Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declaration of the MachineInstr class, which is the
     11 // basic representation for all target dependent machine instructions used by
     12 // the back end.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
     17 #define LLVM_CODEGEN_MACHINEINSTR_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMapInfo.h"
     21 #include "llvm/ADT/STLExtras.h"
     22 #include "llvm/ADT/StringRef.h"
     23 #include "llvm/ADT/ilist.h"
     24 #include "llvm/ADT/ilist_node.h"
     25 #include "llvm/CodeGen/MachineOperand.h"
     26 #include "llvm/IR/InlineAsm.h"
     27 #include "llvm/MC/MCInstrDesc.h"
     28 #include "llvm/Support/ArrayRecycler.h"
     29 #include "llvm/Support/DebugLoc.h"
     30 #include "llvm/Target/TargetOpcodes.h"
     31 #include <vector>
     32 
     33 namespace llvm {
     34 
     35 template <typename T> class SmallVectorImpl;
     36 class AliasAnalysis;
     37 class TargetInstrInfo;
     38 class TargetRegisterClass;
     39 class TargetRegisterInfo;
     40 class MachineFunction;
     41 class MachineMemOperand;
     42 
     43 //===----------------------------------------------------------------------===//
     44 /// MachineInstr - Representation of each machine instruction.
     45 ///
     46 /// This class isn't a POD type, but it must have a trivial destructor. When a
     47 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
     48 /// without having their destructor called.
     49 ///
     50 class MachineInstr : public ilist_node<MachineInstr> {
     51 public:
     52   typedef MachineMemOperand **mmo_iterator;
     53 
     54   /// Flags to specify different kinds of comments to output in
     55   /// assembly code.  These flags carry semantic information not
     56   /// otherwise easily derivable from the IR text.
     57   ///
     58   enum CommentFlag {
     59     ReloadReuse = 0x1
     60   };
     61 
     62   enum MIFlag {
     63     NoFlags      = 0,
     64     FrameSetup   = 1 << 0,              // Instruction is used as a part of
     65                                         // function frame setup code.
     66     BundledPred  = 1 << 1,              // Instruction has bundled predecessors.
     67     BundledSucc  = 1 << 2               // Instruction has bundled successors.
     68   };
     69 private:
     70   const MCInstrDesc *MCID;              // Instruction descriptor.
     71   MachineBasicBlock *Parent;            // Pointer to the owning basic block.
     72 
     73   // Operands are allocated by an ArrayRecycler.
     74   MachineOperand *Operands;             // Pointer to the first operand.
     75   unsigned NumOperands;                 // Number of operands on instruction.
     76   typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
     77   OperandCapacity CapOperands;          // Capacity of the Operands array.
     78 
     79   uint8_t Flags;                        // Various bits of additional
     80                                         // information about machine
     81                                         // instruction.
     82 
     83   uint8_t AsmPrinterFlags;              // Various bits of information used by
     84                                         // the AsmPrinter to emit helpful
     85                                         // comments.  This is *not* semantic
     86                                         // information.  Do not use this for
     87                                         // anything other than to convey comment
     88                                         // information to AsmPrinter.
     89 
     90   uint8_t NumMemRefs;                   // Information on memory references.
     91   mmo_iterator MemRefs;
     92 
     93   DebugLoc debugLoc;                    // Source line information.
     94 
     95   MachineInstr(const MachineInstr&) LLVM_DELETED_FUNCTION;
     96   void operator=(const MachineInstr&) LLVM_DELETED_FUNCTION;
     97   // Use MachineFunction::DeleteMachineInstr() instead.
     98   ~MachineInstr() LLVM_DELETED_FUNCTION;
     99 
    100   // Intrusive list support
    101   friend struct ilist_traits<MachineInstr>;
    102   friend struct ilist_traits<MachineBasicBlock>;
    103   void setParent(MachineBasicBlock *P) { Parent = P; }
    104 
    105   /// MachineInstr ctor - This constructor creates a copy of the given
    106   /// MachineInstr in the given MachineFunction.
    107   MachineInstr(MachineFunction &, const MachineInstr &);
    108 
    109   /// MachineInstr ctor - This constructor create a MachineInstr and add the
    110   /// implicit operands.  It reserves space for number of operands specified by
    111   /// MCInstrDesc.  An explicit DebugLoc is supplied.
    112   MachineInstr(MachineFunction&, const MCInstrDesc &MCID,
    113                const DebugLoc dl, bool NoImp = false);
    114 
    115   // MachineInstrs are pool-allocated and owned by MachineFunction.
    116   friend class MachineFunction;
    117 
    118 public:
    119   const MachineBasicBlock* getParent() const { return Parent; }
    120   MachineBasicBlock* getParent() { return Parent; }
    121 
    122   /// getAsmPrinterFlags - Return the asm printer flags bitvector.
    123   ///
    124   uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
    125 
    126   /// clearAsmPrinterFlags - clear the AsmPrinter bitvector
    127   ///
    128   void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
    129 
    130   /// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
    131   ///
    132   bool getAsmPrinterFlag(CommentFlag Flag) const {
    133     return AsmPrinterFlags & Flag;
    134   }
    135 
    136   /// setAsmPrinterFlag - Set a flag for the AsmPrinter.
