Home | History | Annotate | Download | only in JIT
      1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a MachineCodeEmitter object that is used by the JIT to
     11 // write machine code to memory and remember where relocatable values are.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "JIT.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/OwningPtr.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/ADT/ValueMap.h"
     23 #include "llvm/CodeGen/JITCodeEmitter.h"
     24 #include "llvm/CodeGen/MachineCodeInfo.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/CodeGen/MachineRelocation.h"
     30 #include "llvm/DebugInfo.h"
     31 #include "llvm/ExecutionEngine/GenericValue.h"
     32 #include "llvm/ExecutionEngine/JITEventListener.h"
     33 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     34 #include "llvm/IR/Constants.h"
     35 #include "llvm/IR/DataLayout.h"
     36 #include "llvm/IR/DerivedTypes.h"
     37 #include "llvm/IR/Module.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/Disassembler.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/ManagedStatic.h"
     42 #include "llvm/Support/Memory.h"
     43 #include "llvm/Support/MutexGuard.h"
     44 #include "llvm/Support/ValueHandle.h"
     45 #include "llvm/Support/raw_ostream.h"
     46 #include "llvm/Target/TargetInstrInfo.h"
     47 #include "llvm/Target/TargetJITInfo.h"
     48 #include "llvm/Target/TargetMachine.h"
     49 #include "llvm/Target/TargetOptions.h"
     50 #include <algorithm>
     51 #ifndef NDEBUG
     52 #include <iomanip>
     53 #endif
     54 using namespace llvm;
     55 
     56 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
     57 STATISTIC(NumRelos, "Number of relocations applied");
     58 STATISTIC(NumRetries, "Number of retries with more memory");
     59 
     60 
     61 // A declaration may stop being a declaration once it's fully read from bitcode.
     62 // This function returns true if F is fully read and is still a declaration.
     63 static bool isNonGhostDeclaration(const Function *F) {
     64   return F->isDeclaration() && !F->isMaterializable();
     65 }
     66 
     67 //===----------------------------------------------------------------------===//
     68 // JIT lazy compilation code.
     69 //
     70 namespace {
     71   class JITEmitter;
     72   class JITResolverState;
     73 
     74   template<typename ValueTy>
     75   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
     76     typedef JITResolverState *ExtraData;
     77     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
     78       llvm_unreachable("The JIT doesn't know how to handle a"
     79                        " RAUW on a value it has emitted.");
     80     }
     81   };
     82 
     83   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
     84     typedef JITResolverState *ExtraData;
     85     static void onDelete(JITResolverState *JRS, Function *F);
     86   };
     87 
     88   class JITResolverState {
     89   public:
     90     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
     91       FunctionToLazyStubMapTy;
     92     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
     93     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
     94                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
     95     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
     96   private:
     97     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
     98     /// particular function so that we can reuse them if necessary.
     99     FunctionToLazyStubMapTy FunctionToLazyStubMap;
    100 
    101     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    102     /// site corresponds to, and vice versa.
    103     CallSiteToFunctionMapTy CallSiteToFunctionMap;
    104     FunctionToCallSitesMapTy FunctionToCallSitesMap;
    105 
    106     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    107     /// particular GlobalVariable so that we can reuse them if necessary.
    108     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
    109 
    110 #ifndef NDEBUG
    111     /// Instance of the JIT this ResolverState serves.
    112     JIT *TheJIT;
    113 #endif
    114 
    115   public:
    116     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
    117                                  FunctionToCallSitesMap(this) {
    118 #ifndef NDEBUG
    119       TheJIT = jit;
    120 #endif
    121     }
    122 
    123     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
    124       const MutexGuard& locked) {
    125       assert(locked.holds(TheJIT->lock));
    126       return FunctionToLazyStubMap;
    127     }
    128 
    129     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
    130       assert(lck.holds(TheJIT->lock));
    131       return GlobalToIndirectSymMap;
    132     }
    133 
    134     std::pair<void *, Function *> LookupFunctionFromCallSite(
    135         const MutexGuard &locked, void *CallSite) const {
    136       assert(locked.holds(TheJIT->lock));
    137 
    138       // The address given to us for the stub may not be exactly right, it
    139       // might be a little bit after the stub.  As such, use upper_bound to
    140       // find it.
    141       CallSiteToFunctionMapTy::const_iterator I =
    142         CallSiteToFunctionMap.upper_bound(CallSite);
    143       assert(I != CallSiteToFunctionMap.begin() &&
    144              "This is not a known call site!");
    145       --I;
    146       return *I;
    147     }
    148 
    149     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
    150       assert(locked.holds(TheJIT->lock));
    151 
    152       bool Inserted = CallSiteToFunctionMap.insert(
    153           std::make_pair(CallSite, F)).second;
    154       (void)Inserted;
    155       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
    156       FunctionToCallSitesMap[F].insert(CallSite);
    157     }
    158 
    159     void EraseAllCallSitesForPrelocked(Function *F);
    160 
    161     // Erases _all_ call sites regardless of their function.  This is used to
    162     // unregister the stub addresses from the StubToResolverMap in
    163     // ~JITResolver().
    164     void EraseAllCallSitesPrelocked();
    165   };
    166 
    167   /// JITResolver - Keep track of, and resolve, call sites for functions that
    168   /// have not yet been compiled.
