents_scale,
    652                                           float device_scale_factor,
    653                                           float page_scale_factor,
    654                                           bool animating_transform_to_screen) {
    655   layer->CalculateContentsScale(contents_scale,
    656                                 device_scale_factor,
    657                                 page_scale_factor,
    658                                 animating_transform_to_screen,
    659                                 &layer->draw_properties().contents_scale_x,
    660                                 &layer->draw_properties().contents_scale_y,
    661                                 &layer->draw_properties().content_bounds);
    662 
    663   LayerType* mask_layer = layer->mask_layer();
    664   if (mask_layer) {
    665     mask_layer->CalculateContentsScale(
    666         contents_scale,
    667         device_scale_factor,
    668         page_scale_factor,
    669         animating_transform_to_screen,
    670         &mask_layer->draw_properties().contents_scale_x,
    671         &mask_layer->draw_properties().contents_scale_y,
    672         &mask_layer->draw_properties().content_bounds);
    673   }
    674 
    675   LayerType* replica_mask_layer =
    676       layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL;
    677   if (replica_mask_layer) {
    678     replica_mask_layer->CalculateContentsScale(
    679         contents_scale,
    680         device_scale_factor,
    681         page_scale_factor,
    682         animating_transform_to_screen,
    683         &replica_mask_layer->draw_properties().contents_scale_x,
    684         &replica_mask_layer->draw_properties().contents_scale_y,
    685         &replica_mask_layer->draw_properties().content_bounds);
    686   }
    687 }
    688 
    689 static inline void UpdateLayerContentsScale(
    690     LayerImpl* layer,
    691     bool can_adjust_raster_scale,
    692     float ideal_contents_scale,
    693     float device_scale_factor,
    694     float page_scale_factor,
    695     bool animating_transform_to_screen) {
    696   CalculateContentsScale(layer,
    697                          ideal_contents_scale,
    698                          device_scale_factor,
    699                          page_scale_factor,
    700                          animating_transform_to_screen);
    701 }
    702 
    703 static inline void UpdateLayerContentsScale(
    704     Layer* layer,
    705     bool can_adjust_raster_scale,
    706     float ideal_contents_scale,
    707     float device_scale_factor,
    708     float page_scale_factor,
    709     bool animating_transform_to_screen) {
    710   if (can_adjust_raster_scale) {
    711     float ideal_raster_scale =
    712         ideal_contents_scale / (device_scale_factor * page_scale_factor);
    713 
    714     bool need_to_set_raster_scale = layer->raster_scale_is_unknown();
    715 
    716     // If we've previously saved a raster_scale but the ideal changes, things
    717     // are unpredictable and we should just use 1.
    718     if (!need_to_set_raster_scale && layer->raster_scale() != 1.f &&
    719         ideal_raster_scale != layer->raster_scale()) {
    720       ideal_raster_scale = 1.f;
    721       need_to_set_raster_scale = true;
    722     }
    723 
    724     if (need_to_set_raster_scale) {
    725       bool use_and_save_ideal_scale =
    726           ideal_raster_scale >= 1.f && !animating_transform_to_screen;
    727       if (use_and_save_ideal_scale)
    728         layer->set_raster_scale(ideal_raster_scale);
    729     }
    730   }
    731 
    732   float raster_scale = 1.f;
    733   if (!layer->raster_scale_is_unknown())
    734     raster_scale = layer->raster_scale();
    735 
    736 
    737   float contents_scale = raster_scale * device_scale_factor * page_scale_factor;
    738   CalculateContentsScale(layer,
    739                          contents_scale,
    740                          device_scale_factor,
    741                          page_scale_factor,
    742                          animating_transform_to_screen);
    743 }
    744 
    745 static inline RenderSurface* CreateOrReuseRenderSurface(Layer* layer) {
    746   // The render surface should always be new on the main thread, as the
    747   // RenderSurfaceLayerList should be a new empty list when given to
    748   // CalculateDrawProperties.
    749   DCHECK(!layer->render_surface());
    750   layer->CreateRenderSurface();
    751   return layer->render_surface();
    752 }
    753 
    754 static inline RenderSurfaceImpl* CreateOrReuseRenderSurface(LayerImpl* layer) {
    755   if (!layer->render_surface()) {
    756     layer->CreateRenderSurface();
    757     return layer->render_surface();
    758   }
    759 
    760   layer->render_surface()->ClearLayerLists();
    761   return layer->render_surface();
    762 }
    763 
    764 template <typename LayerType, typename LayerList>
    765 static inline void RemoveSurfaceForEarlyExit(
    766     LayerType* layer_to_remove,
    767     LayerList* render_surface_layer_list) {
    768   DCHECK(layer_to_remove->render_surface());
    769   // Technically, we know that the layer we want to remove should be
    770   // at the back of the render_surface_layer_list. However, we have had
    771   // bugs before that added unnecessary layers here
    772   // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
    773   // things to crash. So here we proactively remove any additional
    774   // layers from the end of the list.
    775   while (render_surface_layer_list->back() != layer_to_remove) {
    776     render_surface_layer_list->back()->ClearRenderSurface();
    777     render_surface_layer_list->pop_back();
    778   }
    779   DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
    780   render_surface_layer_list->pop_back();
    781   layer_to_remove->ClearRenderSurface();
    782 }
    783 
    784 struct PreCalculateMetaInformationRecursiveData {
    785   bool layer_or_descendant_has_copy_request;
    786 
    787   PreCalculateMetaInformationRecursiveData()
    788       : layer_or_descendant_has_copy_request(false) {}
    789 
    790   void Merge(const PreCalculateMetaInformationRecursiveData& data) {
    791     layer_or_descendant_has_copy_request |=
    792         data.layer_or_descendant_has_copy_request;
    793   }
    794 };
    795 
    796 // Recursively walks the layer tree to compute any information that is needed
    797 // before doing the main recursion.
    798 template <typename LayerType>
    799 static void PreCalculateMetaInformation(
    800     LayerType* layer,
    801     PreCalculateMetaInformationRecursiveData* recursive_data) {
    802   bool has_delegated_content = layer->HasDelegatedContent();
    803   int num_descendants_that_draw_content = 0;
    804   bool descendants_can_clip_selves = true;
    805 
    806   if (has_delegated_content) {
    807     // Layers with delegated content need to be treated as if they have as
    808     // many children as the number of layers they own delegated quads for.
    809     // Since we don't know this number right now, we choose one that acts like
    810     // infinity for our purposes.
    811     num_descendants_that_draw_content = 1000;
    812     descendants_can_clip_selves = false;
    813   }
    814 
    815   for (size_t i = 0; i < layer->children().size(); ++i) {
    816     LayerType* child_layer =
    817         LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i);
    818 
    819     PreCalculateMetaInformationRecursiveData data_for_child;
    820     PreCalculateMetaInformation(child_layer, &data_for_child);
    821 
    822     if (!has_delegated_content) {
    823       bool sublayer_transform_prevents_clip =
    824           !layer->sublayer_transform().IsPositiveScaleOrTranslation();
    825 
    826       num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0;
    827       num_descendants_that_draw_content +=
    828           child_layer->draw_properties().num_descendants_that_draw_content;
    829 
    830       if ((child_layer->DrawsContent() && !child_layer->CanClipSelf()) ||
    831           !child_layer->draw_properties().descendants_can_clip_selves ||
    832           sublayer_transform_prevents_clip ||
    833           !child_layer->transform().IsPositiveScaleOrTranslation())
    834         descendants_can_clip_selves = false;
    835     }
    836 
    837     recursive_data->Merge(data_for_child);
    838   }
    839 
    840   if (layer->HasCopyRequest())
    841     recursive_data->layer_or_descendant_has_copy_request = true;
    842 
    843   layer->draw_properties().num_descendants_that_draw_content =
    844       num_descendants_that_draw_content;
    845   layer->draw_properties().descendants_can_clip_selves =
    846       descendants_can_clip_selves;
    847   layer->draw_properties().layer_or_descendant_has_copy_request =
    848       recursive_data->layer_or_descendant_has_copy_request;
    849 }
    850 
    851 static void RoundTranslationComponents(gfx::Transform* transform) {
    852   transform->matrix().