    137   ///
    138   void setAsmPrinterFlag(CommentFlag Flag) {
    139     AsmPrinterFlags |= (uint8_t)Flag;
    140   }
    141 
    142   /// clearAsmPrinterFlag - clear specific AsmPrinter flags
    143   ///
    144   void clearAsmPrinterFlag(CommentFlag Flag) {
    145     AsmPrinterFlags &= ~Flag;
    146   }
    147 
    148   /// getFlags - Return the MI flags bitvector.
    149   uint8_t getFlags() const {
    150     return Flags;
    151   }
    152 
    153   /// getFlag - Return whether an MI flag is set.
    154   bool getFlag(MIFlag Flag) const {
    155     return Flags & Flag;
    156   }
    157 
    158   /// setFlag - Set a MI flag.
    159   void setFlag(MIFlag Flag) {
    160     Flags |= (uint8_t)Flag;
    161   }
    162 
    163   void setFlags(unsigned flags) {
    164     // Filter out the automatically maintained flags.
    165     unsigned Mask = BundledPred | BundledSucc;
    166     Flags = (Flags & Mask) | (flags & ~Mask);
    167   }
    168 
    169   /// clearFlag - Clear a MI flag.
    170   void clearFlag(MIFlag Flag) {
    171     Flags &= ~((uint8_t)Flag);
    172   }
    173 
    174   /// isInsideBundle - Return true if MI is in a bundle (but not the first MI
    175   /// in a bundle).
    176   ///
    177   /// A bundle looks like this before it's finalized:
    178   ///   ----------------
    179   ///   |      MI      |
    180   ///   ----------------
    181   ///          |
    182   ///   ----------------
    183   ///   |      MI    * |
    184   ///   ----------------
    185   ///          |
    186   ///   ----------------
    187   ///   |      MI    * |
    188   ///   ----------------
    189   /// In this case, the first MI starts a bundle but is not inside a bundle, the
    190   /// next 2 MIs are considered "inside" the bundle.
    191   ///
    192   /// After a bundle is finalized, it looks like this:
    193   ///   ----------------
    194   ///   |    Bundle    |
    195   ///   ----------------
    196   ///          |
    197   ///   ----------------
    198   ///   |      MI    * |
    199   ///   ----------------
    200   ///          |
    201   ///   ----------------
    202   ///   |      MI    * |
    203   ///   ----------------
    204   ///          |
    205   ///   ----------------
    206   ///   |      MI    * |
    207   ///   ----------------
    208   /// The first instruction has the special opcode "BUNDLE". It's not "inside"
    209   /// a bundle, but the next three MIs are.
    210   bool isInsideBundle() const {
    211     return getFlag(BundledPred);
    212   }
    213 
    214   /// isBundled - Return true if this instruction part of a bundle. This is true
    215   /// if either itself or its following instruction is marked "InsideBundle".
    216   bool isBundled() const {
    217     return isBundledWithPred() || isBundledWithSucc();
    218   }
    219 
    220   /// Return true if this instruction is part of a bundle, and it is not the
    221   /// first instruction in the bundle.
    222   bool isBundledWithPred() const { return getFlag(BundledPred); }
    223 
    224   /// Return true if this instruction is part of a bundle, and it is not the
    225   /// last instruction in the bundle.
    226   bool isBundledWithSucc() const { return getFlag(BundledSucc); }
    227 
    228   /// Bundle this instruction with its predecessor. This can be an unbundled
    229   /// instruction, or it can be the first instruction in a bundle.
    230   void bundleWithPred();
    231 
    232   /// Bundle this instruction with its successor. This can be an unbundled
    233   /// instruction, or it can be the last instruction in a bundle.
    234   void bundleWithSucc();
    235 
    236   /// Break bundle above this instruction.
    237   void unbundleFromPred();
    238 
    239   /// Break bundle below this instruction.
    240   void unbundleFromSucc();
    241 
    242   /// getDebugLoc - Returns the debug location id of this MachineInstr.
    243   ///
    244   DebugLoc getDebugLoc() const { return debugLoc; }
    245 
    246   /// emitError - Emit an error referring to the source location of this
    247   /// instruction. This should only be used for inline assembly that is somehow
    248   /// impossible to compile. Other errors should have been handled much
    249   /// earlier.
    250   ///
    251   /// If this method returns, the caller should try to recover from the error.
    252   ///
    253   void emitError(StringRef Msg) const;
    254 
    255   /// getDesc - Returns the target instruction descriptor of this
    256   /// MachineInstr.
    257   const MCInstrDesc &getDesc() const { return *MCID; }
    258 
    259   /// getOpcode - Returns the opcode of this MachineInstr.
    260   ///
    261   int getOpcode() const { return MCID->Opcode; }
    262 
    263   /// Access to explicit operands of the instruction.
    264   ///
    265   unsigned getNumOperands() const { return NumOperands; }
    266 
    267   const MachineOperand& getOperand(unsigned i) const {
    268     assert(i < getNumOperands() && "getOperand() out of range!");
    269     return Operands[i];
    270   }
    271   MachineOperand& getOperand(unsigned i) {
    272     assert(i < getNumOperands() && "getOperand() out of range!");
    273     return Operands[i];
    274   }
    275 
    276   /// getNumExplicitOperands - Returns the number of non-implicit operands.
    277   ///
    278   unsigned getNumExplicitOperands() const;
    279 
    280   /// iterator/begin/end - Iterate over all operands of a machine instruction.