    169   class JITResolver {
    170     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    171     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    172     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
    173 
    174     /// LazyResolverFn - The target lazy resolver function that we actually
    175     /// rewrite instructions to use.
    176     TargetJITInfo::LazyResolverFn LazyResolverFn;
    177 
    178     JITResolverState state;
    179 
    180     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    181     /// for external functions.  TODO: Of course, external functions don't need
    182     /// a lazy stub.  It's actually here to make it more likely that far calls
    183     /// succeed, but no single stub can guarantee that.  I'll remove this in a
    184     /// subsequent checkin when I actually fix far calls.
    185     std::map<void*, void*> ExternalFnToStubMap;
    186 
    187     /// revGOTMap - map addresses to indexes in the GOT
    188     std::map<void*, unsigned> revGOTMap;
    189     unsigned nextGOTIndex;
    190 
    191     JITEmitter &JE;
    192 
    193     /// Instance of JIT corresponding to this Resolver.
    194     JIT *TheJIT;
    195 
    196   public:
    197     explicit JITResolver(JIT &jit, JITEmitter &je)
    198       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
    199       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    200     }
    201 
    202     ~JITResolver();
    203 
    204     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    205     /// lazy-compilation stub if it has already been created.
    206     void *getLazyFunctionStubIfAvailable(Function *F);
    207 
    208     /// getLazyFunctionStub - This returns a pointer to a function's
    209     /// lazy-compilation stub, creating one on demand as needed.
    210     void *getLazyFunctionStub(Function *F);
    211 
    212     /// getExternalFunctionStub - Return a stub for the function at the
    213     /// specified address, created lazily on demand.
    214     void *getExternalFunctionStub(void *FnAddr);
    215 
    216     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    217     /// specified GV address.
    218     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
    219 
    220     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    221     /// an address.  This function only manages slots, it does not manage the
    222     /// contents of the slots or the memory associated with the GOT.
    223     unsigned getGOTIndexForAddr(void *addr);
    224 
    225     /// JITCompilerFn - This function is called to resolve a stub to a compiled
    226     /// address.  If the LLVM Function corresponding to the stub has not yet
    227     /// been compiled, this function compiles it first.
    228     static void *JITCompilerFn(void *Stub);
    229   };
    230 
    231   class StubToResolverMapTy {
    232     /// Map a stub address to a specific instance of a JITResolver so that
    233     /// lazily-compiled functions can find the right resolver to use.
    234     ///
    235     /// Guarded by Lock.
    236     std::map<void*, JITResolver*> Map;
    237 
    238     /// Guards Map from concurrent accesses.
    239     mutable sys::Mutex Lock;
    240 
    241   public:
    242     /// Registers a Stub to be resolved by Resolver.
    243     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
    244       MutexGuard guard(Lock);
    245       Map.insert(std::make_pair(Stub, Resolver));
    246     }
    247     /// Unregisters the Stub when it's invalidated.
    248     void UnregisterStubResolver(void *Stub) {
    249       MutexGuard guard(Lock);
    250       Map.erase(Stub);
    251     }
    252     /// Returns the JITResolver instance that owns the Stub.
    253     JITResolver *getResolverFromStub(void *Stub) const {
    254       MutexGuard guard(Lock);
    255       // The address given to us for the stub may not be exactly right, it might
    256       // be a little bit after the stub.  As such, use upper_bound to find it.
    257       // This is the same trick as in LookupFunctionFromCallSite from
    258       // JITResolverState.
    259       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
    260       assert(I != Map.begin() && "This is not a known stub!");
    261       --I;
    262       return I->second;
    263     }
    264     /// True if any stubs refer to the given resolver. Only used in an assert().
    265     /// O(N)
    266     bool ResolverHasStubs(JITResolver* Resolver) const {
    267       MutexGuard guard(Lock);
    268       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
    269              E = Map.end(); I != E; ++I) {
    270         if (I->second == Resolver)
    271           return true;
    272       }
    273       return false;
    274     }
    275   };
    276   /// This needs to be static so that a lazy call stub can access it with no
    277   /// context except the address of the stub.
    278   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
    279 
    280   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
    281   /// used to output functions to memory for execution.
    282   class JITEmitter : public JITCodeEmitter {
    283     JITMemoryManager *MemMgr;
    284 
    285     // When outputting a function stub in the context of some other function, we
    286     // save BufferBegin/BufferEnd/CurBufferPtr here.
    287     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    288 
    289     // When reattempting to JIT a function after running out of space, we store
    290     // the estimated size of the function we're trying to JIT here, so we can
    291     // ask the memory manager for at least this much space.  When we
    292     // successfully emit the function, we reset this back to zero.
    293     uintptr_t SizeEstimate;
    294 
    295     /// Relocations - These are the relocations that the function needs, as
    296     /// emitted.
    297     std::vector<MachineRelocation> Relocations;
    298 
    299     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    300     /// It is filled in by the StartMachineBasicBlock callback and queried by
    301     /// the getMachineBasicBlockAddress callback.
    302     std::vector<uintptr_t> MBBLocations;
    303 
    304     /// ConstantPool - The constant pool for the current function.
