Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/ValueTypes.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include <cassert>
     25 #include <functional>
     26 
     27 namespace llvm {
     28 
     29 class BitVector;
     30 class MachineFunction;
     31 class RegScavenger;
     32 template<class T> class SmallVectorImpl;
     33 class VirtRegMap;
     34 class raw_ostream;
     35 
     36 class TargetRegisterClass {
     37 public:
     38   typedef const MCPhysReg* iterator;
     39   typedef const MCPhysReg* const_iterator;
     40   typedef const MVT::SimpleValueType* vt_iterator;
     41   typedef const TargetRegisterClass* const * sc_iterator;
     42 
     43   // Instance variables filled by tablegen, do not use!
     44   const MCRegisterClass *MC;
     45   const vt_iterator VTs;
     46   const uint32_t *SubClassMask;
     47   const uint16_t *SuperRegIndices;
     48   const sc_iterator SuperClasses;
     49   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
     50 
     51   /// getID() - Return the register class ID number.
     52   ///
     53   unsigned getID() const { return MC->getID(); }
     54 
     55   /// getName() - Return the register class name for debugging.
     56   ///
     57   const char *getName() const { return MC->getName(); }
     58 
     59   /// begin/end - Return all of the registers in this class.
     60   ///
     61   iterator       begin() const { return MC->begin(); }
     62   iterator         end() const { return MC->end(); }
     63 
     64   /// getNumRegs - Return the number of registers in this class.
     65   ///
     66   unsigned getNumRegs() const { return MC->getNumRegs(); }
     67 
     68   /// getRegister - Return the specified register in the class.
     69   ///
     70   unsigned getRegister(unsigned i) const {
     71     return MC->getRegister(i);
     72   }
     73 
     74   /// contains - Return true if the specified register is included in this
     75   /// register class.  This does not include virtual registers.
     76   bool contains(unsigned Reg) const {
     77     return MC->contains(Reg);
     78   }
     79 
     80   /// contains - Return true if both registers are in this class.
     81   bool contains(unsigned Reg1, unsigned Reg2) const {
     82     return MC->contains(Reg1, Reg2);
     83   }
     84 
     85   /// getSize - Return the size of the register in bytes, which is also the size
     86   /// of a stack slot allocated to hold a spilled copy of this register.
     87   unsigned getSize() const { return MC->getSize(); }
     88 
     89   /// getAlignment - Return the minimum required alignment for a register of
     90   /// this class.
     91   unsigned getAlignment() const { return MC->getAlignment(); }
     92 
     93   /// getCopyCost - Return the cost of copying a value between two registers in
     94   /// this class. A negative number means the register class is very expensive
     95   /// to copy e.g. status flag register classes.
     96   int getCopyCost() const { return MC->getCopyCost(); }
     97 
     98   /// isAllocatable - Return true if this register class may be used to create
     99   /// virtual registers.
    100   bool isAllocatable() const { return MC->isAllocatable(); }
    101 
    102   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
    103   ///
    104   bool hasType(EVT vt) const {
    105     for(int i = 0; VTs[i] != MVT::Other; ++i)
    106       if (EVT(VTs[i]) == vt)
    107         return true;
    108     return false;
    109   }
    110 
    111   /// vt_begin / vt_end - Loop over all of the value types that can be
    112   /// represented by values in this register class.
    113   vt_iterator vt_begin() const {
    114     return VTs;
    115   }
    116 
    117   vt_iterator vt_end() const {
    118     vt_iterator I = VTs;
    119     while (*I != MVT::Other) ++I;
    120     return I;
    121   }
    122 
    123   /// hasSubClass - return true if the specified TargetRegisterClass
    124   /// is a proper sub-class of this TargetRegisterClass.
    125   bool hasSubClass(const TargetRegisterClass *RC) const {
    126     return RC != this && hasSubClassEq(RC);
    127   }
    128 
    129   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
    130   /// class.
    131   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    132     unsigned ID = RC->getID();
    133     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    134   }
    135 
    136   /// hasSuperClass - return true if the specified TargetRegisterClass is a
    137   /// proper super-class of this TargetRegisterClass.