    281   typedef MachineOperand *mop_iterator;
    282   typedef const MachineOperand *const_mop_iterator;
    283 
    284   mop_iterator operands_begin() { return Operands; }
    285   mop_iterator operands_end() { return Operands + NumOperands; }
    286 
    287   const_mop_iterator operands_begin() const { return Operands; }
    288   const_mop_iterator operands_end() const { return Operands + NumOperands; }
    289 
    290   /// Access to memory operands of the instruction
    291   mmo_iterator memoperands_begin() const { return MemRefs; }
    292   mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
    293   bool memoperands_empty() const { return NumMemRefs == 0; }
    294 
    295   /// hasOneMemOperand - Return true if this instruction has exactly one
    296   /// MachineMemOperand.
    297   bool hasOneMemOperand() const {
    298     return NumMemRefs == 1;
    299   }
    300 
    301   /// API for querying MachineInstr properties. They are the same as MCInstrDesc
    302   /// queries but they are bundle aware.
    303 
    304   enum QueryType {
    305     IgnoreBundle,    // Ignore bundles
    306     AnyInBundle,     // Return true if any instruction in bundle has property
    307     AllInBundle      // Return true if all instructions in bundle have property
    308   };
    309 
    310   /// hasProperty - Return true if the instruction (or in the case of a bundle,
    311   /// the instructions inside the bundle) has the specified property.
    312   /// The first argument is the property being queried.
    313   /// The second argument indicates whether the query should look inside
    314   /// instruction bundles.
    315   bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
    316     // Inline the fast path for unbundled or bundle-internal instructions.
    317     if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
    318       return getDesc().getFlags() & (1 << MCFlag);
    319 
    320     // If this is the first instruction in a bundle, take the slow path.
    321     return hasPropertyInBundle(1 << MCFlag, Type);
    322   }
    323 
    324   /// isVariadic - Return true if this instruction can have a variable number of
    325   /// operands.  In this case, the variable operands will be after the normal
    326   /// operands but before the implicit definitions and uses (if any are
    327   /// present).
    328   bool isVariadic(QueryType Type = IgnoreBundle) const {
    329     return hasProperty(MCID::Variadic, Type);
    330   }
    331 
    332   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
    333   /// ARM instructions which can set condition code if 's' bit is set.
    334   bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
    335     return hasProperty(MCID::HasOptionalDef, Type);
    336   }
    337 
    338   /// isPseudo - Return true if this is a pseudo instruction that doesn't
    339   /// correspond to a real machine instruction.
    340   ///
    341   bool isPseudo(QueryType Type = IgnoreBundle) const {
    342     return hasProperty(MCID::Pseudo, Type);
    343   }
    344 
    345   bool isReturn(QueryType Type = AnyInBundle) const {
    346     return hasProperty(MCID::Return, Type);
    347   }
    348 
    349   bool isCall(QueryType Type = AnyInBundle) const {
    350     return hasProperty(MCID::Call, Type);
    351   }
    352 
    353   /// isBarrier - Returns true if the specified instruction stops control flow
    354   /// from executing the instruction immediately following it.  Examples include
    355   /// unconditional branches and return instructions.
    356   bool isBarrier(QueryType Type = AnyInBundle) const {
    357     return hasProperty(MCID::Barrier, Type);
    358   }
    359 
    360   /// isTerminator - Returns true if this instruction part of the terminator for
    361   /// a basic block.  Typically this is things like return and branch
    362   /// instructions.
    363   ///
    364   /// Various passes use this to insert code into the bottom of a basic block,
    365   /// but before control flow occurs.
    366   bool isTerminator(QueryType Type = AnyInBundle) const {
    367     return hasProperty(MCID::Terminator, Type);
    368   }
    369 
    370   /// isBranch - Returns true if this is a conditional, unconditional, or
    371   /// indirect branch.  Predicates below can be used to discriminate between
    372   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
    373   /// get more information.
    374   bool isBranch(QueryType Type = AnyInBundle) const {
    375     return hasProperty(MCID::Branch, Type);
    376   }
    377 
    378   /// isIndirectBranch - Return true if this is an indirect branch, such as a
    379   /// branch through a register.
    380   bool isIndirectBranch(QueryType Type = AnyInBundle) const {
    381     return hasProperty(MCID::IndirectBranch, Type);
    382   }
    383 
    384   /// isConditionalBranch - Return true if this is a branch which may fall
    385   /// through to the next instruction or may transfer control flow to some other
    386   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
    387   /// information about this branch.
    388   bool isConditionalBranch(QueryType Type = AnyInBundle) const {
    389     return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
    390   }
    391 
    392   /// isUnconditionalBranch - Return true if this is a branch which always
    393   /// transfers control flow to some other block.  The
    394   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
    395   /// about this branch.
    396   bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
    397     return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
    398   }
    399 
    400   // isPredicable - Return true if this instruction has a predicate operand that
    401   // controls execution.  It may be set to 'always', or may be set to other
    402   /// values.   There are various methods in TargetInstrInfo that can be used to
    403   /// control and modify the predicate in this instruction.
    404   bool isPredicable(QueryType Type = AllInBundle) const {
    405     // If it's a bundle than all bundled instructions must be predicable for this
    406     // to return true.
    407     return hasProperty(MCID::Predicable, Type);
    408   }
    409 
    410   /// isCompare - Return true if this instruction is a comparison.
    411   bool isCompare(QueryType Type = IgnoreBundle) const {
    412     return hasProperty(MCID::Compare, Type);
    413   }
    414 
    415   /// isMoveImmediate - Return true if this instruction is a move immediate
    416   /// (including conditional moves) instruction.