    305     ///
    306     MachineConstantPool *ConstantPool;
    307 
    308     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    309     ///
    310     void *ConstantPoolBase;
    311 
    312     /// ConstPoolAddresses - Addresses of individual constant pool entries.
    313     ///
    314     SmallVector<uintptr_t, 8> ConstPoolAddresses;
    315 
    316     /// JumpTable - The jump tables for the current function.
    317     ///
    318     MachineJumpTableInfo *JumpTable;
    319 
    320     /// JumpTableBase - A pointer to the first entry in the jump table.
    321     ///
    322     void *JumpTableBase;
    323 
    324     /// Resolver - This contains info about the currently resolved functions.
    325     JITResolver Resolver;
    326 
    327     /// LabelLocations - This vector is a mapping from Label ID's to their
    328     /// address.
    329     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
    330 
    331     /// MMI - Machine module info for exception informations
    332     MachineModuleInfo* MMI;
    333 
    334     // CurFn - The llvm function being emitted.  Only valid during
    335     // finishFunction().
    336     const Function *CurFn;
    337 
    338     /// Information about emitted code, which is passed to the
    339     /// JITEventListeners.  This is reset in startFunction and used in
    340     /// finishFunction.
    341     JITEvent_EmittedFunctionDetails EmissionDetails;
    342 
    343     struct EmittedCode {
    344       void *FunctionBody;  // Beginning of the function's allocation.
    345       void *Code;  // The address the function's code actually starts at.
    346       void *ExceptionTable;
    347       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
    348     };
    349     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
    350       typedef JITEmitter *ExtraData;
    351       static void onDelete(JITEmitter *, const Function*);
    352       static void onRAUW(JITEmitter *, const Function*, const Function*);
    353     };
    354     ValueMap<const Function *, EmittedCode,
    355              EmittedFunctionConfig> EmittedFunctions;
    356 
    357     DebugLoc PrevDL;
    358 
    359     /// Instance of the JIT
    360     JIT *TheJIT;
    361 
    362   public:
    363     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
    364       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
    365         EmittedFunctions(this), TheJIT(&jit) {
    366       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
    367       if (jit.getJITInfo().needsGOT()) {
    368         MemMgr->AllocateGOT();
    369         DEBUG(dbgs() << "JIT is managing a GOT\n");
    370       }
    371 
    372     }
    373     ~JITEmitter() {
    374       delete MemMgr;
    375     }
    376 
    377     JITResolver &getJITResolver() { return Resolver; }
    378 
    379     virtual void startFunction(MachineFunction &F);
    380     virtual bool finishFunction(MachineFunction &F);
    381 
    382     void emitConstantPool(MachineConstantPool *MCP);
    383     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    384     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    385 
    386     void startGVStub(const GlobalValue* GV,
    387                      unsigned StubSize, unsigned Alignment = 1);
    388     void startGVStub(void *Buffer, unsigned StubSize);
    389     void finishGVStub();
    390     virtual void *allocIndirectGV(const GlobalValue *GV,
    391                                   const uint8_t *Buffer, size_t Size,
    392                                   unsigned Alignment);
    393 
    394     /// allocateSpace - Reserves space in the current block if any, or
    395     /// allocate a new one of the given size.
    396     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
    397 
    398     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    399     /// this method does not allocate memory in the current output buffer,
    400     /// because a global may live longer than the current function.
    401     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
    402 
    403     virtual void addRelocation(const MachineRelocation &MR) {
    404       Relocations.push_back(MR);
    405     }
    406 
    407     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
    408       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
    409         MBBLocations.resize((MBB->getNumber()+1)*2);
    410       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    411       if (MBB->hasAddressTaken())
    412         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
    413                                        (void*)getCurrentPCValue());
    414       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
    415                    << (void*) getCurrentPCValue() << "]\n");
    416     }
    417 
    418     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    419     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
    420 
    421     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
    422       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
    423              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
    424       return MBBLocations[MBB->getNumber()];
    425     }
    426 
    427     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    428     /// given function.  Increase the minimum allocation size so that we get
    429     /// more memory next time.
    430     void retryWithMoreMemory(MachineFunction &F);
    431 
    432     /// deallocateMemForFunction - Deallocate all memory for the specified
    433     /// function body.
    434     void deallocateMemForFunction(const Function *F);
    435 
    436     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
    437 
    438     virtual void emitLabel(MCSymbol *Label) {
    439       LabelLocations[Label] = getCurrentPCValue();
    440     }
    441 
    442     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
    443       return &LabelLocations;
    444     }
    445 
    446     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
    447       assert(LabelLocations.count(Label) && "Label not emitted!");
    448       return LabelLocations.find(Label)->second;
    449     }
    450 
    451     virtual void setModuleInfo(MachineModuleInfo* Info) {
    452       MMI = Info;
    453     }
    454 
    455   private:
    456     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
    457                              bool MayNeedFarStub);
    458     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
    459   };
    460 }
    461 
    462 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
    463   JRS->EraseAllCallSitesForPrelocked(F);
    464 }
    465 
    466 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
    467   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
    468   if (F2C == FunctionToCallSitesMap.end())
    469     return;
    470   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    471   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
    472          E = F2C->second.end(); I != E; ++I) {
    473     S2RMap.UnregisterStubResolver(*I);
    474     bool Erased = CallSiteToFunctionMap.erase(*I);
    475     (void)Erased;
    476     assert(Erased && "Missing call site->function mapping");
    477   }
    478   FunctionToCallSitesMap.erase(F2C);
    479 }
    480 
    481 void JITResolverState::EraseAllCallSitesPrelocked() {
    482   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    483   for (CallSiteToFunctionMapTy::const_iterator
    484          I = CallSiteToFunctionMap.begin(),
    485          E = CallSiteToFunctionMap.end(); I != E; ++I) {
    486     S2RMap.UnregisterStubResolver(I->first);
    487   }
    488   CallSiteToFunctionMap.clear();
    489   FunctionToCallSitesMap.clear();
    490 }
    491 
    492 JITResolver::~JITResolver() {
    493   // No need to lock because we're in the destructor, and state isn't shared.
