1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H 17 #define LLVM_TARGET_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/ValueTypes.h" 22 #include "llvm/IR/CallingConv.h" 23 #include "llvm/MC/MCRegisterInfo.h" 24 #include <cassert> 25 #include <functional> 26 27 namespace llvm { 28 29 class BitVector; 30 class MachineFunction; 31 class RegScavenger; 32 template<class T> class SmallVectorImpl; 33 class VirtRegMap; 34 class raw_ostream; 35 36 class TargetRegisterClass { 37 public: 38 typedef const MCPhysReg* iterator; 39 typedef const MCPhysReg* const_iterator; 40 typedef const MVT::SimpleValueType* vt_iterator; 41 typedef const TargetRegisterClass* const * sc_iterator; 42 43 // Instance variables filled by tablegen, do not use! 44 const MCRegisterClass *MC; 45 const vt_iterator VTs; 46 const uint32_t *SubClassMask; 47 const uint16_t *SuperRegIndices; 48 const sc_iterator SuperClasses; 49 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 50 51 /// getID() - Return the register class ID number. 52 /// 53 unsigned getID() const { return MC->getID(); } 54 55 /// getName() - Return the register class name for debugging. 56 /// 57 const char *getName() const { return MC->getName(); } 58 59 /// begin/end - Return all of the registers in this class. 60 /// 61 iterator begin() const { return MC->begin(); } 62 iterator end() const { return MC->end(); } 63 64 /// getNumRegs - Return the number of registers in this class. 65 /// 66 unsigned getNumRegs() const { return MC->getNumRegs(); } 67 68 /// getRegister - Return the specified register in the class. 69 /// 70 unsigned getRegister(unsigned i) const { 71 return MC->getRegister(i); 72 } 73 74 /// contains - Return true if the specified register is included in this 75 /// register class. This does not include virtual registers. 76 bool contains(unsigned Reg) const { 77 return MC->contains(Reg); 78 } 79 80 /// contains - Return true if both registers are in this class. 81 bool contains(unsigned Reg1, unsigned Reg2) const { 82 return MC->contains(Reg1, Reg2); 83 } 84 85 /// getSize - Return the size of the register in bytes, which is also the size 86 /// of a stack slot allocated to hold a spilled copy of this register. 87 unsigned getSize() const { return MC->getSize(); } 88 89 /// getAlignment - Return the minimum required alignment for a register of 90 /// this class. 91 unsigned getAlignment() const { return MC->getAlignment(); } 92 93 /// getCopyCost - Return the cost of copying a value between two registers in 94 /// this class. A negative number means the register class is very expensive 95 /// to copy e.g. status flag register classes. 96 int getCopyCost() const { return MC->getCopyCost(); } 97 98 /// isAllocatable - Return true if this register class may be used to create 99 /// virtual registers. 100 bool isAllocatable() const { return MC->isAllocatable(); } 101 102 /// hasType - return true if this TargetRegisterClass has the ValueType vt. 103 /// 104 bool hasType(EVT vt) const { 105 for(int i = 0; VTs[i] != MVT::Other; ++i) 106 if (EVT(VTs[i]) == vt) 107 return true; 108 return false; 109 } 110 111 /// vt_begin / vt_end - Loop over all of the value types that can be 112 /// represented by values in this register class. 113 vt_iterator vt_begin() const { 114 return VTs; 115 } 116 117 vt_iterator vt_end() const { 118 vt_iterator I = VTs; 119 while (*I != MVT::Other) ++I; 120 return I; 121 } 122 123 /// hasSubClass - return true if the specified TargetRegisterClass 124 /// is a proper sub-class of this TargetRegisterClass. 125 bool hasSubClass(const TargetRegisterClass *RC) const { 126 return RC != this && hasSubClassEq(RC); 127 } 128 129 /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this 130 /// class. 131 bool hasSubClassEq(const TargetRegisterClass *RC) const { 132 unsigned ID = RC->getID(); 133 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 134 } 135 136 /// hasSuperClass - return true if the specified TargetRegisterClass is a 137 /// proper super-class of this TargetRegisterClass. 138 bool hasSuperClass(const TargetRegisterClass *RC) const { 139 return RC->hasSubClass(this); 140 } 141 142 /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this 143 /// class. 