    138   bool hasSuperClass(const TargetRegisterClass *RC) const {
    139     return RC->hasSubClass(this);
    140   }
    141 
    142   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
    143   /// class.
    144   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    145     return RC->hasSubClassEq(this);
    146   }
    147 
    148   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
    149   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
    150   /// use it.
    151   const uint32_t *getSubClassMask() const {
    152     return SubClassMask;
    153   }
    154 
    155   /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
    156   /// that project some super-register class into this register class. The list
    157   /// has an entry for each Idx such that:
    158   ///
    159   ///   There exists SuperRC where:
    160   ///     For all Reg in SuperRC:
    161   ///       this->contains(Reg:Idx)
    162   ///
    163   const uint16_t *getSuperRegIndices() const {
    164     return SuperRegIndices;
    165   }
    166 
    167   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
    168   /// classes are ordered by ID which is also a topological ordering from large
    169   /// to small classes.  The list does NOT include the current class.
    170   sc_iterator getSuperClasses() const {
    171     return SuperClasses;
    172   }
    173 
    174   /// isASubClass - return true if this TargetRegisterClass is a subset
    175   /// class of at least one other TargetRegisterClass.
    176   bool isASubClass() const {
    177     return SuperClasses[0] != 0;
    178   }
    179 
    180   /// getRawAllocationOrder - Returns the preferred order for allocating
    181   /// registers from this register class in MF. The raw order comes directly
    182   /// from the .td file and may include reserved registers that are not
    183   /// allocatable. Register allocators should also make sure to allocate
    184   /// callee-saved registers only after all the volatiles are used. The
    185   /// RegisterClassInfo class provides filtered allocation orders with
    186   /// callee-saved registers moved to the end.
    187   ///
    188   /// The MachineFunction argument can be used to tune the allocatable
    189   /// registers based on the characteristics of the function, subtarget, or
    190   /// other criteria.
    191   ///
    192   /// By default, this method returns all registers in the class.
    193   ///
    194   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
    195     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    196   }
    197 };
    198 
    199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
    200 /// registers. These are used by codegen, not by MC.
    201 struct TargetRegisterInfoDesc {
    202   unsigned CostPerUse;          // Extra cost of instructions using register.
    203   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    204 };
    205 
    206 /// Each TargetRegisterClass has a per register weight, and weight
    207 /// limit which must be less than the limits of its pressure sets.
    208 struct RegClassWeight {
    209   unsigned RegWeight;
    210   unsigned WeightLimit;
    211 };
    212 
    213 /// TargetRegisterInfo base class - We assume that the target defines a static
    214 /// array of TargetRegisterDesc objects that represent all of the machine
    215 /// registers that the target has.  As such, we simply have to track a pointer
    216 /// to this array so that we can turn register number into a register
    217 /// descriptor.
    218 ///
    219 class TargetRegisterInfo : public MCRegisterInfo {
    220 public:
    221   typedef const TargetRegisterClass * const * regclass_iterator;
    222 private:
    223   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    224   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    225   // Pointer to array of lane masks, one per sub-reg index.
    226   const unsigned *SubRegIndexLaneMasks;
    227 
    228   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    229   unsigned CoveringLanes;
    230 
    231 protected:
    232   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    233                      regclass_iterator RegClassBegin,
    234                      regclass_iterator RegClassEnd,
    235                      const char *const *SRINames,
    236                      const unsigned *SRILaneMasks,
    237                      unsigned CoveringLanes);
    238   virtual ~TargetRegisterInfo();
    239 public:
    240 
    241   // Register numbers can represent physical registers, virtual registers, and
    242   // sometimes stack slots. The unsigned values are divided into these ranges:
    243   //
    244   //   0           Not a register, can be used as a sentinel.
    245   //   [1;2^30)    Physical registers assigned by TableGen.
    246   //   [2^30;2^31) Stack slots. (Rarely used.)
    247   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    248   //
    249   // Further sentinels can be allocated from the small negative integers.
    250   // DenseMapInfo<unsigned> uses -1u and -2u.