    494   state.EraseAllCallSitesPrelocked();
    495   assert(!StubToResolverMap->ResolverHasStubs(this) &&
    496          "Resolver destroyed with stubs still alive.");
    497 }
    498 
    499 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
    500 /// if it has already been created.
    501 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
    502   MutexGuard locked(TheJIT->lock);
    503 
    504   // If we already have a stub for this function, recycle it.
    505   return state.getFunctionToLazyStubMap(locked).lookup(F);
    506 }
    507 
    508 /// getFunctionStub - This returns a pointer to a function stub, creating
    509 /// one on demand as needed.
    510 void *JITResolver::getLazyFunctionStub(Function *F) {
    511   MutexGuard locked(TheJIT->lock);
    512 
    513   // If we already have a lazy stub for this function, recycle it.
    514   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
    515   if (Stub) return Stub;
    516 
    517   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
    518   // must resolve the symbol now.
    519   void *Actual = TheJIT->isCompilingLazily()
    520     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
    521 
    522   // If this is an external declaration, attempt to resolve the address now
    523   // to place in the stub.
    524   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    525     Actual = TheJIT->getPointerToFunction(F);
    526 
    527     // If we resolved the symbol to a null address (eg. a weak external)
    528     // don't emit a stub. Return a null pointer to the application.
    529     if (!Actual) return 0;
    530   }
    531 
    532   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    533   JE.startGVStub(F, SL.Size, SL.Alignment);
    534   // Codegen a new stub, calling the lazy resolver or the actual address of the
    535   // external function, if it was resolved.
    536   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
    537   JE.finishGVStub();
    538 
    539   if (Actual != (void*)(intptr_t)LazyResolverFn) {
    540     // If we are getting the stub for an external function, we really want the
    541     // address of the stub in the GlobalAddressMap for the JIT, not the address
    542     // of the external function.
    543     TheJIT->updateGlobalMapping(F, Stub);
    544   }
    545 
    546   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
    547         << F->getName() << "'\n");
    548 
    549   if (TheJIT->isCompilingLazily()) {
    550     // Register this JITResolver as the one corresponding to this call site so
    551     // JITCompilerFn will be able to find it.
    552     StubToResolverMap->RegisterStubResolver(Stub, this);
    553 
    554     // Finally, keep track of the stub-to-Function mapping so that the
    555     // JITCompilerFn knows which function to compile!
    556     state.AddCallSite(locked, Stub, F);
    557   } else if (!Actual) {
    558     // If we are JIT'ing non-lazily but need to call a function that does not
    559     // exist yet, add it to the JIT's work list so that we can fill in the
    560     // stub address later.
    561     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
    562            "'Actual' should have been set above.");
    563     TheJIT->addPendingFunction(F);
    564   }
    565 
    566   return Stub;
    567 }
    568 
    569 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
    570 /// GV address.
    571 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
    572   MutexGuard locked(TheJIT->lock);
    573 
    574   // If we already have a stub for this global variable, recycle it.
    575   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
    576   if (IndirectSym) return IndirectSym;
    577 
    578   // Otherwise, codegen a new indirect symbol.
    579   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
    580                                                                 JE);
    581 
    582   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
    583         << "] for GV '" << GV->getName() << "'\n");
    584 
    585   return IndirectSym;
    586 }
    587 
    588 /// getExternalFunctionStub - Return a stub for the function at the
    589 /// specified address, created lazily on demand.
    590 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
    591   // If we already have a stub for this function, recycle it.
    592   void *&Stub = ExternalFnToStubMap[FnAddr];
    593   if (Stub) return Stub;
    594 
    595   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    596   JE.startGVStub(0, SL.Size, SL.Alignment);
    597   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
    598   JE.finishGVStub();
    599 
    600   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
    601                << "] for external function at '" << FnAddr << "'\n");
    602   return Stub;
    603 }
    604 
    605 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
    606   unsigned idx = revGOTMap[addr];
    607   if (!idx) {
    608     idx = ++nextGOTIndex;
    609     revGOTMap[addr] = idx;
    610     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
    611                  << addr << "]\n");
    612   }
    613   return idx;
    614 }
    615 
    616 /// JITCompilerFn - This function is called when a lazy compilation stub has
    617 /// been entered.  It looks up which function this stub corresponds to, compiles
    618 /// it if necessary, then returns the resultant function pointer.