    853       setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3)));
    854   transform->matrix().
    855       setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3)));
    856 }
    857 
    858 template <typename LayerType>
    859 struct SubtreeGlobals {
    860   LayerSorter* layer_sorter;
    861   int max_texture_size;
    862   float device_scale_factor;
    863   float page_scale_factor;
    864   LayerType* page_scale_application_layer;
    865   bool can_adjust_raster_scales;
    866   bool can_update_tile_priorities;
    867   bool can_render_to_separate_surface;
    868 };
    869 
    870 template<typename LayerType, typename RenderSurfaceType>
    871 struct DataForRecursion {
    872   // The accumulated sequence of transforms a layer will use to determine its
    873   // own draw transform.
    874   gfx::Transform parent_matrix;
    875 
    876   // The accumulated sequence of transforms a layer will use to determine its
    877   // own screen-space transform.
    878   gfx::Transform full_hierarchy_matrix;
    879 
    880   // The transform that removes all scrolling that may have occurred between a
    881   // fixed-position layer and its container, so that the layer actually does
    882   // remain fixed.
    883   gfx::Transform scroll_compensation_matrix;
    884 
    885   // The ancestor that would be the container for any fixed-position / sticky
    886   // layers.
    887   LayerType* fixed_container;
    888 
    889   // This is the normal clip rect that is propagated from parent to child.
    890   gfx::Rect clip_rect_in_target_space;
    891 
    892   // When the layer's children want to compute their visible content rect, they
    893   // want to know what their target surface's clip rect will be. BUT - they
    894   // want to know this clip rect represented in their own target space. This
    895   // requires inverse-projecting the surface's clip rect from the surface's
    896   // render target space down to the surface's own space. Instead of computing
    897   // this value redundantly for each child layer, it is computed only once
    898   // while dealing with the parent layer, and then this precomputed value is
    899   // passed down the recursion to the children that actually use it.
    900   gfx::Rect clip_rect_of_target_surface_in_target_space;
    901 
    902   bool ancestor_clips_subtree;
    903   RenderSurfaceType* nearest_ancestor_surface_that_moves_pixels;
    904   bool in_subtree_of_page_scale_application_layer;
    905   bool subtree_can_use_lcd_text;
    906   bool subtree_is_visible_from_ancestor;
    907 };
    908 
    909 // Recursively walks the layer tree starting at the given node and computes all
    910 // the necessary transformations, clip rects, render surfaces, etc.
    911 template <typename LayerType,
    912           typename LayerListType,
    913           typename RenderSurfaceType>
    914 static void CalculateDrawPropertiesInternal(
    915     LayerType* layer,
    916     const SubtreeGlobals<LayerType>& globals,
    917     const DataForRecursion<LayerType, RenderSurfaceType>& data_from_ancestor,
    918     LayerListType* render_surface_layer_list,
    919     LayerListType* layer_list,
    920     gfx::Rect* drawable_content_rect_of_subtree) {
    921   // This function computes the new matrix transformations recursively for this
    922   // layer and all its descendants. It also computes the appropriate render
    923   // surfaces.
    924   // Some important points to remember:
    925   //
    926   // 0. Here, transforms are notated in Matrix x Vector order, and in words we
    927   // describe what the transform does from left to right.
    928   //
    929   // 1. In our terminology, the "layer origin" refers to the top-left corner of
    930   // a layer, and the positive Y-axis points downwards. This interpretation is
    931   // valid because the orthographic projection applied at draw time flips the Y
    932   // axis appropriately.
    933   //
    934   // 2. The anchor point, when given as a PointF object, is specified in "unit
    935   // layer space", where the bounds of the layer map to [0, 1]. However, as a
    936   // Transform object, the transform to the anchor point is specified in "layer
    937   // space", where the bounds of the layer map to [bounds.width(),
    938   // bounds.height()].
    939   //
    940   // 3. Definition of various transforms used:
    941   //        M[parent] is the parent matrix, with respect to the nearest render
    942   //        surface, passed down recursively.
    943   //
    944   //        M[root] is the full hierarchy, with respect to the root, passed down
    945   //        recursively.
    946   //
    947   //        Tr[origin] is the translation matrix from the parent's origin to
    948   //        this layer's origin.
    949   //
    950   //        Tr[origin2anchor] is the translation from the layer's origin to its
    951   //        anchor point
    952   //
    953   //        Tr[origin2center] is the translation from the layer's origin to its
    954   //        center
    955   //
    956   //        M[layer] is the layer's matrix (applied at the anchor point)
    957   //
    958   //        M[sublayer] is the layer's sublayer transform (also applied at the
    959   //        layer's anchor point)
    960   //
    961   //        S[layer2content] is the ratio of a layer's content_bounds() to its
    962   //        Bounds().
    963   //
    964   //    Some composite transforms can help in understanding the sequence of
    965   //    transforms:
    966   //        composite_layer_transform = Tr[origin2anchor] * M[layer] *
    967   //        Tr[origin2anchor].inverse()
    968   //
    969   //        composite_sublayer_transform = Tr[origin2anchor] * M[sublayer] *
    970   //        Tr[origin2anchor].inverse()
    971   //
    972   // 4. When a layer (or render surface) is drawn, it is drawn into a "target
    973   // render surface". Therefore the draw transform does not necessarily
    974   // transform from screen space to local layer space. Instead, the draw
    975   // transform is the transform between the "target render surface space" and
    976   // local layer space. Note that render surfaces, except for the root, also
    977   // draw themselves into a different target render surface, and so their draw
    978   // transform and origin transforms are also described with respect to the
    979   // target.
    980   //
    981   // Using these definitions, then:
    982   //
    983   // The draw transform for the layer is:
    984   //        M[draw] = M[parent] * Tr[origin] * composite_layer_transform *
    985   //            S[layer2content] = M[parent] * Tr[layer->position() + anchor] *
    986   //            M[layer] * Tr[anchor2origin] * S[layer2content]
    987   //
    988   //        Interpreting the math left-to-right, this transforms from the
    989   //        layer's render surface to the origin of the layer in content space.
    990   //
    991   // The screen space transform is:
    992   //        M[screenspace] = M[root] * Tr[origin] * composite_layer_transform *
    993   //            S[layer2content]
    994   //                       = M[root] * Tr[layer->position() + anchor] * M[layer]
    995   //                           * Tr[anchor2origin] * S[layer2content]
    996   //
    997   //        Interpreting the math left-to-right, this transforms from the root
    998   //        render surface's content space to the origin of the layer in content
    999   //        space.
   1000   //
   1001   // The transform hierarchy that is passed on to children (i.e. the child's
   1002   // parent_matrix) is:
   1003   //        M[parent]_for_child = M[parent] * Tr[origin] *
   1004   //            composite_layer_transform * composite_sublayer_transform
   1005   //                            = M[parent] * Tr[layer->position() + anchor] *
   1006   //                              M[layer] * Tr[anchor2origin] *
   1007   //                              composite_sublayer_transform
   1008   //
   1009   //        and a similar matrix for the full hierarchy with respect to the
   1010   //        root.