    251 
    252   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    253   /// frame index in a variable that normally holds a register. isStackSlot()
    254   /// returns true if Reg is in the range used for stack slots.
    255   ///
    256   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    257   /// slots, so if a variable may contains a stack slot, always check
    258   /// isStackSlot() first.
    259   ///
    260   static bool isStackSlot(unsigned Reg) {
    261     return int(Reg) >= (1 << 30);
    262   }
    263 
    264   /// stackSlot2Index - Compute the frame index from a register value
    265   /// representing a stack slot.
    266   static int stackSlot2Index(unsigned Reg) {
    267     assert(isStackSlot(Reg) && "Not a stack slot");
    268     return int(Reg - (1u << 30));
    269   }
    270 
    271   /// index2StackSlot - Convert a non-negative frame index to a stack slot
    272   /// register value.
    273   static unsigned index2StackSlot(int FI) {
    274     assert(FI >= 0 && "Cannot hold a negative frame index.");
    275     return FI + (1u << 30);
    276   }
    277 
    278   /// isPhysicalRegister - Return true if the specified register number is in
    279   /// the physical register namespace.
    280   static bool isPhysicalRegister(unsigned Reg) {
    281     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    282     return int(Reg) > 0;
    283   }
    284 
    285   /// isVirtualRegister - Return true if the specified register number is in
    286   /// the virtual register namespace.
    287   static bool isVirtualRegister(unsigned Reg) {
    288     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    289     return int(Reg) < 0;
    290   }
    291 
    292   /// virtReg2Index - Convert a virtual register number to a 0-based index.
    293   /// The first virtual register in a function will get the index 0.
    294   static unsigned virtReg2Index(unsigned Reg) {
    295     assert(isVirtualRegister(Reg) && "Not a virtual register");
    296     return Reg & ~(1u << 31);
    297   }
    298 
    299   /// index2VirtReg - Convert a 0-based index to a virtual register number.
    300   /// This is the inverse operation of VirtReg2IndexFunctor below.
    301   static unsigned index2VirtReg(unsigned Index) {
    302     return Index | (1u << 31);
    303   }
    304 
    305   /// getMinimalPhysRegClass - Returns the Register Class of a physical
    306   /// register of the given type, picking the most sub register class of
    307   /// the right type that contains this physreg.
    308   const TargetRegisterClass *
    309     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
    310 
    311   /// getAllocatableClass - Return the maximal subclass of the given register
    312   /// class that is alloctable, or NULL.
    313   const TargetRegisterClass *
    314     getAllocatableClass(const TargetRegisterClass *RC) const;
    315 
    316   /// getAllocatableSet - Returns a bitset indexed by register number
    317   /// indicating if a register is allocatable or not. If a register class is
    318   /// specified, returns the subset for the class.
    319   BitVector getAllocatableSet(const MachineFunction &MF,
    320                               const TargetRegisterClass *RC = NULL) const;
    321 
    322   /// getCostPerUse - Return the additional cost of using this register instead
    323   /// of other registers in its class.
    324   unsigned getCostPerUse(unsigned RegNo) const {
    325     return InfoDesc[RegNo].CostPerUse;
    326   }
    327 
    328   /// isInAllocatableClass - Return true if the register is in the allocation
    329   /// of any register class.
    330   bool isInAllocatableClass(unsigned RegNo) const {
    331     return InfoDesc[RegNo].inAllocatableClass;
    332   }
    333 
    334   /// getSubRegIndexName - Return the human-readable symbolic target-specific
    335   /// name for the specified SubRegIndex.
    336   const char *getSubRegIndexName(unsigned SubIdx) const {
    337     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
    338            "This is not a subregister index");
    339     return SubRegIndexNames[SubIdx-1];
    340   }
    341 
    342   /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
    343   /// register that are covered by SubIdx.
    344   ///
    345   /// Lane masks for sub-register indices are similar to register units for
    346   /// physical registers. The individual bits in a lane mask can't be assigned
    347   /// any specific meaning. They can be used to check if two sub-register
    348   /// indices overlap.