    619 void *JITResolver::JITCompilerFn(void *Stub) {
    620   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
    621   assert(JR && "Unable to find the corresponding JITResolver to the call site");
    622 
    623   Function* F = 0;
    624   void* ActualPtr = 0;
    625 
    626   {
    627     // Only lock for getting the Function. The call getPointerToFunction made
    628     // in this function might trigger function materializing, which requires
    629     // JIT lock to be unlocked.
    630     MutexGuard locked(JR->TheJIT->lock);
    631 
    632     // The address given to us for the stub may not be exactly right, it might
    633     // be a little bit after the stub.  As such, use upper_bound to find it.
    634     std::pair<void*, Function*> I =
    635       JR->state.LookupFunctionFromCallSite(locked, Stub);
    636     F = I.second;
    637     ActualPtr = I.first;
    638   }
    639 
    640   // If we have already code generated the function, just return the address.
    641   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
    642 
    643   if (!Result) {
    644     // Otherwise we don't have it, do lazy compilation now.
    645 
    646     // If lazy compilation is disabled, emit a useful error message and abort.
    647     if (!JR->TheJIT->isCompilingLazily()) {
    648       report_fatal_error("LLVM JIT requested to do lazy compilation of"
    649                          " function '"
    650                         + F->getName() + "' when lazy compiles are disabled!");
    651     }
    652 
    653     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
    654           << "' In stub ptr = " << Stub << " actual ptr = "
    655           << ActualPtr << "\n");
    656     (void)ActualPtr;
    657 
    658     Result = JR->TheJIT->getPointerToFunction(F);
    659   }
    660 
    661   // Reacquire the lock to update the GOT map.
    662   MutexGuard locked(JR->TheJIT->lock);
    663 
    664   // We might like to remove the call site from the CallSiteToFunction map, but
    665   // we can't do that! Multiple threads could be stuck, waiting to acquire the
    666   // lock above. As soon as the 1st function finishes compiling the function,
    667   // the next one will be released, and needs to be able to find the function it
    668   // needs to call.
    669 
    670   // FIXME: We could rewrite all references to this stub if we knew them.
    671 
    672   // What we will do is set the compiled function address to map to the
    673   // same GOT entry as the stub so that later clients may update the GOT
    674   // if they see it still using the stub address.
    675   // Note: this is done so the Resolver doesn't have to manage GOT memory
    676   // Do this without allocating map space if the target isn't using a GOT
    677   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    678     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
    679 
    680   return Result;
    681 }
    682 
    683 //===----------------------------------------------------------------------===//
    684 // JITEmitter code.
    685 //
    686 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
    687                                      bool MayNeedFarStub) {
    688   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    689     return TheJIT->getOrEmitGlobalVariable(GV);
    690 
    691   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    692     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
    693 
    694   // If we have already compiled the function, return a pointer to its body.
    695   Function *F = cast<Function>(V);
    696 
    697   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
    698   if (FnStub) {
    699     // Return the function stub if it's already created.  We do this first so
    700     // that we're returning the same address for the function as any previous
    701     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    702     // close enough to call.
    703     return FnStub;
    704   }
    705 
    706   // If we know the target can handle arbitrary-distance calls, try to
    707   // return a direct pointer.
    708   if (!MayNeedFarStub) {
    709     // If we have code, go ahead and return that.
    710     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    711     if (ResultPtr) return ResultPtr;
    712 
    713     // If this is an external function pointer, we can force the JIT to
    714     // 'compile' it, which really just adds it to the map.
    715     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
    716       return TheJIT->getPointerToFunction(F);
    717   }
    718 
    719   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
    720   // so.  Note that it's possible to return null from getLazyFunctionStub in the
    721   // case of a weak extern that fails to resolve.
    722   return Resolver.getLazyFunctionStub(F);
    723 }
    724 
    725 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
    726   // Make sure GV is emitted first, and create a stub containing the fully
    727   // resolved address.
    728   void *GVAddress = getPointerToGlobal(V, Reference, false);
    729   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
    730   return StubAddr;
    731 }
    732 
    733 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
    734   if (DL.isUnknown()) return;
    735   if (!BeforePrintingInsn) return;
    736 
    737   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
    738 
    739   if (DL.getScope(Context) != 0 && PrevDL != DL) {
    740     JITEvent_EmittedFunctionDetails::LineStart NextLine;
    741     NextLine.Address = getCurrentPCValue();
    742     NextLine.Loc = DL;
    743     EmissionDetails.LineStarts.push_back(NextLine);
    744   }
    745 
    746   PrevDL = DL;
    747 }
    748 
    749 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
    750                                            const DataLayout *TD) {
    751   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
    752   if (Constants.empty()) return 0;
    753 
    754   unsigned Size = 0;
    755   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    756     MachineConstantPoolEntry CPE = Constants[i];
    757     unsigned AlignMask = CPE.getAlignment() - 1;
    758     Size = (Size + AlignMask) & ~AlignMask;
    759     Type *Ty = CPE.getType();
    760     Size += TD->getTypeAllocSize(Ty);
    761   }
    762   return Size;
    763 }
    764 
    765 void JITEmitter::startFunction(MachineFunction &F) {
    766   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
    767         << F.getName() << "\n");
    768 
    769   uintptr_t ActualSize = 0;
    770   // Set the memory writable, if it's not already
    771   MemMgr->setMemoryWritable();
    772 
    773   if (SizeEstimate > 0) {
    774     // SizeEstimate will be non-zero on reallocation attempts.