   1011   //
   1012   // Finally, note that the final matrix used by the shader for the layer is P *
   1013   // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
   1014   //        P is the projection matrix
   1015   //        S is the scale adjustment (to scale up a canonical quad to the
   1016   //            layer's size)
   1017   //
   1018   // When a render surface has a replica layer, that layer's transform is used
   1019   // to draw a second copy of the surface.  gfx::Transforms named here are
   1020   // relative to the surface, unless they specify they are relative to the
   1021   // replica layer.
   1022   //
   1023   // We will denote a scale by device scale S[deviceScale]
   1024   //
   1025   // The render surface draw transform to its target surface origin is:
   1026   //        M[surfaceDraw] = M[owningLayer->Draw]
   1027   //
   1028   // The render surface origin transform to its the root (screen space) origin
   1029   // is:
   1030   //        M[surface2root] =  M[owningLayer->screenspace] *
   1031   //            S[deviceScale].inverse()
   1032   //
   1033   // The replica draw transform to its target surface origin is:
   1034   //        M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
   1035   //            Tr[replica->position() + replica->anchor()] * Tr[replica] *
   1036   //            Tr[origin2anchor].inverse() * S[contents_scale].inverse()
   1037   //
   1038   // The replica draw transform to the root (screen space) origin is:
   1039   //        M[replica2root] = M[surface2root] * Tr[replica->position()] *
   1040   //            Tr[replica] * Tr[origin2anchor].inverse()
   1041   //
   1042 
   1043   // It makes no sense to have a non-unit page_scale_factor without specifying
   1044   // which layer roots the subtree the scale is applied to.
   1045   DCHECK(globals.page_scale_application_layer ||
   1046          (globals.page_scale_factor == 1.f));
   1047 
   1048   // If we early-exit anywhere in this function, the drawable_content_rect of
   1049   // this subtree should be considered empty.
   1050   *drawable_content_rect_of_subtree = gfx::Rect();
   1051 
   1052   DataForRecursion<LayerType, RenderSurfaceType> data_for_children;
   1053   RenderSurfaceType* nearest_ancestor_surface_that_moves_pixels =
   1054       data_from_ancestor.nearest_ancestor_surface_that_moves_pixels;
   1055   data_for_children.in_subtree_of_page_scale_application_layer =
   1056       data_from_ancestor.in_subtree_of_page_scale_application_layer;
   1057   data_for_children.subtree_can_use_lcd_text =
   1058       data_from_ancestor.subtree_can_use_lcd_text;
   1059 
   1060   // Layers with a copy request are always visible, as well as un-hiding their
   1061   // subtree. Otherise, layers that are marked as hidden will hide themselves
   1062   // and their subtree.
   1063   bool layer_is_visible =
   1064       data_from_ancestor.subtree_is_visible_from_ancestor &&
   1065       !layer->hide_layer_and_subtree();
   1066   if (layer->HasCopyRequest())
   1067     layer_is_visible = true;
   1068 
   1069   // The root layer cannot skip CalcDrawProperties.
   1070   if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_visible))
   1071     return;
   1072 
   1073   // As this function proceeds, these are the properties for the current
   1074   // layer that actually get computed. To avoid unnecessary copies
   1075   // (particularly for matrices), we do computations directly on these values
   1076   // when possible.
   1077   DrawProperties<LayerType, RenderSurfaceType>& layer_draw_properties =
   1078       layer->draw_properties();
   1079 
   1080   gfx::Rect clip_rect_in_target_space;
   1081   bool layer_or_ancestor_clips_descendants = false;
   1082 
   1083   // This value is cached on the stack so that we don't have to inverse-project
   1084   // the surface's clip rect redundantly for every layer. This value is the
   1085   // same as the target surface's clip rect, except that instead of being
   1086   // described in the target surface's target's space, it is described in the
   1087   // current render target's space.
   1088   gfx::Rect clip_rect_of_target_surface_in_target_space;
   1089 
   1090   float accumulated_draw_opacity = layer->opacity();
   1091   bool animating_opacity_to_target = layer->OpacityIsAnimating();
   1092   bool animating_opacity_to_screen = animating_opacity_to_target;
   1093   if (layer->parent()) {
   1094     accumulated_draw_opacity *= layer->parent()->draw_opacity();
   1095     animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating();
   1096     animating_opacity_to_screen |=
   1097         layer->parent()->screen_space_opacity_is_animating();
   1098   }
   1099 
   1100   bool animating_transform_to_target = layer->TransformIsAnimating();
   1101   bool animating_transform_to_screen = animating_transform_to_target;
   1102   if (layer->parent()) {
   1103     animating_transform_to_target |=
   1104         layer->parent()->draw_transform_is_animating();
   1105     animating_transform_to_screen |=
   1106         layer->parent()->screen_space_transform_is_animating();
   1107   }
   1108 
   1109   gfx::Size bounds = layer->bounds();
   1110   gfx::PointF anchor_point = layer->anchor_point();
   1111   gfx::PointF position = layer->position() - layer->TotalScrollOffset();
   1112 
   1113   gfx::Transform combined_transform = data_from_ancestor.parent_matrix;
   1114   if (!layer->transform().IsIdentity()) {
   1115     // LT = Tr[origin] * Tr[origin2anchor]
   1116     combined_transform.Translate3d(
   1117         position.x() + anchor_point.x() * bounds.width(),
   1118         position.y() + anchor_point.y() * bounds.height(),
   1119         layer->anchor_point_z());
   1120     // LT = Tr[origin] * Tr[origin2anchor] * M[layer]
   1121     combined_transform.PreconcatTransform(layer->transform());
   1122     // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
   1123     combined_transform.Translate3d(-anchor_point.x() * bounds.width(),
   1124                                    -anchor_point.y() * bounds.height(),
   1125                                    -layer->anchor_point_z());
   1126   } else {
   1127     combined_transform.Translate(position.x(), position.y());
   1128   }
   1129 
   1130   if (!animating_transform_to_target && layer->scrollable() &&
   1131       combined_transform.IsScaleOrTranslation()) {
   1132     // Align the scrollable layer's position to screen space pixels to avoid
   1133     // blurriness.  To avoid side-effects, do this only if the transform is
   1134     // simple.
   1135     RoundTranslationComponents(&combined_transform);
   1136   }
   1137 
   1138   // Apply adjustment from position constraints.
   1139   ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container,
   1140       data_from_ancestor.scroll_compensation_matrix, &combined_transform);
   1141 
   1142   // Compute the 2d scale components of the transform hierarchy up to the target
   1143   // surface. From there, we can decide on a contents scale for the layer.
   1144   float layer_scale_factors = globals.device_scale_factor;
   1145   if (data_from_ancestor.in_subtree_of_page_scale_application_layer)
   1146     layer_scale_factors *= globals.page_scale_factor;
   1147   gfx::Vector2dF combined_transform_scales =
   1148       MathUtil::ComputeTransform2dScaleComponents(
   1149           combined_transform,
   1150           layer_scale_factors);
   1151 
   1152   float ideal_contents_scale =
   1153       globals.can_adjust_raster_scales
   1154       ? std::max(combined_transform_scales.x(),
   1155                  combined_transform_scales.y())
   1156       : layer_scale_factors;
   1157   UpdateLayerContentsScale(
   1158       layer,
   1159       globals.can_adjust_raster_scales,
   1160       ideal_contents_scale,
   1161       globals.device_scale_factor,
   1162       data_from_ancestor.in_subtree_of_page_scale_application_layer ?
   1163           globals.page_scale_factor : 1.f,
   1164       animating_transform_to_screen);
   1165 
   1166   // The draw_transform that gets computed below is effectively the layer's
   1167   // draw_transform, unless the layer itself creates a render_surface. In that
   1168   // case, the render_surface re-parents the transforms.