144 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 145 return RC->hasSubClassEq(this); 146 } 147 148 /// getSubClassMask - Returns a bit vector of subclasses, including this one. 149 /// The vector is indexed by class IDs, see hasSubClassEq() above for how to 150 /// use it. 151 const uint32_t *getSubClassMask() const { 152 return SubClassMask; 153 } 154 155 /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices 156 /// that project some super-register class into this register class. The list 157 /// has an entry for each Idx such that: 158 /// 159 /// There exists SuperRC where: 160 /// For all Reg in SuperRC: 161 /// this->contains(Reg:Idx) 162 /// 163 const uint16_t *getSuperRegIndices() const { 164 return SuperRegIndices; 165 } 166 167 /// getSuperClasses - Returns a NULL terminated list of super-classes. The 168 /// classes are ordered by ID which is also a topological ordering from large 169 /// to small classes. The list does NOT include the current class. 170 sc_iterator getSuperClasses() const { 171 return SuperClasses; 172 } 173 174 /// isASubClass - return true if this TargetRegisterClass is a subset 175 /// class of at least one other TargetRegisterClass. 176 bool isASubClass() const { 177 return SuperClasses[0] != 0; 178 } 179 180 /// getRawAllocationOrder - Returns the preferred order for allocating 181 /// registers from this register class in MF. The raw order comes directly 182 /// from the .td file and may include reserved registers that are not 183 /// allocatable. Register allocators should also make sure to allocate 184 /// callee-saved registers only after all the volatiles are used. The 185 /// RegisterClassInfo class provides filtered allocation orders with 186 /// callee-saved registers moved to the end. 187 /// 188 /// The MachineFunction argument can be used to tune the allocatable 189 /// registers based on the characteristics of the function, subtarget, or 190 /// other criteria. 191 /// 192 /// By default, this method returns all registers in the class. 193 /// 194 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 195 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 196 } 197 }; 198 199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about 200 /// registers. These are used by codegen, not by MC. 201 struct TargetRegisterInfoDesc { 202 unsigned CostPerUse; // Extra cost of instructions using register. 203 bool inAllocatableClass; // Register belongs to an allocatable regclass. 204 }; 205 206 /// Each TargetRegisterClass has a per register weight, and weight 207 /// limit which must be less than the limits of its pressure sets. 208 struct RegClassWeight { 209 unsigned RegWeight; 210 unsigned WeightLimit; 211 }; 212 213 /// TargetRegisterInfo base class - We assume that the target defines a static 214 /// array of TargetRegisterDesc objects that represent all of the machine 215 /// registers that the target has. As such, we simply have to track a pointer 216 /// to this array so that we can turn register number into a register 217 /// descriptor. 218 /// 219 class TargetRegisterInfo : public MCRegisterInfo { 220 public: 221 typedef const TargetRegisterClass * const * regclass_iterator; 222 private: 223 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 224 const char *const *SubRegIndexNames; // Names of subreg indexes. 225 // Pointer to array of lane masks, one per sub-reg index. 226 const unsigned *SubRegIndexLaneMasks; 227 228 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 229 unsigned CoveringLanes; 230 231 protected: 232 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 233 regclass_iterator RegClassBegin, 234 regclass_iterator RegClassEnd, 235 const char *const *SRINames, 236 const unsigned *SRILaneMasks, 237 unsigned CoveringLanes); 238 virtual ~TargetRegisterInfo(); 239 public: 240 241 // Register numbers can represent physical registers, virtual registers, and 242 // sometimes stack slots. The unsigned values are divided into these ranges: 243 // 244 // 0 Not a register, can be used as a sentinel. 245 // [1;2^30) Physical registers assigned by TableGen. 246 // [2^30;2^31) Stack slots. (Rarely used.) 247 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 248 // 249 // Further sentinels can be allocated from the small negative integers. 250 // DenseMapInfo<unsigned> uses -1u and -2u. 251 252 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 253 /// frame index in a variable that normally holds a register. isStackSlot() 254 /// returns true if Reg is in the range used for stack slots. 255 /// 256 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 257 /// slots, so if a variable may contains a stack slot, always check 258 /// isStackSlot() first. 