    775     ActualSize = SizeEstimate;
    776   }
    777 
    778   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
    779                                                          ActualSize);
    780   BufferEnd = BufferBegin+ActualSize;
    781   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
    782 
    783   // Ensure the constant pool/jump table info is at least 4-byte aligned.
    784   emitAlignment(16);
    785 
    786   emitConstantPool(F.getConstantPool());
    787   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    788     initJumpTableInfo(MJTI);
    789 
    790   // About to start emitting the machine code for the function.
    791   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
    792   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
    793   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
    794 
    795   MBBLocations.clear();
    796 
    797   EmissionDetails.MF = &F;
    798   EmissionDetails.LineStarts.clear();
    799 }
    800 
    801 bool JITEmitter::finishFunction(MachineFunction &F) {
    802   if (CurBufferPtr == BufferEnd) {
    803     // We must call endFunctionBody before retrying, because
    804     // deallocateMemForFunction requires it.
    805     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    806     retryWithMoreMemory(F);
    807     return true;
    808   }
    809 
    810   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    811     emitJumpTableInfo(MJTI);
    812 
    813   // FnStart is the start of the text, not the start of the constant pool and
    814   // other per-function data.
    815   uint8_t *FnStart =
    816     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
    817 
    818   // FnEnd is the end of the function's machine code.
    819   uint8_t *FnEnd = CurBufferPtr;
    820 
    821   if (!Relocations.empty()) {
    822     CurFn = F.getFunction();
    823     NumRelos += Relocations.size();
    824 
    825     // Resolve the relocations to concrete pointers.
    826     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    827       MachineRelocation &MR = Relocations[i];
    828       void *ResultPtr = 0;
    829       if (!MR.letTargetResolve()) {
    830         if (MR.isExternalSymbol()) {
    831           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
    832                                                         false);
    833           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
    834                        << ResultPtr << "]\n");
    835 
    836           // If the target REALLY wants a stub for this function, emit it now.
    837           if (MR.mayNeedFarStub()) {
    838             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
    839           }
    840         } else if (MR.isGlobalValue()) {
    841           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
    842                                          BufferBegin+MR.getMachineCodeOffset(),
    843                                          MR.mayNeedFarStub());
    844         } else if (MR.isIndirectSymbol()) {
    845           ResultPtr = getPointerToGVIndirectSym(
    846               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
    847         } else if (MR.isBasicBlock()) {
    848           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
    849         } else if (MR.isConstantPoolIndex()) {
    850           ResultPtr =
    851             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
    852         } else {
    853           assert(MR.isJumpTableIndex());
    854           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
    855         }
    856 
    857         MR.setResultPointer(ResultPtr);
    858       }
    859 
    860       // if we are managing the GOT and the relocation wants an index,
    861       // give it one
    862       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
    863         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
    864         MR.setGOTIndex(idx);
    865         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
    866           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
    867                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    868                        << "\n");
    869           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
    870         }
    871       }
    872     }
    873 
    874     CurFn = 0;
    875     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
    876                                   Relocations.size(), MemMgr->getGOTBase());
    877   }
    878 
    879   // Update the GOT entry for F to point to the new code.
    880   if (MemMgr->isManagingGOT()) {
    881     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    882     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
    883       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
    884                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    885                    << "\n");
    886       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    887     }
    888   }
    889 
    890   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
    891   // global variables that were referenced in the relocations.
    892   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    893 
    894   if (CurBufferPtr == BufferEnd) {
    895     retryWithMoreMemory(F);
    896     return true;
    897   } else {
    898     // Now that we've succeeded in emitting the function, reset the
    899     // SizeEstimate back down to zero.
    900     SizeEstimate = 0;
    901   }
    902 
    903   BufferBegin = CurBufferPtr = 0;
    904   NumBytes += FnEnd-FnStart;
    905 
    906   // Invalidate the icache if necessary.
    907   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
    908 
    909   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
    910                                 EmissionDetails);
    911 
    912   // Reset the previous debug location.
    913   PrevDL = DebugLoc();
    914 
    915   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
    916         << "] Function: " << F.getName()
    917         << ": " << (FnEnd-FnStart) << " bytes of text, "
    918         << Relocations.size() << " relocations\n");
    919 
    920   Relocations.clear();
    921   ConstPoolAddresses.clear();
    922 
    923   // Mark code region readable and executable if it's not so already.
    924   MemMgr->setMemoryExecutable();
    925 
    926   DEBUG({
    927       if (sys::hasDisassembler()) {
    928         dbgs() << "JIT: Disassembled code:\n";
    929         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
    930                                          (uintptr_t)FnStart);
    931       } else {
    932         dbgs() << "JIT: Binary code:\n";
    933         uint8_t* q = FnStart;
    934         for (int i = 0; q < FnEnd; q += 4, ++i) {
    935           if (i == 4)
    936             i = 0;
    937           if (i == 0)
    938             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
    939           bool Done = false;
    940           for (int j = 3; j >= 0; --j) {
    941             if (q + j >= FnEnd)
    942               Done = true;
    943             else
    944               dbgs() << (unsigned short)q[j];
    945           }
    946           if (Done)
    947             break;
    948           dbgs() << ' ';
    949           if (i == 3)
    950             dbgs() << '\n';
    951         }
    952         dbgs()<< '\n';
    953       }
    954     });
    955 
    956   if (MMI)
    957     MMI->EndFunction();
    958 
    959   return false;
    960 }
    961 
    962 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
    963   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
    964   Relocations.clear();  // Clear the old relocations or we'll reapply them.
    965   ConstPoolAddresses.clear();
    966   ++NumRetries;
    967   deallocateMemForFunction(F.getFunction());
    968   // Try again with at least twice as much free space.