    417   bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
    418     return hasProperty(MCID::MoveImm, Type);
    419   }
    420 
    421   /// isBitcast - Return true if this instruction is a bitcast instruction.
    422   ///
    423   bool isBitcast(QueryType Type = IgnoreBundle) const {
    424     return hasProperty(MCID::Bitcast, Type);
    425   }
    426 
    427   /// isSelect - Return true if this instruction is a select instruction.
    428   ///
    429   bool isSelect(QueryType Type = IgnoreBundle) const {
    430     return hasProperty(MCID::Select, Type);
    431   }
    432 
    433   /// isNotDuplicable - Return true if this instruction cannot be safely
    434   /// duplicated.  For example, if the instruction has a unique labels attached
    435   /// to it, duplicating it would cause multiple definition errors.
    436   bool isNotDuplicable(QueryType Type = AnyInBundle) const {
    437     return hasProperty(MCID::NotDuplicable, Type);
    438   }
    439 
    440   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
    441   /// which must be filled by the code generator.
    442   bool hasDelaySlot(QueryType Type = AnyInBundle) const {
    443     return hasProperty(MCID::DelaySlot, Type);
    444   }
    445 
    446   /// canFoldAsLoad - Return true for instructions that can be folded as
    447   /// memory operands in other instructions. The most common use for this
    448   /// is instructions that are simple loads from memory that don't modify
    449   /// the loaded value in any way, but it can also be used for instructions
    450   /// that can be expressed as constant-pool loads, such as V_SETALLONES
    451   /// on x86, to allow them to be folded when it is beneficial.
    452   /// This should only be set on instructions that return a value in their
    453   /// only virtual register definition.
    454   bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
    455     return hasProperty(MCID::FoldableAsLoad, Type);
    456   }
    457 
    458   //===--------------------------------------------------------------------===//
    459   // Side Effect Analysis
    460   //===--------------------------------------------------------------------===//
    461 
    462   /// mayLoad - Return true if this instruction could possibly read memory.
    463   /// Instructions with this flag set are not necessarily simple load
    464   /// instructions, they may load a value and modify it, for example.
    465   bool mayLoad(QueryType Type = AnyInBundle) const {
    466     if (isInlineAsm()) {
    467       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    468       if (ExtraInfo & InlineAsm::Extra_MayLoad)
    469         return true;
    470     }
    471     return hasProperty(MCID::MayLoad, Type);
    472   }
    473 
    474 
    475   /// mayStore - Return true if this instruction could possibly modify memory.
    476   /// Instructions with this flag set are not necessarily simple store
    477   /// instructions, they may store a modified value based on their operands, or
    478   /// may not actually modify anything, for example.
    479   bool mayStore(QueryType Type = AnyInBundle) const {
    480     if (isInlineAsm()) {
    481       unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
    482       if (ExtraInfo & InlineAsm::Extra_MayStore)
    483         return true;
    484     }
    485     return hasProperty(MCID::MayStore, Type);
    486   }
    487 
    488   //===--------------------------------------------------------------------===//
    489   // Flags that indicate whether an instruction can be modified by a method.
    490   //===--------------------------------------------------------------------===//
    491 
    492   /// isCommutable - Return true if this may be a 2- or 3-address
    493   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
    494   /// result if Y and Z are exchanged.  If this flag is set, then the
    495   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
    496   /// instruction.
    497   ///
    498   /// Note that this flag may be set on instructions that are only commutable
    499   /// sometimes.  In these cases, the call to commuteInstruction will fail.
    500   /// Also note that some instructions require non-trivial modification to
    501   /// commute them.
    502   bool isCommutable(QueryType Type = IgnoreBundle) const {
    503     return hasProperty(MCID::Commutable, Type);
    504   }
    505 
    506   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
    507   /// which can be changed into a 3-address instruction if needed.  Doing this
    508   /// transformation can be profitable in the register allocator, because it
    509   /// means that the instruction can use a 2-address form if possible, but
    510   /// degrade into a less efficient form if the source and dest register cannot
    511   /// be assigned to the same register.  For example, this allows the x86
    512   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
    513   /// is the same speed as the shift but has bigger code size.
    514   ///
    515   /// If this returns true, then the target must implement the
    516   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
    517   /// is allowed to fail if the transformation isn't valid for this specific
    518   /// instruction (e.g. shl reg, 4 on x86).
    519   ///
    520   bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
    521     return hasProperty(MCID::ConvertibleTo3Addr, Type);
    522   }
    523 
    524   /// usesCustomInsertionHook - Return true if this instruction requires
    525   /// custom insertion support when the DAG scheduler is inserting it into a
    526   /// machine basic block.  If this is true for the instruction, it basically
    527   /// means that it is a pseudo instruction used at SelectionDAG time that is
    528   /// expanded out into magic code by the target when MachineInstrs are formed.
    529   ///
    530   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
    531   /// is used to insert this into the MachineBasicBlock.
    532   bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
    533     return hasProperty(MCID::UsesCustomInserter, Type);
    534   }
    535 
    536   /// hasPostISelHook - Return true if this instruction requires *adjustment*
    537   /// after instruction selection by calling a target hook. For example, this
    538   /// can be used to fill in ARM 's' optional operand depending on whether
    539   /// the conditional flag register is used.