   1169   layer_draw_properties.target_space_transform = combined_transform;
   1170   // M[draw] = M[parent] * LT * S[layer2content]
   1171   layer_draw_properties.target_space_transform.Scale
   1172       (1.f / layer->contents_scale_x(), 1.f / layer->contents_scale_y());
   1173 
   1174   // The layer's screen_space_transform represents the transform between root
   1175   // layer's "screen space" and local content space.
   1176   layer_draw_properties.screen_space_transform =
   1177       data_from_ancestor.full_hierarchy_matrix;
   1178   if (!layer->preserves_3d())
   1179     layer_draw_properties.screen_space_transform.FlattenTo2d();
   1180   layer_draw_properties.screen_space_transform.PreconcatTransform
   1181       (layer_draw_properties.target_space_transform);
   1182 
   1183   // Adjusting text AA method during animation may cause repaints, which in-turn
   1184   // causes jank.
   1185   bool adjust_text_aa =
   1186       !animating_opacity_to_screen && !animating_transform_to_screen;
   1187   // To avoid color fringing, LCD text should only be used on opaque layers with
   1188   // just integral translation.
   1189   bool layer_can_use_lcd_text =
   1190       data_from_ancestor.subtree_can_use_lcd_text &&
   1191       accumulated_draw_opacity == 1.f &&
   1192       layer_draw_properties.target_space_transform.
   1193           IsIdentityOrIntegerTranslation();
   1194 
   1195   gfx::RectF content_rect(layer->content_bounds());
   1196 
   1197   // full_hierarchy_matrix is the matrix that transforms objects between screen
   1198   // space (except projection matrix) and the most recent RenderSurfaceImpl's
   1199   // space.  next_hierarchy_matrix will only change if this layer uses a new
   1200   // RenderSurfaceImpl, otherwise remains the same.
   1201   data_for_children.full_hierarchy_matrix =
   1202       data_from_ancestor.full_hierarchy_matrix;
   1203 
   1204   // If the subtree will scale layer contents by the transform hierarchy, then
   1205   // we should scale things into the render surface by the transform hierarchy
   1206   // to take advantage of that.
   1207   gfx::Vector2dF render_surface_sublayer_scale =
   1208       globals.can_adjust_raster_scales
   1209       ? combined_transform_scales
   1210       : gfx::Vector2dF(layer_scale_factors, layer_scale_factors);
   1211 
   1212   bool render_to_separate_surface;
   1213   if (globals.can_render_to_separate_surface) {
   1214     render_to_separate_surface = SubtreeShouldRenderToSeparateSurface(
   1215           layer, combined_transform.Preserves2dAxisAlignment());
   1216   } else {
   1217     render_to_separate_surface = IsRootLayer(layer);
   1218   }
   1219   if (render_to_separate_surface) {
   1220     // Check back-face visibility before continuing with this surface and its
   1221     // subtree
   1222     if (!layer->double_sided() && TransformToParentIsKnown(layer) &&
   1223         IsSurfaceBackFaceVisible(layer, combined_transform))
   1224       return;
   1225 
   1226     RenderSurfaceType* render_surface = CreateOrReuseRenderSurface(layer);
   1227 
   1228     if (IsRootLayer(layer)) {
   1229       // The root layer's render surface size is predetermined and so the root
   1230       // layer can't directly support non-identity transforms.  It should just
   1231       // forward top-level transforms to the rest of the tree.
   1232       data_for_children.parent_matrix = combined_transform;
   1233 
   1234       // The root surface does not contribute to any other surface, it has no
   1235       // target.
   1236       layer->render_surface()->set_contributes_to_drawn_surface(false);
   1237     } else {
   1238       // The owning layer's draw transform has a scale from content to layer
   1239       // space which we do not want; so here we use the combined_transform
   1240       // instead of the draw_transform. However, we do need to add a different
   1241       // scale factor that accounts for the surface's pixel dimensions.
   1242       combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(),
   1243                                1.0 / render_surface_sublayer_scale.y());
   1244       render_surface->SetDrawTransform(combined_transform);
   1245 
   1246       // The owning layer's transform was re-parented by the surface, so the
   1247       // layer's new draw_transform only needs to scale the layer to surface
   1248       // space.
   1249       layer_draw_properties.target_space_transform.MakeIdentity();
   1250       layer_draw_properties.target_space_transform.
   1251           Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(),
   1252                 render_surface_sublayer_scale.y() / layer->contents_scale_y());
   1253 
   1254       // Inside the surface's subtree, we scale everything to the owning layer's
   1255       // scale.  The sublayer matrix transforms layer rects into target surface
   1256       // content space.  Conceptually, all layers in the subtree inherit the
   1257       // scale at the point of the render surface in the transform hierarchy,
   1258       // but we apply it explicitly to the owning layer and the remainder of the
   1259       // subtree independently.
   1260       DCHECK(data_for_children.parent_matrix.IsIdentity());
   1261       data_for_children.parent_matrix.Scale(render_surface_sublayer_scale.x(),
   1262                             render_surface_sublayer_scale.y());
   1263 
   1264       layer->render_surface()->set_contributes_to_drawn_surface(
   1265           data_from_ancestor.subtree_is_visible_from_ancestor &&
   1266           layer_is_visible);
   1267     }
   1268 
   1269     // The opacity value is moved from the layer to its surface, so that the
   1270     // entire subtree properly inherits opacity.
   1271     render_surface->SetDrawOpacity(accumulated_draw_opacity);
   1272     render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target);
   1273     animating_opacity_to_target = false;
   1274     layer_draw_properties.opacity = 1.f;
   1275     layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
   1276     layer_draw_properties.screen_space_opacity_is_animating =
   1277         animating_opacity_to_screen;
   1278 
   1279     render_surface->SetTargetSurfaceTransformsAreAnimating(
   1280         animating_transform_to_target);
   1281     render_surface->SetScreenSpaceTransformsAreAnimating(
   1282         animating_transform_to_screen);
   1283     animating_transform_to_target = false;
   1284     layer_draw_properties.target_space_transform_is_animating =
   1285         animating_transform_to_target;
   1286     layer_draw_properties.screen_space_transform_is_animating =
   1287         animating_transform_to_screen;
   1288 
   1289     // Update the aggregate hierarchy matrix to include the transform of the
   1290     // newly created RenderSurfaceImpl.
   1291     data_for_children.full_hierarchy_matrix.PreconcatTransform(
   1292         render_surface->draw_transform());
   1293 
   1294     // The new render_surface here will correctly clip the entire subtree. So,
   1295     // we do not need to continue propagating the clipping state further down
   1296     // the tree. This way, we can avoid transforming clip rects from ancestor
   1297     // target surface space to current target surface space that could cause
   1298     // more w < 0 headaches.
   1299     layer_or_ancestor_clips_descendants = false;
   1300 
   1301     if (layer->mask_layer()) {
   1302       DrawProperties<LayerType, RenderSurfaceType>& mask_layer_draw_properties =
   1303           layer->mask_layer()->draw_properties();
   1304       mask_layer_draw_properties.render_target = layer;
   1305       mask_layer_draw_properties.visible_content_rect =
   1306           gfx::Rect(layer->content_bounds());
   1307     }
   1308 
   1309     if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
   1310       DrawProperties<LayerType, RenderSurfaceType>&
   1311       replica_mask_draw_properties =
   1312           layer->replica_layer()->mask_layer()->draw_properties();
   1313       replica_mask_draw_properties.render_target = layer;
   1314       replica_mask_draw_properties.visible_content_rect =
   1315           gfx::Rect(layer->content_bounds());
   1316     }
   1317 
   1318     // TODO(senorblanco): make this smarter for the SkImageFilter case (check
   1319     // for pixel-moving filters)
   1320     if (layer->filters().HasFilterThatMovesPixels() || layer->filter())
   1321       nearest_ancestor_surface_that_moves_pixels = render_surface;
   1322 
   1323     // The render surface clip rect is expressed in the space where this surface
   1324     // draws, i.e. the same space as
   1325     // data_from_ancestor.clip_rect_in_target_space.