    969   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
    970 
    971   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
    972     if (MBB->hasAddressTaken())
    973       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
    974   }
    975 }
    976 
    977 /// deallocateMemForFunction - Deallocate all memory for the specified
    978 /// function body.  Also drop any references the function has to stubs.
    979 /// May be called while the Function is being destroyed inside ~Value().
    980 void JITEmitter::deallocateMemForFunction(const Function *F) {
    981   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
    982     Emitted = EmittedFunctions.find(F);
    983   if (Emitted != EmittedFunctions.end()) {
    984     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
    985     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
    986 
    987     EmittedFunctions.erase(Emitted);
    988   }
    989 }
    990 
    991 
    992 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
    993   if (BufferBegin)
    994     return JITCodeEmitter::allocateSpace(Size, Alignment);
    995 
    996   // create a new memory block if there is no active one.
    997   // care must be taken so that BufferBegin is invalidated when a
    998   // block is trimmed
    999   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
   1000   BufferEnd = BufferBegin+Size;
   1001   return CurBufferPtr;
   1002 }
   1003 
   1004 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
   1005   // Delegate this call through the memory manager.
   1006   return MemMgr->allocateGlobal(Size, Alignment);
   1007 }
   1008 
   1009 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
   1010   if (TheJIT->getJITInfo().hasCustomConstantPool())
   1011     return;
   1012 
   1013   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
   1014   if (Constants.empty()) return;
   1015 
   1016   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout());
   1017   unsigned Align = MCP->getConstantPoolAlignment();
   1018   ConstantPoolBase = allocateSpace(Size, Align);
   1019   ConstantPool = MCP;
   1020 
   1021   if (ConstantPoolBase == 0) return;  // Buffer overflow.
   1022 
   1023   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
   1024                << "] (size: " << Size << ", alignment: " << Align << ")\n");
   1025 
   1026   // Initialize the memory for all of the constant pool entries.
   1027   unsigned Offset = 0;
   1028   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
   1029     MachineConstantPoolEntry CPE = Constants[i];
   1030     unsigned AlignMask = CPE.getAlignment() - 1;
   1031     Offset = (Offset + AlignMask) & ~AlignMask;
   1032 
   1033     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
   1034     ConstPoolAddresses.push_back(CAddr);
   1035     if (CPE.isMachineConstantPoolEntry()) {
   1036       // FIXME: add support to lower machine constant pool values into bytes!
   1037       report_fatal_error("Initialize memory with machine specific constant pool"
   1038                         "entry has not been implemented!");
   1039     }
   1040     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
   1041     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
   1042           dbgs().write_hex(CAddr) << "]\n");
   1043 
   1044     Type *Ty = CPE.Val.ConstVal->getType();
   1045     Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty);
   1046   }
   1047 }
   1048 
   1049 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1050   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1051     return;
   1052   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
   1053     return;
   1054 
   1055   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1056   if (JT.empty()) return;
   1057 
   1058   unsigned NumEntries = 0;
   1059   for (unsigned i = 0, e = JT.size(); i != e; ++i)
   1060     NumEntries += JT[i].MBBs.size();
   1061 
   1062   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout());
   1063 
   1064   // Just allocate space for all the jump tables now.  We will fix up the actual
   1065   // MBB entries in the tables after we emit the code for each block, since then
   1066   // we will know the final locations of the MBBs in memory.
   1067   JumpTable = MJTI;
   1068   JumpTableBase = allocateSpace(NumEntries * EntrySize,
   1069                              MJTI->getEntryAlignment(*TheJIT->getDataLayout()));
   1070 }
   1071 
   1072 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1073   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1074     return;
   1075 
   1076   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1077   if (JT.empty() || JumpTableBase == 0) return;
   1078 
   1079 
   1080   switch (MJTI->getEntryKind()) {
   1081   case MachineJumpTableInfo::EK_Inline:
   1082     return;
   1083   case MachineJumpTableInfo::EK_BlockAddress: {
   1084     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1085     //     .word LBB123
   1086     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) &&
   1087            "Cross JIT'ing?");
   1088 
   1089     // For each jump table, map each target in the jump table to the address of
   1090     // an emitted MachineBasicBlock.
   1091     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
   1092 
   1093     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1094       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1095       // Store the address of the basic block for this jump table slot in the
   1096       // memory we allocated for the jump table in 'initJumpTableInfo'
   1097       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
   1098         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
   1099     }
   1100     break;
   1101   }
   1102 
   1103   case MachineJumpTableInfo::EK_Custom32:
   1104   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
   1105   case MachineJumpTableInfo::EK_LabelDifference32: {
   1106     assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?");
   1107     // For each jump table, place the offset from the beginning of the table
   1108     // to the target address.