259 /// 260 static bool isStackSlot(unsigned Reg) { 261 return int(Reg) >= (1 << 30); 262 } 263 264 /// stackSlot2Index - Compute the frame index from a register value 265 /// representing a stack slot. 266 static int stackSlot2Index(unsigned Reg) { 267 assert(isStackSlot(Reg) && "Not a stack slot"); 268 return int(Reg - (1u << 30)); 269 } 270 271 /// index2StackSlot - Convert a non-negative frame index to a stack slot 272 /// register value. 273 static unsigned index2StackSlot(int FI) { 274 assert(FI >= 0 && "Cannot hold a negative frame index."); 275 return FI + (1u << 30); 276 } 277 278 /// isPhysicalRegister - Return true if the specified register number is in 279 /// the physical register namespace. 280 static bool isPhysicalRegister(unsigned Reg) { 281 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 282 return int(Reg) > 0; 283 } 284 285 /// isVirtualRegister - Return true if the specified register number is in 286 /// the virtual register namespace. 287 static bool isVirtualRegister(unsigned Reg) { 288 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 289 return int(Reg) < 0; 290 } 291 292 /// virtReg2Index - Convert a virtual register number to a 0-based index. 293 /// The first virtual register in a function will get the index 0. 294 static unsigned virtReg2Index(unsigned Reg) { 295 assert(isVirtualRegister(Reg) && "Not a virtual register"); 296 return Reg & ~(1u << 31); 297 } 298 299 /// index2VirtReg - Convert a 0-based index to a virtual register number. 300 /// This is the inverse operation of VirtReg2IndexFunctor below. 301 static unsigned index2VirtReg(unsigned Index) { 302 return Index | (1u << 31); 303 } 304 305 /// getMinimalPhysRegClass - Returns the Register Class of a physical 306 /// register of the given type, picking the most sub register class of 307 /// the right type that contains this physreg. 308 const TargetRegisterClass * 309 getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const; 310 311 /// getAllocatableClass - Return the maximal subclass of the given register 312 /// class that is alloctable, or NULL. 313 const TargetRegisterClass * 314 getAllocatableClass(const TargetRegisterClass *RC) const; 315 316 /// getAllocatableSet - Returns a bitset indexed by register number 317 /// indicating if a register is allocatable or not. If a register class is 318 /// specified, returns the subset for the class. 319 BitVector getAllocatableSet(const MachineFunction &MF, 320 const TargetRegisterClass *RC = NULL) const; 321 322 /// getCostPerUse - Return the additional cost of using this register instead 323 /// of other registers in its class. 324 unsigned getCostPerUse(unsigned RegNo) const { 325 return InfoDesc[RegNo].CostPerUse; 326 } 327 328 /// isInAllocatableClass - Return true if the register is in the allocation 329 /// of any register class. 330 bool isInAllocatableClass(unsigned RegNo) const { 331 return InfoDesc[RegNo].inAllocatableClass; 332 } 333 334 /// getSubRegIndexName - Return the human-readable symbolic target-specific 335 /// name for the specified SubRegIndex. 336 const char *getSubRegIndexName(unsigned SubIdx) const { 337 assert(SubIdx && SubIdx < getNumSubRegIndices() && 338 "This is not a subregister index"); 339 return SubRegIndexNames[SubIdx-1]; 340 } 341 342 /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a 343 /// register that are covered by SubIdx. 344 /// 345 /// Lane masks for sub-register indices are similar to register units for 346 /// physical registers. The individual bits in a lane mask can't be assigned 347 /// any specific meaning. They can be used to check if two sub-register 348 /// indices overlap. 349 /// 350 /// If the target has a register such that: 351 /// 352 /// getSubReg(Reg, A) overlaps getSubReg(Reg, B) 353 /// 354 /// then: 355 /// 356 /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0 357 /// 358 /// The converse is not necessarily true. If two lane masks have a common 359 /// bit, the corresponding sub-registers may not overlap, but it can be 360 /// assumed that they usually will. 361 unsigned getSubRegIndexLaneMask(unsigned SubIdx) const { 362 // SubIdx == 0 is allowed, it has the lane mask ~0u. 363 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 364 return SubRegIndexLaneMasks[SubIdx]; 365 } 366 367 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 368 /// used to determine if sub-registers overlap - they can't be used to 369 /// determine if a set of sub-registers completely cover another 370 /// sub-register. 