    540   bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
    541     return hasProperty(MCID::HasPostISelHook, Type);
    542   }
    543 
    544   /// isRematerializable - Returns true if this instruction is a candidate for
    545   /// remat.  This flag is deprecated, please don't use it anymore.  If this
    546   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
    547   /// verify the instruction is really rematable.
    548   bool isRematerializable(QueryType Type = AllInBundle) const {
    549     // It's only possible to re-mat a bundle if all bundled instructions are
    550     // re-materializable.
    551     return hasProperty(MCID::Rematerializable, Type);
    552   }
    553 
    554   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
    555   /// less) than a move instruction. This is useful during certain types of
    556   /// optimizations (e.g., remat during two-address conversion or machine licm)
    557   /// where we would like to remat or hoist the instruction, but not if it costs
    558   /// more than moving the instruction into the appropriate register. Note, we
    559   /// are not marking copies from and to the same register class with this flag.
    560   bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
    561     // Only returns true for a bundle if all bundled instructions are cheap.
    562     // FIXME: This probably requires a target hook.
    563     return hasProperty(MCID::CheapAsAMove, Type);
    564   }
    565 
    566   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
    567   /// have special register allocation requirements that are not captured by the
    568   /// operand register classes. e.g. ARM::STRD's two source registers must be an
    569   /// even / odd pair, ARM::STM registers have to be in ascending order.
    570   /// Post-register allocation passes should not attempt to change allocations
    571   /// for sources of instructions with this flag.
    572   bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
    573     return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
    574   }
    575 
    576   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
    577   /// have special register allocation requirements that are not captured by the
    578   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
    579   /// even / odd pair, ARM::LDM registers have to be in ascending order.
    580   /// Post-register allocation passes should not attempt to change allocations
    581   /// for definitions of instructions with this flag.
    582   bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
    583     return hasProperty(MCID::ExtraDefRegAllocReq, Type);
    584   }
    585 
    586 
    587   enum MICheckType {
    588     CheckDefs,      // Check all operands for equality
    589     CheckKillDead,  // Check all operands including kill / dead markers
    590     IgnoreDefs,     // Ignore all definitions
    591     IgnoreVRegDefs  // Ignore virtual register definitions
    592   };
    593 
    594   /// isIdenticalTo - Return true if this instruction is identical to (same
    595   /// opcode and same operands as) the specified instruction.
    596   bool isIdenticalTo(const MachineInstr *Other,
    597                      MICheckType Check = CheckDefs) const;
    598 
    599   /// Unlink 'this' from the containing basic block, and return it without
    600   /// deleting it.
    601   ///
    602   /// This function can not be used on bundled instructions, use
    603   /// removeFromBundle() to remove individual instructions from a bundle.
    604   MachineInstr *removeFromParent();
    605 
    606   /// Unlink this instruction from its basic block and return it without
    607   /// deleting it.
    608   ///
    609   /// If the instruction is part of a bundle, the other instructions in the
    610   /// bundle remain bundled.
    611   MachineInstr *removeFromBundle();
    612 
    613   /// Unlink 'this' from the containing basic block and delete it.
    614   ///
    615   /// If this instruction is the header of a bundle, the whole bundle is erased.
    616   /// This function can not be used for instructions inside a bundle, use
    617   /// eraseFromBundle() to erase individual bundled instructions.
    618   void eraseFromParent();
    619 
    620   /// Unlink 'this' form its basic block and delete it.
    621   ///
    622   /// If the instruction is part of a bundle, the other instructions in the
    623   /// bundle remain bundled.
    624   void eraseFromBundle();
    625 
    626   /// isLabel - Returns true if the MachineInstr represents a label.
    627   ///
    628   bool isLabel() const {
    629     return getOpcode() == TargetOpcode::PROLOG_LABEL ||
    630            getOpcode() == TargetOpcode::EH_LABEL ||
    631            getOpcode() == TargetOpcode::GC_LABEL;
    632   }
    633 
    634   bool isPrologLabel() const {
    635     return getOpcode() == TargetOpcode::PROLOG_LABEL;
    636   }
    637   bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
    638   bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
    639   bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
    640 
    641   bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
    642   bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
    643   bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
    644   bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
    645   bool isMSInlineAsm() const {
    646     return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
    647   }
    648   bool isStackAligningInlineAsm() const;
    649   InlineAsm::AsmDialect getInlineAsmDialect() const;
    650   bool isInsertSubreg() const {
    651     return getOpcode() == TargetOpcode::INSERT_SUBREG;
    652   }
    653   bool isSubregToReg() const {
    654     return getOpcode() == TargetOpcode::SUBREG_TO_REG;
    655   }
    656   bool isRegSequence() const {
    657     return getOpcode() == TargetOpcode::REG_SEQUENCE;
    658   }
    659   bool isBundle() const {
    660     return getOpcode() == TargetOpcode::BUNDLE;
    661   }
    662   bool isCopy() const {
    663     return getOpcode() == TargetOpcode::COPY;
    664   }
    665   bool isFullCopy() const {
    666     return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
    667   }
    668 
    669   /// isCopyLike - Return true if the instruction behaves like a copy.
    670   /// This does not include native copy instructions.
    671   bool isCopyLike() const {
    672     return isCopy() || isSubregToReg();
    673   }
    674 
    675   /// isIdentityCopy - Return true is the instruction is an identity copy.