   1326     render_surface->SetIsClipped(data_from_ancestor.ancestor_clips_subtree);
   1327     if (data_from_ancestor.ancestor_clips_subtree) {
   1328       render_surface->SetClipRect(
   1329           data_from_ancestor.clip_rect_in_target_space);
   1330 
   1331       gfx::Transform inverse_surface_draw_transform(
   1332           gfx::Transform::kSkipInitialization);
   1333       if (!render_surface->draw_transform().GetInverse(
   1334               &inverse_surface_draw_transform)) {
   1335         // TODO(shawnsingh): Either we need to handle uninvertible transforms
   1336         // here, or DCHECK that the transform is invertible.
   1337       }
   1338       clip_rect_of_target_surface_in_target_space =
   1339           gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(
   1340               inverse_surface_draw_transform, render_surface->clip_rect()));
   1341     } else {
   1342       render_surface->SetClipRect(gfx::Rect());
   1343       clip_rect_of_target_surface_in_target_space =
   1344           data_from_ancestor.clip_rect_of_target_surface_in_target_space;
   1345     }
   1346 
   1347     render_surface->SetNearestAncestorThatMovesPixels(
   1348         nearest_ancestor_surface_that_moves_pixels);
   1349 
   1350     // If the new render surface is drawn translucent or with a non-integral
   1351     // translation then the subtree that gets drawn on this render surface
   1352     // cannot use LCD text.
   1353     data_for_children.subtree_can_use_lcd_text = layer_can_use_lcd_text;
   1354 
   1355     render_surface_layer_list->push_back(layer);
   1356   } else {
   1357     DCHECK(layer->parent());
   1358 
   1359     // Note: layer_draw_properties.target_space_transform is computed above,
   1360     // before this if-else statement.
   1361     layer_draw_properties.target_space_transform_is_animating =
   1362         animating_transform_to_target;
   1363     layer_draw_properties.screen_space_transform_is_animating =
   1364         animating_transform_to_screen;
   1365     layer_draw_properties.opacity = accumulated_draw_opacity;
   1366     layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
   1367     layer_draw_properties.screen_space_opacity_is_animating =
   1368         animating_opacity_to_screen;
   1369     data_for_children.parent_matrix = combined_transform;
   1370 
   1371     layer->ClearRenderSurface();
   1372 
   1373     // Layers without render_surfaces directly inherit the ancestor's clip
   1374     // status.
   1375     layer_or_ancestor_clips_descendants =
   1376         data_from_ancestor.ancestor_clips_subtree;
   1377     if (data_from_ancestor.ancestor_clips_subtree) {
   1378       clip_rect_in_target_space =
   1379           data_from_ancestor.clip_rect_in_target_space;
   1380     }
   1381 
   1382     // The surface's cached clip rect value propagates regardless of what
   1383     // clipping goes on between layers here.
   1384     clip_rect_of_target_surface_in_target_space =
   1385         data_from_ancestor.clip_rect_of_target_surface_in_target_space;
   1386 
   1387     // Layers that are not their own render_target will render into the target
   1388     // of their nearest ancestor.
   1389     layer_draw_properties.render_target = layer->parent()->render_target();
   1390   }
   1391 
   1392   // Mark whether a layer could be drawn directly to the back buffer, for
   1393   // example when it could use LCD text even though it's in a non-contents
   1394   // opaque layer.  This means that it can't be drawn to an intermediate
   1395   // render target and also that no blending is applied to the layer as a whole
   1396   // (meaning that its contents don't have to be pre-composited into a bitmap or
   1397   // a render target).
   1398   //
   1399   // Ignoring animations is an optimization,
   1400   // as it means that we're going to need some retained resources for this
   1401   // layer in the near future even if its opacity is 1 now.
   1402   layer_draw_properties.can_draw_directly_to_backbuffer =
   1403       IsRootLayer(layer_draw_properties.render_target) &&
   1404       layer->draw_properties().opacity == 1.f &&
   1405       !animating_opacity_to_screen;
   1406 
   1407   if (adjust_text_aa)
   1408     layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text;
   1409 
   1410   gfx::Rect rect_in_target_space = ToEnclosingRect(
   1411       MathUtil::MapClippedRect(layer->draw_transform(), content_rect));
   1412 
   1413   if (LayerClipsSubtree(layer)) {
   1414     layer_or_ancestor_clips_descendants = true;
   1415     if (data_from_ancestor.ancestor_clips_subtree && !layer->render_surface()) {
   1416       // A layer without render surface shares the same target as its ancestor.
   1417       clip_rect_in_target_space =
   1418           data_from_ancestor.clip_rect_in_target_space;
   1419       clip_rect_in_target_space.Intersect(rect_in_target_space);
   1420     } else {
   1421       clip_rect_in_target_space = rect_in_target_space;
   1422     }
   1423   }
   1424 
   1425   if (layer == globals.page_scale_application_layer) {
   1426     data_for_children.parent_matrix.Scale(
   1427         globals.page_scale_factor,
   1428         globals.page_scale_factor);
   1429     data_for_children.in_subtree_of_page_scale_application_layer = true;
   1430   }
   1431 
   1432   // Flatten to 2D if the layer doesn't preserve 3D.
   1433   if (!layer->preserves_3d())
   1434     data_for_children.parent_matrix.FlattenTo2d();
   1435 
   1436   // Apply the sublayer transform at the anchor point of the layer.
   1437   if (!layer->sublayer_transform().IsIdentity()) {
   1438     data_for_children.parent_matrix.Translate(
   1439         layer->anchor_point().x() * bounds.width(),
   1440         layer->anchor_point().y() * bounds.height());
   1441     data_for_children.parent_matrix.PreconcatTransform(
   1442         layer->sublayer_transform());
   1443     data_for_children.parent_matrix.Translate(
   1444         -layer->anchor_point().x() * bounds.width(),
   1445         -layer->anchor_point().y() * bounds.height());
   1446   }
   1447 
   1448   LayerListType& descendants =
   1449       (layer->render_surface() ? layer->render_surface()->layer_list()
   1450                                : *layer_list);
   1451 
   1452   // Any layers that are appended after this point are in the layer's subtree
   1453   // and should be included in the sorting process.
   1454   size_t sorting_start_index = descendants.size();
   1455 
   1456   if (!LayerShouldBeSkipped(layer, layer_is_visible))
   1457     descendants.push_back(layer);
   1458 
   1459   data_for_children.scroll_compensation_matrix =
   1460       ComputeScrollCompensationMatrixForChildren(
   1461           layer,
   1462           data_from_ancestor.parent_matrix,
   1463           data_from_ancestor.scroll_compensation_matrix);
   1464   data_for_children.fixed_container =
   1465       layer->IsContainerForFixedPositionLayers() ?