371 /// 372 /// The X86 general purpose registers have two lanes corresponding to the 373 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 374 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 375 /// sub_32bit sub-register. 376 /// 377 /// On the other hand, the ARM NEON lanes fully cover their registers: The 378 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 379 /// This is related to the CoveredBySubRegs property on register definitions. 380 /// 381 /// This function returns a bit mask of lanes that completely cover their 382 /// sub-registers. More precisely, given: 383 /// 384 /// Covering = getCoveringLanes(); 385 /// MaskA = getSubRegIndexLaneMask(SubA); 386 /// MaskB = getSubRegIndexLaneMask(SubB); 387 /// 388 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 389 /// SubB. 390 unsigned getCoveringLanes() const { return CoveringLanes; } 391 392 /// regsOverlap - Returns true if the two registers are equal or alias each 393 /// other. The registers may be virtual register. 394 bool regsOverlap(unsigned regA, unsigned regB) const { 395 if (regA == regB) return true; 396 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 397 return false; 398 399 // Regunits are numerically ordered. Find a common unit. 400 MCRegUnitIterator RUA(regA, this); 401 MCRegUnitIterator RUB(regB, this); 402 do { 403 if (*RUA == *RUB) return true; 404 if (*RUA < *RUB) ++RUA; 405 else ++RUB; 406 } while (RUA.isValid() && RUB.isValid()); 407 return false; 408 } 409 410 /// hasRegUnit - Returns true if Reg contains RegUnit. 411 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 412 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 413 if (*Units == RegUnit) 414 return true; 415 return false; 416 } 417 418 /// getCalleeSavedRegs - Return a null-terminated list of all of the 419 /// callee saved registers on this target. The register should be in the 420 /// order of desired callee-save stack frame offset. The first register is 421 /// closest to the incoming stack pointer if stack grows down, and vice versa. 422 /// 423 virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0) 424 const = 0; 425 426 /// getCallPreservedMask - Return a mask of call-preserved registers for the 427 /// given calling convention on the current sub-target. The mask should 428 /// include all call-preserved aliases. This is used by the register 429 /// allocator to determine which registers can be live across a call. 430 /// 431 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 432 /// A set bit indicates that all bits of the corresponding register are 433 /// preserved across the function call. The bit mask is expected to be 434 /// sub-register complete, i.e. if A is preserved, so are all its 435 /// sub-registers. 436 /// 437 /// Bits are numbered from the LSB, so the bit for physical register Reg can 438 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 439 /// 440 /// A NULL pointer means that no register mask will be used, and call 441 /// instructions should use implicit-def operands to indicate call clobbered 442 /// registers. 443 /// 444 virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const { 445 // The default mask clobbers everything. All targets should override. 446 return 0; 447 } 448 449 /// getReservedRegs - Returns a bitset indexed by physical register number 450 /// indicating if a register is a special register that has particular uses 451 /// and should be considered unavailable at all times, e.g. SP, RA. This is 452 /// used by register scavenger to determine what registers are free. 453 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 454 455 /// getMatchingSuperReg - Return a super-register of the specified register 456 /// Reg so its sub-register of index SubIdx is Reg. 457 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 458 const TargetRegisterClass *RC) const { 459 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 460 } 461 462 /// getMatchingSuperRegClass - Return a subclass of the specified register 463 /// class A so that each register in it has a sub-register of the 464 /// specified sub-register index which is in the specified register class B. 465 /// 466 /// TableGen will synthesize missing A sub-classes. 