    676   bool isIdentityCopy() const {
    677     return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
    678       getOperand(0).getSubReg() == getOperand(1).getSubReg();
    679   }
    680 
    681   /// isTransient - Return true if this is a transient instruction that is
    682   /// either very likely to be eliminated during register allocation (such as
    683   /// copy-like instructions), or if this instruction doesn't have an
    684   /// execution-time cost.
    685   bool isTransient() const {
    686     switch(getOpcode()) {
    687     default: return false;
    688     // Copy-like instructions are usually eliminated during register allocation.
    689     case TargetOpcode::PHI:
    690     case TargetOpcode::COPY:
    691     case TargetOpcode::INSERT_SUBREG:
    692     case TargetOpcode::SUBREG_TO_REG:
    693     case TargetOpcode::REG_SEQUENCE:
    694     // Pseudo-instructions that don't produce any real output.
    695     case TargetOpcode::IMPLICIT_DEF:
    696     case TargetOpcode::KILL:
    697     case TargetOpcode::PROLOG_LABEL:
    698     case TargetOpcode::EH_LABEL:
    699     case TargetOpcode::GC_LABEL:
    700     case TargetOpcode::DBG_VALUE:
    701       return true;
    702     }
    703   }
    704 
    705   /// Return the number of instructions inside the MI bundle, excluding the
    706   /// bundle header.
    707   ///
    708   /// This is the number of instructions that MachineBasicBlock::iterator
    709   /// skips, 0 for unbundled instructions.
    710   unsigned getBundleSize() const;
    711 
    712   /// readsRegister - Return true if the MachineInstr reads the specified
    713   /// register. If TargetRegisterInfo is passed, then it also checks if there
    714   /// is a read of a super-register.
    715   /// This does not count partial redefines of virtual registers as reads:
    716   ///   %reg1024:6 = OP.
    717   bool readsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    718     return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
    719   }
    720 
    721   /// readsVirtualRegister - Return true if the MachineInstr reads the specified
    722   /// virtual register. Take into account that a partial define is a
    723   /// read-modify-write operation.
    724   bool readsVirtualRegister(unsigned Reg) const {
    725     return readsWritesVirtualRegister(Reg).first;
    726   }
    727 
    728   /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
    729   /// indicating if this instruction reads or writes Reg. This also considers
    730   /// partial defines.
    731   /// If Ops is not null, all operand indices for Reg are added.
    732   std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
    733                                       SmallVectorImpl<unsigned> *Ops = 0) const;
    734 
    735   /// killsRegister - Return true if the MachineInstr kills the specified
    736   /// register. If TargetRegisterInfo is passed, then it also checks if there is
    737   /// a kill of a super-register.
    738   bool killsRegister(unsigned Reg, const TargetRegisterInfo *TRI = NULL) const {
    739     return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
    740   }
    741 
    742   /// definesRegister - Return true if the MachineInstr fully defines the
    743   /// specified register. If TargetRegisterInfo is passed, then it also checks
    744   /// if there is a def of a super-register.
    745   /// NOTE: It's ignoring subreg indices on virtual registers.
    746   bool definesRegister(unsigned Reg, const TargetRegisterInfo *TRI=NULL) const {
    747     return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
    748   }
    749 
    750   /// modifiesRegister - Return true if the MachineInstr modifies (fully define
    751   /// or partially define) the specified register.
    752   /// NOTE: It's ignoring subreg indices on virtual registers.
    753   bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
    754     return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
    755   }
    756 
    757   /// registerDefIsDead - Returns true if the register is dead in this machine
    758   /// instruction. If TargetRegisterInfo is passed, then it also checks
    759   /// if there is a dead def of a super-register.
    760   bool registerDefIsDead(unsigned Reg,
    761                          const TargetRegisterInfo *TRI = NULL) const {
    762     return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
    763   }
    764 
    765   /// findRegisterUseOperandIdx() - Returns the operand index that is a use of
    766   /// the specific register or -1 if it is not found. It further tightens
    767   /// the search criteria to a use that kills the register if isKill is true.
    768   int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
    769                                 const TargetRegisterInfo *TRI = NULL) const;
    770 
    771   /// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
    772   /// a pointer to the MachineOperand rather than an index.
    773   MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
    774                                          const TargetRegisterInfo *TRI = NULL) {
    775     int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
    776     return (Idx == -1) ? NULL : &getOperand(Idx);
    777   }
    778 
    779   /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
    780   /// the specified register or -1 if it is not found. If isDead is true, defs
    781   /// that are not dead are skipped. If Overlap is true, then it also looks for
    782   /// defs that merely overlap the specified register. If TargetRegisterInfo is
    783   /// non-null, then it also checks if there is a def of a super-register.
    784   /// This may also return a register mask operand when Overlap is true.
    785   int findRegisterDefOperandIdx(unsigned Reg,
    786                                 bool isDead = false, bool Overlap = false,
    787                                 const TargetRegisterInfo *TRI = NULL) const;
    788 
    789   /// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
    790   /// a pointer to the MachineOperand rather than an index.
    791   MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
    792                                          const TargetRegisterInfo *TRI = NULL) {
    793     int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
    794     return (Idx == -1) ? NULL : &getOperand(Idx);
    795   }
    796 
    797   /// findFirstPredOperandIdx() - Find the index of the first operand in the
    798   /// operand list that is used to represent the predicate. It returns -1 if
    799   /// none is found.
    800   int findFirstPredOperandIdx() const;
    801 
    802   /// findInlineAsmFlagIdx() - Find the index of the flag word operand that
    803   /// corresponds to operand OpIdx on an inline asm instruction.  Returns -1 if
    804   /// getOperand(OpIdx) does not belong to an inline asm operand group.