    349   ///
    350   /// If the target has a register such that:
    351   ///
    352   ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
    353   ///
    354   /// then:
    355   ///
    356   ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
    357   ///
    358   /// The converse is not necessarily true. If two lane masks have a common
    359   /// bit, the corresponding sub-registers may not overlap, but it can be
    360   /// assumed that they usually will.
    361   unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
    362     // SubIdx == 0 is allowed, it has the lane mask ~0u.
    363     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
    364     return SubRegIndexLaneMasks[SubIdx];
    365   }
    366 
    367   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
    368   /// used to determine if sub-registers overlap - they can't be used to
    369   /// determine if a set of sub-registers completely cover another
    370   /// sub-register.
    371   ///
    372   /// The X86 general purpose registers have two lanes corresponding to the
    373   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
    374   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
    375   /// sub_32bit sub-register.
    376   ///
    377   /// On the other hand, the ARM NEON lanes fully cover their registers: The
    378   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
    379   /// This is related to the CoveredBySubRegs property on register definitions.
    380   ///
    381   /// This function returns a bit mask of lanes that completely cover their
    382   /// sub-registers. More precisely, given:
    383   ///
    384   ///   Covering = getCoveringLanes();
    385   ///   MaskA = getSubRegIndexLaneMask(SubA);
    386   ///   MaskB = getSubRegIndexLaneMask(SubB);
    387   ///
    388   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
    389   /// SubB.
    390   unsigned getCoveringLanes() const { return CoveringLanes; }
    391 
    392   /// regsOverlap - Returns true if the two registers are equal or alias each
    393   /// other. The registers may be virtual register.
    394   bool regsOverlap(unsigned regA, unsigned regB) const {
    395     if (regA == regB) return true;
    396     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    397       return false;
    398 
    399     // Regunits are numerically ordered. Find a common unit.
    400     MCRegUnitIterator RUA(regA, this);
    401     MCRegUnitIterator RUB(regB, this);
    402     do {
    403       if (*RUA == *RUB) return true;
    404       if (*RUA < *RUB) ++RUA;
    405       else             ++RUB;
    406     } while (RUA.isValid() && RUB.isValid());
    407     return false;
    408   }
    409 
    410   /// hasRegUnit - Returns true if Reg contains RegUnit.
    411   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
    412     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
    413       if (*Units == RegUnit)
    414         return true;
    415     return false;
    416   }
    417 
    418   /// getCalleeSavedRegs - Return a null-terminated list of all of the
    419   /// callee saved registers on this target. The register should be in the
    420   /// order of desired callee-save stack frame offset. The first register is
    421   /// closest to the incoming stack pointer if stack grows down, and vice versa.
    422   ///
    423   virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
    424                                                                       const = 0;
    425 
    426   /// getCallPreservedMask - Return a mask of call-preserved registers for the
    427   /// given calling convention on the current sub-target.  The mask should
    428   /// include all call-preserved aliases.  This is used by the register
    429   /// allocator to determine which registers can be live across a call.
    430   ///
    431   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    432   /// A set bit indicates that all bits of the corresponding register are
    433   /// preserved across the function call.  The bit mask is expected to be
    434   /// sub-register complete, i.e. if A is preserved, so are all its
    435   /// sub-registers.
    436   ///
    437   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    438   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    439   ///
    440   /// A NULL pointer means that no register mask will be used, and call
    441   /// instructions should use implicit-def operands to indicate call clobbered
    442   /// registers.
    443   ///
    444   virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
    445     // The default mask clobbers everything.  All targets should override.
    446     return 0;
    447   }
    448 
    449   /// getReservedRegs - Returns a bitset indexed by physical register number
    450   /// indicating if a register is a special register that has particular uses
    451   /// and should be considered unavailable at all times, e.g. SP, RA. This is
    452   /// used by register scavenger to determine what registers are free.
    453   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    454 
    455   /// getMatchingSuperReg - Return a super-register of the specified register
    456   /// Reg so its sub-register of index SubIdx is Reg.