467 virtual const TargetRegisterClass * 468 getMatchingSuperRegClass(const TargetRegisterClass *A, 469 const TargetRegisterClass *B, unsigned Idx) const; 470 471 /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that 472 /// supports the sub-register index Idx. 473 /// If no such sub-class exists, return NULL. 474 /// If all registers in RC already have an Idx sub-register, return RC. 475 /// 476 /// TableGen generates a version of this function that is good enough in most 477 /// cases. Targets can override if they have constraints that TableGen 478 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 479 /// supported by the full GR32 register class in 64-bit mode, but only by the 480 /// GR32_ABCD regiister class in 32-bit mode. 481 /// 482 /// TableGen will synthesize missing RC sub-classes. 483 virtual const TargetRegisterClass * 484 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 485 assert(Idx == 0 && "Target has no sub-registers"); 486 return RC; 487 } 488 489 /// composeSubRegIndices - Return the subregister index you get from composing 490 /// two subregister indices. 491 /// 492 /// The special null sub-register index composes as the identity. 493 /// 494 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 495 /// returns c. Note that composeSubRegIndices does not tell you about illegal 496 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 497 /// b, composeSubRegIndices doesn't tell you. 498 /// 499 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 500 /// ssub_0:S0 - ssub_3:S3 subregs. 501 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. 502 /// 503 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 504 if (!a) return b; 505 if (!b) return a; 506 return composeSubRegIndicesImpl(a, b); 507 } 508 509 protected: 510 /// Overridden by TableGen in targets that have sub-registers. 511 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 512 llvm_unreachable("Target has no sub-registers"); 513 } 514 515 public: 516 /// getCommonSuperRegClass - Find a common super-register class if it exists. 517 /// 518 /// Find a register class, SuperRC and two sub-register indices, PreA and 519 /// PreB, such that: 520 /// 521 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 522 /// 523 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 524 /// 525 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 526 /// 527 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 528 /// requirements, and there is no register class with a smaller spill size 529 /// that satisfies the requirements. 530 /// 531 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 532 /// 533 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 534 /// that case, the returned register class will be a sub-class of the 535 /// corresponding argument register class. 536 /// 537 /// The function returns NULL if no register class can be found. 538 /// 539 const TargetRegisterClass* 540 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 541 const TargetRegisterClass *RCB, unsigned SubB, 542 unsigned &PreA, unsigned &PreB) const; 543 544 //===--------------------------------------------------------------------===// 545 // Register Class Information 546 // 547 548 /// Register class iterators 549 /// 550 regclass_iterator regclass_begin() const { return RegClassBegin; } 551 regclass_iterator regclass_end() const { return RegClassEnd; } 552 553 unsigned getNumRegClasses() const { 554 return (unsigned)(regclass_end()-regclass_begin()); 555 } 556 557 /// getRegClass - Returns the register class associated with the enumeration 558 /// value. See class MCOperandInfo. 559 const TargetRegisterClass *getRegClass(unsigned i) const { 560 assert(i < getNumRegClasses() && "Register Class ID out of range"); 561 return RegClassBegin[i]; 562 } 563 564 /// getCommonSubClass - find the largest common subclass of A and B. Return 565 /// NULL if there is no common subclass. 566 const TargetRegisterClass * 567 getCommonSubClass(const TargetRegisterClass *A, 568 const TargetRegisterClass *B) const; 569 570 /// getPointerRegClass - Returns a TargetRegisterClass used for pointer 571 /// values. If a target supports multiple different pointer register classes, 572 /// kind specifies which one is indicated. 573 virtual const TargetRegisterClass * 574 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 575 llvm_unreachable("Target didn't implement getPointerRegClass!"); 576 } 577 578 /// getCrossCopyRegClass - Returns a legal register class to copy a register 579 /// in the specified class to or from. If it is possible to copy the register 580 /// directly without using a cross register class copy, return the specified 581 /// RC. Returns NULL if it is not possible to copy between a two registers of 582 /// the specified class. 