   1109     int *SlotPtr = (int*)JumpTableBase;
   1110 
   1111     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1112       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1113       // Store the offset of the basic block for this jump table slot in the
   1114       // memory we allocated for the jump table in 'initJumpTableInfo'
   1115       uintptr_t Base = (uintptr_t)SlotPtr;
   1116       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
   1117         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
   1118         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
   1119         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
   1120       }
   1121     }
   1122     break;
   1123   }
   1124   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
   1125     llvm_unreachable(
   1126            "JT Info emission not implemented for GPRel64BlockAddress yet.");
   1127   }
   1128 }
   1129 
   1130 void JITEmitter::startGVStub(const GlobalValue* GV,
   1131                              unsigned StubSize, unsigned Alignment) {
   1132   SavedBufferBegin = BufferBegin;
   1133   SavedBufferEnd = BufferEnd;
   1134   SavedCurBufferPtr = CurBufferPtr;
   1135 
   1136   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
   1137   BufferEnd = BufferBegin+StubSize+1;
   1138 }
   1139 
   1140 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
   1141   SavedBufferBegin = BufferBegin;
   1142   SavedBufferEnd = BufferEnd;
   1143   SavedCurBufferPtr = CurBufferPtr;
   1144 
   1145   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
   1146   BufferEnd = BufferBegin+StubSize+1;
   1147 }
   1148 
   1149 void JITEmitter::finishGVStub() {
   1150   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
   1151   NumBytes += getCurrentPCOffset();
   1152   BufferBegin = SavedBufferBegin;
   1153   BufferEnd = SavedBufferEnd;
   1154   CurBufferPtr = SavedCurBufferPtr;
   1155 }
   1156 
   1157 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
   1158                                   const uint8_t *Buffer, size_t Size,
   1159                                   unsigned Alignment) {
   1160   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
   1161   memcpy(IndGV, Buffer, Size);
   1162   return IndGV;
   1163 }
   1164 
   1165 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
   1166 // in the constant pool that was last emitted with the 'emitConstantPool'
   1167 // method.
   1168 //
   1169 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
   1170   assert(ConstantNum < ConstantPool->getConstants().size() &&
   1171          "Invalid ConstantPoolIndex!");
   1172   return ConstPoolAddresses[ConstantNum];
   1173 }
   1174 
   1175 // getJumpTableEntryAddress - Return the address of the JumpTable with index
   1176 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
   1177 //
   1178 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
   1179   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
   1180   assert(Index < JT.size() && "Invalid jump table index!");
   1181 
   1182   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout());
   1183 
   1184   unsigned Offset = 0;
   1185   for (unsigned i = 0; i < Index; ++i)
   1186     Offset += JT[i].MBBs.size();
   1187 
   1188    Offset *= EntrySize;
   1189 
   1190   return (uintptr_t)((char *)JumpTableBase + Offset);
   1191 }
   1192 
   1193 void JITEmitter::EmittedFunctionConfig::onDelete(
   1194   JITEmitter *Emitter, const Function *F) {
   1195   Emitter->deallocateMemForFunction(F);
   1196 }
   1197 void JITEmitter::EmittedFunctionConfig::onRAUW(
   1198   JITEmitter *, const Function*, const Function*) {
   1199   llvm_unreachable("The JIT doesn't know how to handle a"
   1200                    " RAUW on a value it has emitted.");
   1201 }
   1202 
   1203 
   1204 //===----------------------------------------------------------------------===//
   1205 //  Public interface to this file
   1206 //===----------------------------------------------------------------------===//
   1207 
   1208 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
   1209                                    TargetMachine &tm) {
   1210   return new JITEmitter(jit, JMM, tm);
   1211 }
   1212 
   1213 // getPointerToFunctionOrStub - If the specified function has been
   1214 // code-gen'd, return a pointer to the function.  If not, compile it, or use
   1215 // a stub to implement lazy compilation if available.
   1216 //
   1217 void *JIT::getPointerToFunctionOrStub(Function *F) {
   1218   // If we have already code generated the function, just return the address.
   1219   if (void *Addr = getPointerToGlobalIfAvailable(F))
   1220     return Addr;
   1221 
   1222   // Get a stub if the target supports it.
   1223   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1224   return JE->getJITResolver().getLazyFunctionStub(F);
   1225 }
   1226 
   1227 void JIT::updateFunctionStub(Function *F) {
   1228   // Get the empty stub we generated earlier.
   1229   JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter());
   1230   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
   1231   void *Addr = getPointerToGlobalIfAvailable(F);
   1232   assert(Addr != Stub && "Function must have non-stub address to be updated.");
   1233 
   1234   // Tell the target jit info to rewrite the stub at the specified address,
   1235   // rather than creating a new one.
   1236   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
   1237   JE->startGVStub(Stub, layout.Size);
   1238   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
   1239   JE->finishGVStub();
   1240 }
   1241 
   1242 /// freeMachineCodeForFunction - release machine code memory for given Function.
   1243 ///
   1244 void JIT::freeMachineCodeForFunction(Function *F) {
   1245   // Delete translation for this from the ExecutionEngine, so it will get
   1246   // retranslated next time it is used.
   1247   updateGlobalMapping(F, 0);
   1248 
   1249   // Free the actual memory for the function body and related stuff.
   1250   static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F);
   1251 }
   1252