    457   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    458                                const TargetRegisterClass *RC) const {
    459     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    460   }
    461 
    462   /// getMatchingSuperRegClass - Return a subclass of the specified register
    463   /// class A so that each register in it has a sub-register of the
    464   /// specified sub-register index which is in the specified register class B.
    465   ///
    466   /// TableGen will synthesize missing A sub-classes.
    467   virtual const TargetRegisterClass *
    468   getMatchingSuperRegClass(const TargetRegisterClass *A,
    469                            const TargetRegisterClass *B, unsigned Idx) const;
    470 
    471   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
    472   /// supports the sub-register index Idx.
    473   /// If no such sub-class exists, return NULL.
    474   /// If all registers in RC already have an Idx sub-register, return RC.
    475   ///
    476   /// TableGen generates a version of this function that is good enough in most
    477   /// cases.  Targets can override if they have constraints that TableGen
    478   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    479   /// supported by the full GR32 register class in 64-bit mode, but only by the
    480   /// GR32_ABCD regiister class in 32-bit mode.
    481   ///
    482   /// TableGen will synthesize missing RC sub-classes.
    483   virtual const TargetRegisterClass *
    484   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
    485     assert(Idx == 0 && "Target has no sub-registers");
    486     return RC;
    487   }
    488 
    489   /// composeSubRegIndices - Return the subregister index you get from composing
    490   /// two subregister indices.
    491   ///
    492   /// The special null sub-register index composes as the identity.
    493   ///
    494   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    495   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    496   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    497   /// b, composeSubRegIndices doesn't tell you.
    498   ///
    499   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    500   /// ssub_0:S0 - ssub_3:S3 subregs.
    501   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    502   ///
    503   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    504     if (!a) return b;
    505     if (!b) return a;
    506     return composeSubRegIndicesImpl(a, b);
    507   }
    508 
    509 protected:
    510   /// Overridden by TableGen in targets that have sub-registers.
    511   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
    512     llvm_unreachable("Target has no sub-registers");
    513   }
    514 
    515 public:
    516   /// getCommonSuperRegClass - Find a common super-register class if it exists.
    517   ///
    518   /// Find a register class, SuperRC and two sub-register indices, PreA and
    519   /// PreB, such that:
    520   ///
    521   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
    522   ///
    523   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
    524   ///
    525   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
    526   ///
    527   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
    528   /// requirements, and there is no register class with a smaller spill size
    529   /// that satisfies the requirements.
    530   ///
    531   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
    532   ///
    533   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
    534   /// that case, the returned register class will be a sub-class of the
    535   /// corresponding argument register class.
    536   ///
    537   /// The function returns NULL if no register class can be found.
    538   ///
    539   const TargetRegisterClass*
    540   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    541                          const TargetRegisterClass *RCB, unsigned SubB,
    542                          unsigned &PreA, unsigned &PreB) const;
    543 
    544   //===--------------------------------------------------------------------===//
    545   // Register Class Information
    546   //
    547 
    548   /// Register class iterators
    549   ///
    550   regclass_iterator regclass_begin() const { return RegClassBegin; }
    551   regclass_iterator regclass_end() const { return RegClassEnd; }
    552 
    553   unsigned getNumRegClasses() const {
    554     return (unsigned)(regclass_end()-regclass_begin());
    555   }
    556 
    557   /// getRegClass - Returns the register class associated with the enumeration
    558   /// value.  See class MCOperandInfo.
    559   const TargetRegisterClass *getRegClass(unsigned i) const {
    560     assert(i < getNumRegClasses() && "Register Class ID out of range");
    561     return RegClassBegin[i];
    562   }
    563 
    564   /// getCommonSubClass - find the largest common subclass of A and B. Return
    565   /// NULL if there is no common subclass.
    566   const TargetRegisterClass *
    567   getCommonSubClass(const TargetRegisterClass *A,
    568                     const TargetRegisterClass *B) const;
    569 
    570   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
    571   /// values.  If a target supports multiple different pointer register classes,
    572   /// kind specifies which one is indicated.