583 virtual const TargetRegisterClass * 584 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 585 return RC; 586 } 587 588 /// getLargestLegalSuperClass - Returns the largest super class of RC that is 589 /// legal to use in the current sub-target and has the same spill size. 590 /// The returned register class can be used to create virtual registers which 591 /// means that all its registers can be copied and spilled. 592 virtual const TargetRegisterClass* 593 getLargestLegalSuperClass(const TargetRegisterClass *RC) const { 594 /// The default implementation is very conservative and doesn't allow the 595 /// register allocator to inflate register classes. 596 return RC; 597 } 598 599 /// getRegPressureLimit - Return the register pressure "high water mark" for 600 /// the specific register class. The scheduler is in high register pressure 601 /// mode (for the specific register class) if it goes over the limit. 602 /// 603 /// Note: this is the old register pressure model that relies on a manually 604 /// specified representative register class per value type. 605 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 606 MachineFunction &MF) const { 607 return 0; 608 } 609 610 /// Get the weight in units of pressure for this register class. 611 virtual const RegClassWeight &getRegClassWeight( 612 const TargetRegisterClass *RC) const = 0; 613 614 /// Get the weight in units of pressure for this register unit. 615 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 616 617 /// Get the number of dimensions of register pressure. 618 virtual unsigned getNumRegPressureSets() const = 0; 619 620 /// Get the name of this register unit pressure set. 621 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 622 623 /// Get the register unit pressure limit for this dimension. 624 /// This limit must be adjusted dynamically for reserved registers. 625 virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0; 626 627 /// Get the dimensions of register pressure impacted by this register class. 628 /// Returns a -1 terminated array of pressure set IDs. 629 virtual const int *getRegClassPressureSets( 630 const TargetRegisterClass *RC) const = 0; 631 632 /// Get the dimensions of register pressure impacted by this register unit. 633 /// Returns a -1 terminated array of pressure set IDs. 634 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 635 636 /// Get a list of 'hint' registers that the register allocator should try 637 /// first when allocating a physical register for the virtual register 638 /// VirtReg. These registers are effectively moved to the front of the 639 /// allocation order. 640 /// 641 /// The Order argument is the allocation order for VirtReg's register class 642 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 643 /// come from Order, and they must not be reserved. 644 /// 645 /// The default implementation of this function can resolve 646 /// target-independent hints provided to MRI::setRegAllocationHint with 647 /// HintType == 0. Targets that override this function should defer to the 648 /// default implementation if they have no reason to change the allocation 649 /// order for VirtReg. There may be target-independent hints. 650 virtual void getRegAllocationHints(unsigned VirtReg, 651 ArrayRef<MCPhysReg> Order, 652 SmallVectorImpl<MCPhysReg> &Hints, 653 const MachineFunction &MF, 654 const VirtRegMap *VRM = 0) const; 655 656 /// avoidWriteAfterWrite - Return true if the register allocator should avoid 657 /// writing a register from RC in two consecutive instructions. 658 /// This can avoid pipeline stalls on certain architectures. 659 /// It does cause increased register pressure, though. 660 virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const { 661 return false; 662 } 663 664 /// UpdateRegAllocHint - A callback to allow target a chance to update 665 /// register allocation hints when a register is "changed" (e.g. coalesced) 666 /// to another register. e.g. On ARM, some virtual registers should target 667 /// register pairs, if one of pair is coalesced to another register, the 668 /// allocation hint of the other half of the pair should be changed to point 669 /// to the new register. 670 virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, 671 MachineFunction &MF) const { 672 // Do nothing. 673 } 674 675 /// requiresRegisterScavenging - returns true if the target requires (and can 676 /// make use of) the register scavenger. 