    805   ///
    806   /// If GroupNo is not NULL, it will receive the number of the operand group
    807   /// containing OpIdx.
    808   ///
    809   /// The flag operand is an immediate that can be decoded with methods like
    810   /// InlineAsm::hasRegClassConstraint().
    811   ///
    812   int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = 0) const;
    813 
    814   /// getRegClassConstraint - Compute the static register class constraint for
    815   /// operand OpIdx.  For normal instructions, this is derived from the
    816   /// MCInstrDesc.  For inline assembly it is derived from the flag words.
    817   ///
    818   /// Returns NULL if the static register classs constraint cannot be
    819   /// determined.
    820   ///
    821   const TargetRegisterClass*
    822   getRegClassConstraint(unsigned OpIdx,
    823                         const TargetInstrInfo *TII,
    824                         const TargetRegisterInfo *TRI) const;
    825 
    826   /// tieOperands - Add a tie between the register operands at DefIdx and
    827   /// UseIdx. The tie will cause the register allocator to ensure that the two
    828   /// operands are assigned the same physical register.
    829   ///
    830   /// Tied operands are managed automatically for explicit operands in the
    831   /// MCInstrDesc. This method is for exceptional cases like inline asm.
    832   void tieOperands(unsigned DefIdx, unsigned UseIdx);
    833 
    834   /// findTiedOperandIdx - Given the index of a tied register operand, find the
    835   /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
    836   /// index of the tied operand which must exist.
    837   unsigned findTiedOperandIdx(unsigned OpIdx) const;
    838 
    839   /// isRegTiedToUseOperand - Given the index of a register def operand,
    840   /// check if the register def is tied to a source operand, due to either
    841   /// two-address elimination or inline assembly constraints. Returns the
    842   /// first tied use operand index by reference if UseOpIdx is not null.
    843   bool isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx = 0) const {
    844     const MachineOperand &MO = getOperand(DefOpIdx);
    845     if (!MO.isReg() || !MO.isDef() || !MO.isTied())
    846       return false;
    847     if (UseOpIdx)
    848       *UseOpIdx = findTiedOperandIdx(DefOpIdx);
    849     return true;
    850   }
    851 
    852   /// isRegTiedToDefOperand - Return true if the use operand of the specified
    853   /// index is tied to an def operand. It also returns the def operand index by
    854   /// reference if DefOpIdx is not null.
    855   bool isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx = 0) const {
    856     const MachineOperand &MO = getOperand(UseOpIdx);
    857     if (!MO.isReg() || !MO.isUse() || !MO.isTied())
    858       return false;
    859     if (DefOpIdx)
    860       *DefOpIdx = findTiedOperandIdx(UseOpIdx);
    861     return true;
    862   }
    863 
    864   /// clearKillInfo - Clears kill flags on all operands.
    865   ///
    866   void clearKillInfo();
    867 
    868   /// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
    869   /// properly composing subreg indices where necessary.
    870   void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
    871                           const TargetRegisterInfo &RegInfo);
    872 
    873   /// addRegisterKilled - We have determined MI kills a register. Look for the
    874   /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
    875   /// add a implicit operand if it's not found. Returns true if the operand
    876   /// exists / is added.
    877   bool addRegisterKilled(unsigned IncomingReg,
    878                          const TargetRegisterInfo *RegInfo,
    879                          bool AddIfNotFound = false);
    880 
    881   /// clearRegisterKills - Clear all kill flags affecting Reg.  If RegInfo is
    882   /// provided, this includes super-register kills.
    883   void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
    884 
    885   /// addRegisterDead - We have determined MI defined a register without a use.
    886   /// Look for the operand that defines it and mark it as IsDead. If
    887   /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
    888   /// true if the operand exists / is added.
    889   bool addRegisterDead(unsigned IncomingReg, const TargetRegisterInfo *RegInfo,
    890                        bool AddIfNotFound = false);
    891 
    892   /// addRegisterDefined - We have determined MI defines a register. Make sure
    893   /// there is an operand defining Reg.
    894   void addRegisterDefined(unsigned IncomingReg,
    895                           const TargetRegisterInfo *RegInfo = 0);
    896 
    897   /// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
    898   /// dead except those in the UsedRegs list.
    899   ///
    900   /// On instructions with register mask operands, also add implicit-def
    901   /// operands for all registers in UsedRegs.
    902   void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
    903                              const TargetRegisterInfo &TRI);
    904 
    905   /// isSafeToMove - Return true if it is safe to move this instruction. If
    906   /// SawStore is set to true, it means that there is a store (or call) between
    907   /// the instruction's location and its intended destination.
    908   bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
    909                     bool &SawStore) const;
    910 
    911   /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
    912   /// or volatile memory reference, or if the information describing the memory
    913   /// reference is not available. Return false if it is known to have no
    914   /// ordered or volatile memory references.
    915   bool hasOrderedMemoryRef() const;
    916 
    917   /// isInvariantLoad - Return true if this instruction is loading from a
    918   /// location whose value is invariant across the function.  For example,
    919   /// loading a value from the constant pool or from the argument area of
    920   /// a function if it does not change.  This should only return true of *all*
    921   /// loads the instruction does are invariant (if it does multiple loads).