   1466           layer : data_from_ancestor.fixed_container;
   1467 
   1468   data_for_children.clip_rect_in_target_space = clip_rect_in_target_space;
   1469   data_for_children.clip_rect_of_target_surface_in_target_space =
   1470       clip_rect_of_target_surface_in_target_space;
   1471   data_for_children.ancestor_clips_subtree =
   1472       layer_or_ancestor_clips_descendants;
   1473   data_for_children.nearest_ancestor_surface_that_moves_pixels =
   1474       nearest_ancestor_surface_that_moves_pixels;
   1475   data_for_children.subtree_is_visible_from_ancestor = layer_is_visible;
   1476 
   1477   gfx::Rect accumulated_drawable_content_rect_of_children;
   1478   for (size_t i = 0; i < layer->children().size(); ++i) {
   1479     LayerType* child =
   1480         LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i);
   1481     gfx::Rect drawable_content_rect_of_child_subtree;
   1482     gfx::Transform identity_matrix;
   1483     CalculateDrawPropertiesInternal<LayerType,
   1484                                     LayerListType,
   1485                                     RenderSurfaceType>(
   1486         child,
   1487         globals,
   1488         data_for_children,
   1489         render_surface_layer_list,
   1490         &descendants,
   1491         &drawable_content_rect_of_child_subtree);
   1492     if (!drawable_content_rect_of_child_subtree.IsEmpty()) {
   1493       accumulated_drawable_content_rect_of_children.Union(
   1494           drawable_content_rect_of_child_subtree);
   1495       if (child->render_surface())
   1496         descendants.push_back(child);
   1497     }
   1498   }
   1499 
   1500   if (layer->render_surface() && !IsRootLayer(layer) &&
   1501       layer->render_surface()->layer_list().empty()) {
   1502     RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
   1503     return;
   1504   }
   1505 
   1506   // Compute the total drawable_content_rect for this subtree (the rect is in
   1507   // target surface space).
   1508   gfx::Rect local_drawable_content_rect_of_subtree =
   1509       accumulated_drawable_content_rect_of_children;
   1510   if (layer->DrawsContent())
   1511     local_drawable_content_rect_of_subtree.Union(rect_in_target_space);
   1512   if (layer_or_ancestor_clips_descendants)
   1513     local_drawable_content_rect_of_subtree.Intersect(clip_rect_in_target_space);
   1514 
   1515   // Compute the layer's drawable content rect (the rect is in target surface
   1516   // space).
   1517   layer_draw_properties.drawable_content_rect = rect_in_target_space;
   1518   if (layer_or_ancestor_clips_descendants) {
   1519     layer_draw_properties.drawable_content_rect.
   1520         Intersect(clip_rect_in_target_space);
   1521   }
   1522 
   1523   // Tell the layer the rect that is clipped by. In theory we could use a
   1524   // tighter clip rect here (drawable_content_rect), but that actually does not
   1525   // reduce how much would be drawn, and instead it would create unnecessary
   1526   // changes to scissor state affecting GPU performance.
   1527   layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants;
   1528   if (layer_or_ancestor_clips_descendants) {
   1529     layer_draw_properties.clip_rect = clip_rect_in_target_space;
   1530   } else {
   1531     // Initialize the clip rect to a safe value that will not clip the
   1532     // layer, just in case clipping is still accidentally used.
   1533     layer_draw_properties.clip_rect = rect_in_target_space;
   1534   }
   1535 
   1536   // Compute the layer's visible content rect (the rect is in content space).
   1537   layer_draw_properties.visible_content_rect = CalculateVisibleContentRect(
   1538       layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space);
   1539 
   1540   // Compute the remaining properties for the render surface, if the layer has
   1541   // one.
   1542   if (IsRootLayer(layer)) {
   1543     // The root layer's surface's content_rect is always the entire viewport.
   1544     DCHECK(layer->render_surface());
   1545     layer->render_surface()->SetContentRect(
   1546         data_from_ancestor.clip_rect_in_target_space);
   1547   } else if (layer->render_surface() && !IsRootLayer(layer)) {
   1548     RenderSurfaceType* render_surface = layer->render_surface();
   1549     gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree;
   1550 
   1551     // Don't clip if the layer is reflected as the reflection shouldn't be
   1552     // clipped. If the layer is animating, then the surface's transform to
   1553     // its target is not known on the main thread, and we should not use it
   1554     // to clip.
   1555     if (!layer->replica_layer() && TransformToParentIsKnown(layer)) {
   1556       // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree
   1557       // here, because we are looking at this layer's render_surface, not the
   1558       // layer itself.
   1559       if (data_from_ancestor.ancestor_clips_subtree &&
   1560           !clipped_content_rect.IsEmpty()) {
   1561         gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect(
   1562             render_surface->clip_rect(),
   1563             clipped_content_rect,
   1564             render_surface->draw_transform());
   1565         clipped_content_rect.Intersect(surface_clip_rect);
   1566       }
   1567     }
   1568 
   1569     // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
   1570     // texture size.
   1571     clipped_content_rect.set_width(
   1572         std::min(clipped_content_rect.width(), globals.max_texture_size));
   1573     clipped_content_rect.set_height(
   1574         std::min(clipped_content_rect.height(), globals.max_texture_size));
   1575 
   1576     if (clipped_content_rect.IsEmpty()) {
   1577       RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
   1578       return;
   1579     }
   1580 
   1581     render_surface->SetContentRect(clipped_content_rect);
   1582 
   1583     // The owning layer's screen_space_transform has a scale from content to
   1584     // layer space which we need to undo and replace with a scale from the
   1585     // surface's subtree into layer space.
   1586     gfx::Transform screen_space_transform = layer->screen_space_transform();
   1587     screen_space_transform.Scale(
   1588         layer->contents_scale_x() / render_surface_sublayer_scale.x(),
   1589         layer->contents_scale_y() / render_surface_sublayer_scale.y());
   1590     render_surface->SetScreenSpaceTransform(screen_space_transform);
   1591 
   1592     if (layer->replica_layer()) {
   1593       gfx::Transform surface_origin_to_replica_origin_transform;
   1594       surface_origin_to_replica_origin_transform.Scale(
   1595           render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y());
   1596       surface_origin_to_replica_origin_transform.Translate(
   1597           layer->replica_layer()->position().x() +
   1598           layer->replica_layer()->anchor_point().x() * bounds.width(),
   1599           layer->replica_layer()->position().y() +
   1600           layer->replica_layer()->anchor_point().y() * bounds.height());
   1601       surface_origin_to_replica_origin_transform.PreconcatTransform(
   1602           layer->replica_layer()->transform());
   1603       surface_origin_to_replica_origin_transform.Translate(
   1604           -layer->replica_layer()->anchor_point().x() * bounds.width(),
   1605           -layer->replica_layer()->anchor_point().y() * bounds.height());
   1606       surface_origin_to_replica_origin_transform.Scale(
   1607           1.0 / render_surface_sublayer_scale.x(),
   1608           1.0 / render_surface_sublayer_scale.y());
   1609 
   1610       // Compute the replica's "originTransform" that maps from the replica's
   1611       // origin space to the target surface origin space.
   1612       gfx::Transform replica_origin_transform =
   1613           layer->render_surface()->draw_transform() *
   1614           surface_origin_to_replica_origin_transform;
   1615       render_surface->SetReplicaDrawTransform(replica_origin_transform);
   1616 
   1617       // Compute the replica's "screen_space_transform" that maps from the
   1618       // replica's origin space to the screen's origin space.
   1619       gfx::Transform replica_screen_space_transform =
   1620           layer->render_surface()->screen_space_transform() *
   1621           surface_origin_to_replica_origin_transform;
   1622       render_surface->SetReplicaScreenSpaceTransform(
   1623           replica_screen_space_transform);
   1624     }
   1625   }
   1626 
   1627   if (globals.can_update_tile_priorities)
   1628     UpdateTilePrioritiesForLayer(layer);
   1629   SavePaintPropertiesLayer(layer);
   1630 
   1631   // If neither this layer nor any of its children were added, early out.