    573   virtual const TargetRegisterClass *
    574   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
    575     llvm_unreachable("Target didn't implement getPointerRegClass!");
    576   }
    577 
    578   /// getCrossCopyRegClass - Returns a legal register class to copy a register
    579   /// in the specified class to or from. If it is possible to copy the register
    580   /// directly without using a cross register class copy, return the specified
    581   /// RC. Returns NULL if it is not possible to copy between a two registers of
    582   /// the specified class.
    583   virtual const TargetRegisterClass *
    584   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    585     return RC;
    586   }
    587 
    588   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
    589   /// legal to use in the current sub-target and has the same spill size.
    590   /// The returned register class can be used to create virtual registers which
    591   /// means that all its registers can be copied and spilled.
    592   virtual const TargetRegisterClass*
    593   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
    594     /// The default implementation is very conservative and doesn't allow the
    595     /// register allocator to inflate register classes.
    596     return RC;
    597   }
    598 
    599   /// getRegPressureLimit - Return the register pressure "high water mark" for
    600   /// the specific register class. The scheduler is in high register pressure
    601   /// mode (for the specific register class) if it goes over the limit.
    602   ///
    603   /// Note: this is the old register pressure model that relies on a manually
    604   /// specified representative register class per value type.
    605   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    606                                        MachineFunction &MF) const {
    607     return 0;
    608   }
    609 
    610   /// Get the weight in units of pressure for this register class.
    611   virtual const RegClassWeight &getRegClassWeight(
    612     const TargetRegisterClass *RC) const = 0;
    613 
    614   /// Get the weight in units of pressure for this register unit.
    615   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
    616 
    617   /// Get the number of dimensions of register pressure.
    618   virtual unsigned getNumRegPressureSets() const = 0;
    619 
    620   /// Get the name of this register unit pressure set.
    621   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
    622 
    623   /// Get the register unit pressure limit for this dimension.
    624   /// This limit must be adjusted dynamically for reserved registers.
    625   virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
    626 
    627   /// Get the dimensions of register pressure impacted by this register class.
    628   /// Returns a -1 terminated array of pressure set IDs.
    629   virtual const int *getRegClassPressureSets(
    630     const TargetRegisterClass *RC) const = 0;
    631 
    632   /// Get the dimensions of register pressure impacted by this register unit.
    633   /// Returns a -1 terminated array of pressure set IDs.
    634   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
    635 
    636   /// Get a list of 'hint' registers that the register allocator should try
    637   /// first when allocating a physical register for the virtual register
    638   /// VirtReg. These registers are effectively moved to the front of the
    639   /// allocation order.
    640   ///
    641   /// The Order argument is the allocation order for VirtReg's register class
    642   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
    643   /// come from Order, and they must not be reserved.
    644   ///
    645   /// The default implementation of this function can resolve
    646   /// target-independent hints provided to MRI::setRegAllocationHint with
    647   /// HintType == 0. Targets that override this function should defer to the
    648   /// default implementation if they have no reason to change the allocation
    649   /// order for VirtReg. There may be target-independent hints.
    650   virtual void getRegAllocationHints(unsigned VirtReg,
    651                                      ArrayRef<MCPhysReg> Order,
    652                                      SmallVectorImpl<MCPhysReg> &Hints,
    653                                      const MachineFunction &MF,
    654                                      const VirtRegMap *VRM = 0) const;
    655 
    656   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
    657   /// writing a register from RC in two consecutive instructions.
    658   /// This can avoid pipeline stalls on certain architectures.
    659   /// It does cause increased register pressure, though.
    660   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
    661     return false;
    662   }
    663 
    664   /// UpdateRegAllocHint - A callback to allow target a chance to update
    665   /// register allocation hints when a register is "changed" (e.g. coalesced)
    666   /// to another register. e.g. On ARM, some virtual registers should target
    667   /// register pairs, if one of pair is coalesced to another register, the
    668   /// allocation hint of the other half of the pair should be changed to point
    669   /// to the new register.
    670   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
    671                                   MachineFunction &MF) const {
    672     // Do nothing.
    673   }
    674 
    675   /// requiresRegisterScavenging - returns true if the target requires (and can
    676   /// make use of) the register scavenger.