    922   bool isInvariantLoad(AliasAnalysis *AA) const;
    923 
    924   /// isConstantValuePHI - If the specified instruction is a PHI that always
    925   /// merges together the same virtual register, return the register, otherwise
    926   /// return 0.
    927   unsigned isConstantValuePHI() const;
    928 
    929   /// hasUnmodeledSideEffects - Return true if this instruction has side
    930   /// effects that are not modeled by mayLoad / mayStore, etc.
    931   /// For all instructions, the property is encoded in MCInstrDesc::Flags
    932   /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
    933   /// INLINEASM instruction, in which case the side effect property is encoded
    934   /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
    935   ///
    936   bool hasUnmodeledSideEffects() const;
    937 
    938   /// allDefsAreDead - Return true if all the defs of this instruction are dead.
    939   ///
    940   bool allDefsAreDead() const;
    941 
    942   /// copyImplicitOps - Copy implicit register operands from specified
    943   /// instruction to this instruction.
    944   void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
    945 
    946   //
    947   // Debugging support
    948   //
    949   void print(raw_ostream &OS, const TargetMachine *TM = 0,
    950              bool SkipOpers = false) const;
    951   void dump() const;
    952 
    953   //===--------------------------------------------------------------------===//
    954   // Accessors used to build up machine instructions.
    955 
    956   /// Add the specified operand to the instruction.  If it is an implicit
    957   /// operand, it is added to the end of the operand list.  If it is an
    958   /// explicit operand it is added at the end of the explicit operand list
    959   /// (before the first implicit operand).
    960   ///
    961   /// MF must be the machine function that was used to allocate this
    962   /// instruction.
    963   ///
    964   /// MachineInstrBuilder provides a more convenient interface for creating
    965   /// instructions and adding operands.
    966   void addOperand(MachineFunction &MF, const MachineOperand &Op);
    967 
    968   /// Add an operand without providing an MF reference. This only works for
    969   /// instructions that are inserted in a basic block.
    970   ///
    971   /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
    972   /// preferred.
    973   void addOperand(const MachineOperand &Op);
    974 
    975   /// setDesc - Replace the instruction descriptor (thus opcode) of
    976   /// the current instruction with a new one.
    977   ///
    978   void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
    979 
    980   /// setDebugLoc - Replace current source information with new such.
    981   /// Avoid using this, the constructor argument is preferable.
    982   ///
    983   void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
    984 
    985   /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
    986   /// fewer operand than it started with.
    987   ///
    988   void RemoveOperand(unsigned i);
    989 
    990   /// addMemOperand - Add a MachineMemOperand to the machine instruction.
    991   /// This function should be used only occasionally. The setMemRefs function
    992   /// is the primary method for setting up a MachineInstr's MemRefs list.
    993   void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
    994 
    995   /// setMemRefs - Assign this MachineInstr's memory reference descriptor
    996   /// list. This does not transfer ownership.
    997   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
    998     MemRefs = NewMemRefs;
    999     NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
   1000     assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
   1001   }
   1002 
   1003 private:
   1004   /// getRegInfo - If this instruction is embedded into a MachineFunction,
   1005   /// return the MachineRegisterInfo object for the current function, otherwise
   1006   /// return null.
   1007   MachineRegisterInfo *getRegInfo();
   1008 
   1009   /// untieRegOperand - Break any tie involving OpIdx.
   1010   void untieRegOperand(unsigned OpIdx) {
   1011     MachineOperand &MO = getOperand(OpIdx);
   1012     if (MO.isReg() && MO.isTied()) {
   1013       getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
   1014       MO.TiedTo = 0;
   1015     }
   1016   }
   1017 
   1018   /// addImplicitDefUseOperands - Add all implicit def and use operands to
   1019   /// this instruction.
   1020   void addImplicitDefUseOperands(MachineFunction &MF);
   1021 
   1022   /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
   1023   /// this instruction from their respective use lists.  This requires that the
   1024   /// operands already be on their use lists.
   1025   void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
   1026 
   1027   /// AddRegOperandsToUseLists - Add all of the register operands in
   1028   /// this instruction from their respective use lists.  This requires that the
   1029   /// operands not be on their use lists yet.
   1030   void AddRegOperandsToUseLists(MachineRegisterInfo&);
   1031 
   1032   /// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
   1033   /// bundle.
   1034   bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
   1035 };
   1036 
   1037 /// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
   1038 /// MachineInstr* by *value* of the instruction rather than by pointer value.
   1039 /// The hashing and equality testing functions ignore definitions so this is
   1040 /// useful for CSE, etc.
   1041 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
   1042   static inline MachineInstr *getEmptyKey() {
   1043     return 0;
   1044   }
   1045 
   1046   static inline MachineInstr *getTombstoneKey() {
   1047     return reinterpret_cast<MachineInstr*>(-1);
   1048   }
   1049 
   1050   static unsigned getHashValue(const MachineInstr* const &MI);
   1051 
   1052   static bool isEqual(const MachineInstr* const &LHS,
   1053                       const MachineInstr* const &RHS) {
   1054     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
   1055         LHS == getEmptyKey() || LHS == getTombstoneKey())
   1056       return LHS == RHS;
   1057     return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
   1058   }
   1059 };
   1060 
   1061 //===----------------------------------------------------------------------===//
   1062 // Debugging Support
   1063 
   1064 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
   1065   MI.print(OS);
   1066   return OS;
   1067 }
   1068 
   1069 } // End llvm namespace
   1070 
   1071 #endif
   1072