   1632   if (sorting_start_index == descendants.size())
   1633     return;
   1634 
   1635   // If preserves-3d then sort all the descendants in 3D so that they can be
   1636   // drawn from back to front. If the preserves-3d property is also set on the
   1637   // parent then skip the sorting as the parent will sort all the descendants
   1638   // anyway.
   1639   if (globals.layer_sorter && descendants.size() && layer->preserves_3d() &&
   1640       (!layer->parent() || !layer->parent()->preserves_3d())) {
   1641     SortLayers(descendants.begin() + sorting_start_index,
   1642                descendants.end(),
   1643                globals.layer_sorter);
   1644   }
   1645 
   1646   if (layer->render_surface()) {
   1647     *drawable_content_rect_of_subtree =
   1648         gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect());
   1649   } else {
   1650     *drawable_content_rect_of_subtree = local_drawable_content_rect_of_subtree;
   1651   }
   1652 
   1653   if (layer->HasContributingDelegatedRenderPasses()) {
   1654     layer->render_target()->render_surface()->
   1655         AddContributingDelegatedRenderPassLayer(layer);
   1656   }
   1657 }
   1658 
   1659 void LayerTreeHostCommon::CalculateDrawProperties(
   1660     CalcDrawPropsMainInputs* inputs) {
   1661   DCHECK(inputs->root_layer);
   1662   DCHECK(IsRootLayer(inputs->root_layer));
   1663   DCHECK(inputs->render_surface_layer_list);
   1664   gfx::Rect total_drawable_content_rect;
   1665   gfx::Transform identity_matrix;
   1666   gfx::Transform scaled_device_transform = inputs->device_transform;
   1667   scaled_device_transform.Scale(inputs->device_scale_factor,
   1668                                 inputs->device_scale_factor);
   1669   RenderSurfaceLayerList dummy_layer_list;
   1670 
   1671   // The root layer's render_surface should receive the device viewport as the
   1672   // initial clip rect.
   1673   gfx::Rect device_viewport_rect(inputs->device_viewport_size);
   1674 
   1675   SubtreeGlobals<Layer> globals;
   1676   globals.layer_sorter = NULL;
   1677   globals.max_texture_size = inputs->max_texture_size;
   1678   globals.device_scale_factor = inputs->device_scale_factor;
   1679   globals.page_scale_factor = inputs->page_scale_factor;
   1680   globals.page_scale_application_layer = inputs->page_scale_application_layer;
   1681   globals.can_render_to_separate_surface =
   1682       inputs->can_render_to_separate_surface;
   1683   globals.can_adjust_raster_scales = inputs->can_adjust_raster_scales;
   1684   globals.can_update_tile_priorities = inputs->can_update_tile_priorities;
   1685 
   1686   DataForRecursion<Layer, RenderSurface> data_for_recursion;
   1687   data_for_recursion.parent_matrix = scaled_device_transform;
   1688   data_for_recursion.full_hierarchy_matrix = identity_matrix;
   1689   data_for_recursion.scroll_compensation_matrix = identity_matrix;
   1690   data_for_recursion.fixed_container = inputs->root_layer;
   1691   data_for_recursion.clip_rect_in_target_space = device_viewport_rect;
   1692   data_for_recursion.clip_rect_of_target_surface_in_target_space =
   1693       device_viewport_rect;
   1694   data_for_recursion.ancestor_clips_subtree = true;
   1695   data_for_recursion.nearest_ancestor_surface_that_moves_pixels = NULL;
   1696   data_for_recursion.in_subtree_of_page_scale_application_layer = false;
   1697   data_for_recursion.subtree_can_use_lcd_text = inputs->can_use_lcd_text;
   1698   data_for_recursion.subtree_is_visible_from_ancestor = true;
   1699 
   1700   PreCalculateMetaInformationRecursiveData recursive_data;
   1701   PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
   1702 
   1703   CalculateDrawPropertiesInternal<Layer, RenderSurfaceLayerList, RenderSurface>(
   1704       inputs->root_layer,
   1705       globals,
   1706       data_for_recursion,
   1707       inputs->render_surface_layer_list,
   1708       &dummy_layer_list,
   1709       &total_drawable_content_rect);
   1710 
   1711   // The dummy layer list should not have been used.
   1712   DCHECK_EQ(0u, dummy_layer_list.size());
   1713   // A root layer render_surface should always exist after
   1714   // CalculateDrawProperties.
   1715   DCHECK(inputs->root_layer->render_surface());
   1716 }
   1717 
   1718 void LayerTreeHostCommon::CalculateDrawProperties(
   1719     CalcDrawPropsImplInputs* inputs) {
   1720   DCHECK(inputs->root_layer);
   1721   DCHECK(IsRootLayer(inputs->root_layer));
   1722   DCHECK(inputs->render_surface_layer_list);
   1723 
   1724   gfx::Rect total_drawable_content_rect;
   1725   gfx::Transform identity_matrix;
   1726   gfx::Transform scaled_device_transform = inputs->device_transform;
   1727   scaled_device_transform.Scale(inputs->device_scale_factor,
   1728                                 inputs->device_scale_factor);
   1729   LayerImplList dummy_layer_list;
   1730   LayerSorter layer_sorter;
   1731 
   1732   // The root layer's render_surface should receive the device viewport as the
   1733   // initial clip rect.
   1734   gfx::Rect device_viewport_rect(inputs->device_viewport_size);
   1735 
   1736   SubtreeGlobals<LayerImpl> globals;
   1737   globals.layer_sorter = &layer_sorter;
   1738   globals.max_texture_size = inputs->max_texture_size;
   1739   globals.device_scale_factor = inputs->device_scale_factor;
   1740   globals.page_scale_factor = inputs->page_scale_factor;
   1741   globals.page_scale_application_layer = inputs->page_scale_application_layer;
   1742   globals.can_render_to_separate_surface =
   1743       inputs->can_render_to_separate_surface;
   1744   globals.can_adjust_raster_scales = inputs->can_adjust_raster_scales;
   1745   globals.can_update_tile_priorities = inputs->can_update_tile_priorities;
   1746 
   1747   DataForRecursion<LayerImpl, RenderSurfaceImpl> data_for_recursion;
   1748   data_for_recursion.parent_matrix = scaled_device_transform;
   1749   data_for_recursion.full_hierarchy_matrix = identity_matrix;
   1750   data_for_recursion.scroll_compensation_matrix = identity_matrix;
   1751   data_for_recursion.fixed_container = inputs->root_layer;
   1752   data_for_recursion.clip_rect_in_target_space = device_viewport_rect;
   1753   data_for_recursion.clip_rect_of_target_surface_in_target_space =
   1754       device_viewport_rect;
   1755   data_for_recursion.ancestor_clips_subtree = true;
   1756   data_for_recursion.nearest_ancestor_surface_that_moves_pixels = NULL;
   1757   data_for_recursion.in_subtree_of_page_scale_application_layer = false;
   1758   data_for_recursion.subtree_can_use_lcd_text = inputs->can_use_lcd_text;
   1759   data_for_recursion.subtree_is_visible_from_ancestor = true;
   1760 
   1761   PreCalculateMetaInformationRecursiveData recursive_data;
   1762   PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
   1763 
   1764   CalculateDrawPropertiesInternal<LayerImpl, LayerImplList, RenderSurfaceImpl>(
   1765       inputs->root_layer,
   1766       globals,
   1767       data_for_recursion,
   1768       inputs->render_surface_layer_list,
   1769       &dummy_layer_list,
   1770       &total_drawable_content_rect);
   1771 
   1772   // The dummy layer list should not have been used.
   1773   DCHECK_EQ(0u, dummy_layer_list.size());
   1774   // A root layer render_surface should always exist after
   1775   // CalculateDrawProperties.