    677   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    678     return false;
    679   }
    680 
    681   /// useFPForScavengingIndex - returns true if the target wants to use
    682   /// frame pointer based accesses to spill to the scavenger emergency spill
    683   /// slot.
    684   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    685     return true;
    686   }
    687 
    688   /// requiresFrameIndexScavenging - returns true if the target requires post
    689   /// PEI scavenging of registers for materializing frame index constants.
    690   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    691     return false;
    692   }
    693 
    694   /// requiresVirtualBaseRegisters - Returns true if the target wants the
    695   /// LocalStackAllocation pass to be run and virtual base registers
    696   /// used for more efficient stack access.
    697   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    698     return false;
    699   }
    700 
    701   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
    702   /// the stack frame of the given function for the specified register. e.g. On
    703   /// x86, if the frame register is required, the first fixed stack object is
    704   /// reserved as its spill slot. This tells PEI not to create a new stack frame
    705   /// object for the given register. It should be called only after
    706   /// processFunctionBeforeCalleeSavedScan().
    707   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    708                                     int &FrameIdx) const {
    709     return false;
    710   }
    711 
    712   /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
    713   /// after register allocation.
    714   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
    715     return false;
    716   }
    717 
    718   /// needsStackRealignment - true if storage within the function requires the
    719   /// stack pointer to be aligned more than the normal calling convention calls
    720   /// for.
    721   virtual bool needsStackRealignment(const MachineFunction &MF) const {
    722     return false;
    723   }
    724 
    725   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
    726   /// index in the instruction, if there is one.
    727   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    728                                            int Idx) const {
    729     return 0;
    730   }
    731 
    732   /// needsFrameBaseReg - Returns true if the instruction's frame index
    733   /// reference would be better served by a base register other than FP
    734   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
    735   /// references it should create new base registers for.
    736   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    737     return false;
    738   }
    739 
    740   /// materializeFrameBaseRegister - Insert defining instruction(s) for
    741   /// BaseReg to be a pointer to FrameIdx before insertion point I.
    742   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    743                                             unsigned BaseReg, int FrameIdx,
    744                                             int64_t Offset) const {
    745     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    746                      "target");
    747   }
    748 
    749   /// resolveFrameIndex - Resolve a frame index operand of an instruction
    750   /// to reference the indicated base register plus offset instead.
    751   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
    752                                  unsigned BaseReg, int64_t Offset) const {
    753     llvm_unreachable("resolveFrameIndex does not exist on this target");
    754   }
    755 
    756   /// isFrameOffsetLegal - Determine whether a given offset immediate is
    757   /// encodable to resolve a frame index.
    758   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
    759                                   int64_t Offset) const {
    760     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    761   }
    762 
    763 
    764   /// saveScavengerRegister - Spill the register so it can be used by the
    765   /// register scavenger. Return true if the register was spilled, false
    766   /// otherwise. If this function does not spill the register, the scavenger
    767   /// will instead spill it to the emergency spill slot.
    768   ///
    769   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    770                                      MachineBasicBlock::iterator I,
    771                                      MachineBasicBlock::iterator &UseMI,
    772                                      const TargetRegisterClass *RC,
    773                                      unsigned Reg) const {
    774     return false;
    775   }
    776 
    777   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
    778   /// frame indices from instructions which may use them.  The instruction
    779   /// referenced by the iterator contains an MO_FrameIndex operand which must be
    780   /// eliminated by this method.  This method may modify or replace the
    781   /// specified instruction, as long as it keeps the iterator pointing at the
    782   /// finished product.  SPAdj is the SP adjustment due to call frame setup
    783   /// instruction.  FIOperandNum is the FI operand number.
    784   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    785                                    int SPAdj, unsigned FIOperandNum,
    786                                    RegScavenger *RS = NULL) const = 0;
    787 
    788   //===--------------------------------------------------------------------===//
    789   /// Debug information queries.
    790 
    791   /// getFrameRegister - This method should return the register used as a base
    792   /// for values allocated in the current stack frame.