677 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 678 return false; 679 } 680 681 /// useFPForScavengingIndex - returns true if the target wants to use 682 /// frame pointer based accesses to spill to the scavenger emergency spill 683 /// slot. 684 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 685 return true; 686 } 687 688 /// requiresFrameIndexScavenging - returns true if the target requires post 689 /// PEI scavenging of registers for materializing frame index constants. 690 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 691 return false; 692 } 693 694 /// requiresVirtualBaseRegisters - Returns true if the target wants the 695 /// LocalStackAllocation pass to be run and virtual base registers 696 /// used for more efficient stack access. 697 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 698 return false; 699 } 700 701 /// hasReservedSpillSlot - Return true if target has reserved a spill slot in 702 /// the stack frame of the given function for the specified register. e.g. On 703 /// x86, if the frame register is required, the first fixed stack object is 704 /// reserved as its spill slot. This tells PEI not to create a new stack frame 705 /// object for the given register. It should be called only after 706 /// processFunctionBeforeCalleeSavedScan(). 707 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 708 int &FrameIdx) const { 709 return false; 710 } 711 712 /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked 713 /// after register allocation. 714 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 715 return false; 716 } 717 718 /// needsStackRealignment - true if storage within the function requires the 719 /// stack pointer to be aligned more than the normal calling convention calls 720 /// for. 721 virtual bool needsStackRealignment(const MachineFunction &MF) const { 722 return false; 723 } 724 725 /// getFrameIndexInstrOffset - Get the offset from the referenced frame 726 /// index in the instruction, if there is one. 727 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 728 int Idx) const { 729 return 0; 730 } 731 732 /// needsFrameBaseReg - Returns true if the instruction's frame index 733 /// reference would be better served by a base register other than FP 734 /// or SP. Used by LocalStackFrameAllocation to determine which frame index 735 /// references it should create new base registers for. 736 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 737 return false; 738 } 739 740 /// materializeFrameBaseRegister - Insert defining instruction(s) for 741 /// BaseReg to be a pointer to FrameIdx before insertion point I. 742 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 743 unsigned BaseReg, int FrameIdx, 744 int64_t Offset) const { 745 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 746 "target"); 747 } 748 749 /// resolveFrameIndex - Resolve a frame index operand of an instruction 750 /// to reference the indicated base register plus offset instead. 751 virtual void resolveFrameIndex(MachineBasicBlock::iterator I, 752 unsigned BaseReg, int64_t Offset) const { 753 llvm_unreachable("resolveFrameIndex does not exist on this target"); 754 } 755 756 /// isFrameOffsetLegal - Determine whether a given offset immediate is 757 /// encodable to resolve a frame index. 758 virtual bool isFrameOffsetLegal(const MachineInstr *MI, 759 int64_t Offset) const { 760 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 761 } 762 763 764 /// saveScavengerRegister - Spill the register so it can be used by the 765 /// register scavenger. Return true if the register was spilled, false 766 /// otherwise. If this function does not spill the register, the scavenger 767 /// will instead spill it to the emergency spill slot. 768 /// 769 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 770 MachineBasicBlock::iterator I, 771 MachineBasicBlock::iterator &UseMI, 772 const TargetRegisterClass *RC, 773 unsigned Reg) const { 774 return false; 775 } 776 777 /// eliminateFrameIndex - This method must be overriden to eliminate abstract 778 /// frame indices from instructions which may use them. The instruction 779 /// referenced by the iterator contains an MO_FrameIndex operand which must be 780 /// eliminated by this method. This method may modify or replace the 781 /// specified instruction, as long as it keeps the iterator pointing at the 782 /// finished product. SPAdj is the SP adjustment due to call frame setup 783 /// instruction. FIOperandNum is the FI operand number. 