   1776   DCHECK(inputs->root_layer->render_surface());
   1777 }
   1778 
   1779 static bool PointHitsRect(
   1780     gfx::PointF screen_space_point,
   1781     const gfx::Transform& local_space_to_screen_space_transform,
   1782     gfx::RectF local_space_rect) {
   1783   // If the transform is not invertible, then assume that this point doesn't hit
   1784   // this rect.
   1785   gfx::Transform inverse_local_space_to_screen_space(
   1786       gfx::Transform::kSkipInitialization);
   1787   if (!local_space_to_screen_space_transform.GetInverse(
   1788           &inverse_local_space_to_screen_space))
   1789     return false;
   1790 
   1791   // Transform the hit test point from screen space to the local space of the
   1792   // given rect.
   1793   bool clipped = false;
   1794   gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint(
   1795       inverse_local_space_to_screen_space, screen_space_point, &clipped);
   1796 
   1797   // If ProjectPoint could not project to a valid value, then we assume that
   1798   // this point doesn't hit this rect.
   1799   if (clipped)
   1800     return false;
   1801 
   1802   return local_space_rect.Contains(hit_test_point_in_local_space);
   1803 }
   1804 
   1805 static bool PointHitsRegion(gfx::PointF screen_space_point,
   1806                             const gfx::Transform& screen_space_transform,
   1807                             const Region& layer_space_region,
   1808                             float layer_content_scale_x,
   1809                             float layer_content_scale_y) {
   1810   // If the transform is not invertible, then assume that this point doesn't hit
   1811   // this region.
   1812   gfx::Transform inverse_screen_space_transform(
   1813       gfx::Transform::kSkipInitialization);
   1814   if (!screen_space_transform.GetInverse(&inverse_screen_space_transform))
   1815     return false;
   1816 
   1817   // Transform the hit test point from screen space to the local space of the
   1818   // given region.
   1819   bool clipped = false;
   1820   gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint(
   1821       inverse_screen_space_transform, screen_space_point, &clipped);
   1822   gfx::PointF hit_test_point_in_layer_space =
   1823       gfx::ScalePoint(hit_test_point_in_content_space,
   1824                       1.f / layer_content_scale_x,
   1825                       1.f / layer_content_scale_y);
   1826 
   1827   // If ProjectPoint could not project to a valid value, then we assume that
   1828   // this point doesn't hit this region.
   1829   if (clipped)
   1830     return false;
   1831 
   1832   return layer_space_region.Contains(
   1833       gfx::ToRoundedPoint(hit_test_point_in_layer_space));
   1834 }
   1835 
   1836 static bool PointIsClippedBySurfaceOrClipRect(gfx::PointF screen_space_point,
   1837                                               LayerImpl* layer) {
   1838   LayerImpl* current_layer = layer;
   1839 
   1840   // Walk up the layer tree and hit-test any render_surfaces and any layer
   1841   // clip rects that are active.
   1842   while (current_layer) {
   1843     if (current_layer->render_surface() &&
   1844         !PointHitsRect(
   1845             screen_space_point,
   1846             current_layer->render_surface()->screen_space_transform(),
   1847             current_layer->render_surface()->content_rect()))
   1848       return true;
   1849 
   1850     // Note that drawable content rects are actually in target surface space, so
   1851     // the transform we have to provide is the target surface's
   1852     // screen_space_transform.
   1853     LayerImpl* render_target = current_layer->render_target();
   1854     if (LayerClipsSubtree(current_layer) &&
   1855         !PointHitsRect(
   1856             screen_space_point,
   1857             render_target->render_surface()->screen_space_transform(),
   1858             current_layer->drawable_content_rect()))
   1859       return true;
   1860 
   1861     current_layer = current_layer->parent();
   1862   }
   1863 
   1864   // If we have finished walking all ancestors without having already exited,
   1865   // then the point is not clipped by any ancestors.
   1866   return false;
   1867 }
   1868 
   1869 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint(
   1870     gfx::PointF screen_space_point,
   1871     const LayerImplList& render_surface_layer_list) {
   1872   LayerImpl* found_layer = NULL;
   1873 
   1874   typedef LayerIterator<LayerImpl,
   1875                         LayerImplList,
   1876                         RenderSurfaceImpl,
   1877                         LayerIteratorActions::FrontToBack> LayerIteratorType;
   1878   LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
   1879 
   1880   for (LayerIteratorType
   1881            it = LayerIteratorType::Begin(&render_surface_layer_list);
   1882        it != end;
   1883        ++it) {
   1884     // We don't want to consider render_surfaces for hit testing.
   1885     if (!it.represents_itself())
   1886       continue;
   1887 
   1888     LayerImpl* current_layer = (*it);
   1889 
   1890     gfx::RectF content_rect(current_layer->content_bounds());
   1891     if (!PointHitsRect(screen_space_point,
   1892                        current_layer->screen_space_transform(),
   1893                        content_rect))
   1894       continue;
   1895 
   1896     // At this point, we think the point does hit the layer, but we need to walk
   1897     // up the parents to ensure that the layer was not clipped in such a way
   1898     // that the hit point actually should not hit the layer.
   1899     if (PointIsClippedBySurfaceOrClipRect(screen_space_point, current_layer))
   1900       continue;
   1901 
   1902     // Skip the HUD layer.
   1903     if (current_layer == current_layer->layer_tree_impl()->hud_layer())
   1904       continue;
   1905 
   1906     found_layer = current_layer;
   1907     break;
   1908   }
   1909 
   1910   // This can potentially return NULL, which means the screen_space_point did
   1911   // not successfully hit test any layers, not even the root layer.
   1912   return found_layer;
   1913 }
   1914 
   1915 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion(
   1916     gfx::PointF screen_space_point,
   1917     const LayerImplList& render_surface_layer_list) {
   1918   LayerImpl* found_layer = NULL;
   1919 
   1920   typedef LayerIterator<LayerImpl,
   1921                         LayerImplList,
   1922                         RenderSurfaceImpl,
   1923                         LayerIteratorActions::FrontToBack> LayerIteratorType;
   1924   LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
   1925 
   1926   for (LayerIteratorType
   1927            it = LayerIteratorType::Begin(&render_surface_layer_list);
   1928        it != end;
   1929        ++it) {
   1930     // We don't want to consider render_surfaces for hit testing.
   1931     if (!it.represents_itself())
   1932       continue;
   1933 
   1934     LayerImpl* current_layer = (*it);
   1935 
   1936     if (!LayerHasTouchEventHandlersAt(screen_space_point, current_layer))
   1937       continue;
   1938 
   1939     found_layer = current_layer;
   1940     break;
   1941   }
   1942 
   1943   // This can potentially return NULL, which means the screen_space_point did
   1944   // not successfully hit test any layers, not even the root layer.
   1945   return found_layer;
   1946 }
   1947 
   1948 bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt(
   1949     gfx::PointF screen_space_point,
   1950     LayerImpl* layer_impl) {
   1951   if (layer_impl->touch_event_handler_region().IsEmpty())
   1952     return false;
   1953 
   1954   if (!PointHitsRegion(screen_space_point,
   1955                        layer_impl->screen_space_transform(),
   1956                        layer_impl->touch_event_handler_region(),
   1957                        layer_impl->contents_scale_x(),
   1958                        layer_impl->contents_scale_y()))
   1959     return false;
   1960 
   1961   // At this point, we think the point does hit the touch event handler region
   1962   // on the layer, but we need to walk up the parents to ensure that the layer
   1963   // was not clipped in such a way that the hit point actually should not hit
   1964   // the layer.
   1965   if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl))
   1966     return false;
   1967 
   1968   return true;
   1969 }
   1970 }  // namespace cc
   1971