    793   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    794 
    795   /// getCompactUnwindRegNum - This function maps the register to the number for
    796   /// compact unwind encoding. Return -1 if the register isn't valid.
    797   virtual int getCompactUnwindRegNum(unsigned, bool) const {
    798     return -1;
    799   }
    800 };
    801 
    802 
    803 //===----------------------------------------------------------------------===//
    804 //                           SuperRegClassIterator
    805 //===----------------------------------------------------------------------===//
    806 //
    807 // Iterate over the possible super-registers for a given register class. The
    808 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
    809 // possible classes of super-registers.
    810 //
    811 // Each bit mask will have at least one set bit, and each set bit in Mask
    812 // corresponds to a SuperRC such that:
    813 //
    814 //   For all Reg in SuperRC: Reg:Idx is in RC.
    815 //
    816 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
    817 // also satisfies the above requirement, assuming Reg:0 == Reg.
    818 //
    819 class SuperRegClassIterator {
    820   const unsigned RCMaskWords;
    821   unsigned SubReg;
    822   const uint16_t *Idx;
    823   const uint32_t *Mask;
    824 
    825 public:
    826   /// Create a SuperRegClassIterator that visits all the super-register classes
    827   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
    828   SuperRegClassIterator(const TargetRegisterClass *RC,
    829                         const TargetRegisterInfo *TRI,
    830                         bool IncludeSelf = false)
    831     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
    832       SubReg(0),
    833       Idx(RC->getSuperRegIndices()),
    834       Mask(RC->getSubClassMask()) {
    835     if (!IncludeSelf)
    836       ++*this;
    837   }
    838 
    839   /// Returns true if this iterator is still pointing at a valid entry.
    840   bool isValid() const { return Idx; }
    841 
    842   /// Returns the current sub-register index.
    843   unsigned getSubReg() const { return SubReg; }
    844 
    845   /// Returns the bit mask if register classes that getSubReg() projects into
    846   /// RC.
    847   const uint32_t *getMask() const { return Mask; }
    848 
    849   /// Advance iterator to the next entry.
    850   void operator++() {
    851     assert(isValid() && "Cannot move iterator past end.");
    852     Mask += RCMaskWords;
    853     SubReg = *Idx++;
    854     if (!SubReg)
    855       Idx = 0;
    856   }
    857 };
    858 
    859 // This is useful when building IndexedMaps keyed on virtual registers
    860 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
    861   unsigned operator()(unsigned Reg) const {
    862     return TargetRegisterInfo::virtReg2Index(Reg);
    863   }
    864 };
    865 
    866 /// PrintReg - Helper class for printing registers on a raw_ostream.
    867 /// Prints virtual and physical registers with or without a TRI instance.
    868 ///
    869 /// The format is:
    870 ///   %noreg          - NoRegister
    871 ///   %vreg5          - a virtual register.
    872 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
    873 ///   %EAX            - a physical register
    874 ///   %physreg17      - a physical register when no TRI instance given.
    875 ///
    876 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
    877 ///
    878 class PrintReg {
    879   const TargetRegisterInfo *TRI;
    880   unsigned Reg;
    881   unsigned SubIdx;
    882 public:
    883   explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
    884                     unsigned subidx = 0)
    885     : TRI(tri), Reg(reg), SubIdx(subidx) {}
    886   void print(raw_ostream&) const;
    887 };
    888 
    889 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
    890   PR.print(OS);
    891   return OS;
    892 }
    893 
    894 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
    895 ///
    896 /// Register units are named after their root registers:
    897 ///
    898 ///   AL      - Single root.
    899 ///   FP0~ST7 - Dual roots.
    900 ///
    901 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
    902 ///
    903 class PrintRegUnit {
    904   const TargetRegisterInfo *TRI;
    905   unsigned Unit;
    906 public:
    907   PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
    908     : TRI(tri), Unit(unit) {}
    909   void print(raw_ostream&) const;
    910 };
    911 
    912 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
    913   PR.print(OS);
    914   return OS;
    915 }
    916 
    917 } // End llvm namespace
    918 
    919 #endif
    920