784 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 785 int SPAdj, unsigned FIOperandNum, 786 RegScavenger *RS = NULL) const = 0; 787 788 //===--------------------------------------------------------------------===// 789 /// Debug information queries. 790 791 /// getFrameRegister - This method should return the register used as a base 792 /// for values allocated in the current stack frame. 793 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 794 795 /// getCompactUnwindRegNum - This function maps the register to the number for 796 /// compact unwind encoding. Return -1 if the register isn't valid. 797 virtual int getCompactUnwindRegNum(unsigned, bool) const { 798 return -1; 799 } 800 }; 801 802 803 //===----------------------------------------------------------------------===// 804 // SuperRegClassIterator 805 //===----------------------------------------------------------------------===// 806 // 807 // Iterate over the possible super-registers for a given register class. The 808 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 809 // possible classes of super-registers. 810 // 811 // Each bit mask will have at least one set bit, and each set bit in Mask 812 // corresponds to a SuperRC such that: 813 // 814 // For all Reg in SuperRC: Reg:Idx is in RC. 815 // 816 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 817 // also satisfies the above requirement, assuming Reg:0 == Reg. 818 // 819 class SuperRegClassIterator { 820 const unsigned RCMaskWords; 821 unsigned SubReg; 822 const uint16_t *Idx; 823 const uint32_t *Mask; 824 825 public: 826 /// Create a SuperRegClassIterator that visits all the super-register classes 827 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 828 SuperRegClassIterator(const TargetRegisterClass *RC, 829 const TargetRegisterInfo *TRI, 830 bool IncludeSelf = false) 831 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 832 SubReg(0), 833 Idx(RC->getSuperRegIndices()), 834 Mask(RC->getSubClassMask()) { 835 if (!IncludeSelf) 836 ++*this; 837 } 838 839 /// Returns true if this iterator is still pointing at a valid entry. 840 bool isValid() const { return Idx; } 841 842 /// Returns the current sub-register index. 843 unsigned getSubReg() const { return SubReg; } 844 845 /// Returns the bit mask if register classes that getSubReg() projects into 846 /// RC. 847 const uint32_t *getMask() const { return Mask; } 848 849 /// Advance iterator to the next entry. 850 void operator++() { 851 assert(isValid() && "Cannot move iterator past end."); 852 Mask += RCMaskWords; 853 SubReg = *Idx++; 854 if (!SubReg) 855 Idx = 0; 856 } 857 }; 858 859 // This is useful when building IndexedMaps keyed on virtual registers 860 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> { 861 unsigned operator()(unsigned Reg) const { 862 return TargetRegisterInfo::virtReg2Index(Reg); 863 } 864 }; 865 866 /// PrintReg - Helper class for printing registers on a raw_ostream. 867 /// Prints virtual and physical registers with or without a TRI instance. 868 /// 869 /// The format is: 870 /// %noreg - NoRegister 871 /// %vreg5 - a virtual register. 872 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI). 873 /// %EAX - a physical register 874 /// %physreg17 - a physical register when no TRI instance given. 875 /// 876 /// Usage: OS << PrintReg(Reg, TRI) << '\n'; 877 /// 878 class PrintReg { 879 const TargetRegisterInfo *TRI; 880 unsigned Reg; 881 unsigned SubIdx; 882 public: 883 explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, 884 unsigned subidx = 0) 885 : TRI(tri), Reg(reg), SubIdx(subidx) {} 886 void print(raw_ostream&) const; 887 }; 888 889 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) { 890 PR.print(OS); 891 return OS; 892 } 893 894 /// PrintRegUnit - Helper class for printing register units on a raw_ostream. 895 /// 896 /// Register units are named after their root registers: 897 /// 898 /// AL - Single root. 899 /// FP0~ST7 - Dual roots. 900 /// 901 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n'; 902 /// 903 class PrintRegUnit { 904 const TargetRegisterInfo *TRI; 905 unsigned Unit; 906 public: 907 PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri) 908 : TRI(tri), Unit(unit) {} 909 void print(raw_ostream&) const; 910 }; 911 912 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) { 913 PR.print(OS); 914 return OS; 915 } 916 917 } // End llvm namespace 918 919 #endif 920