Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineSelect.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitSelect function.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Support/PatternMatch.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
     22 /// returning the kind and providing the out parameter results if we
     23 /// successfully match.
     24 static SelectPatternFlavor
     25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
     26   SelectInst *SI = dyn_cast<SelectInst>(V);
     27   if (SI == 0) return SPF_UNKNOWN;
     28 
     29   ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
     30   if (ICI == 0) return SPF_UNKNOWN;
     31 
     32   LHS = ICI->getOperand(0);
     33   RHS = ICI->getOperand(1);
     34 
     35   // (icmp X, Y) ? X : Y
     36   if (SI->getTrueValue() == ICI->getOperand(0) &&
     37       SI->getFalseValue() == ICI->getOperand(1)) {
     38     switch (ICI->getPredicate()) {
     39     default: return SPF_UNKNOWN; // Equality.
     40     case ICmpInst::ICMP_UGT:
     41     case ICmpInst::ICMP_UGE: return SPF_UMAX;
     42     case ICmpInst::ICMP_SGT:
     43     case ICmpInst::ICMP_SGE: return SPF_SMAX;
     44     case ICmpInst::ICMP_ULT:
     45     case ICmpInst::ICMP_ULE: return SPF_UMIN;
     46     case ICmpInst::ICMP_SLT:
     47     case ICmpInst::ICMP_SLE: return SPF_SMIN;
     48     }
     49   }
     50 
     51   // (icmp X, Y) ? Y : X
     52   if (SI->getTrueValue() == ICI->getOperand(1) &&
     53       SI->getFalseValue() == ICI->getOperand(0)) {
     54     switch (ICI->getPredicate()) {
     55       default: return SPF_UNKNOWN; // Equality.
     56       case ICmpInst::ICMP_UGT:
     57       case ICmpInst::ICMP_UGE: return SPF_UMIN;
     58       case ICmpInst::ICMP_SGT:
     59       case ICmpInst::ICMP_SGE: return SPF_SMIN;
     60       case ICmpInst::ICMP_ULT:
     61       case ICmpInst::ICMP_ULE: return SPF_UMAX;
     62       case ICmpInst::ICMP_SLT:
     63       case ICmpInst::ICMP_SLE: return SPF_SMAX;
     64     }
     65   }
     66 
     67   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
     68 
     69   return SPF_UNKNOWN;
     70 }
     71 
     72 
     73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
     74 ///   %C = or %A, %B
     75 ///   %D = select %cond, %C, %A
     76 /// into:
     77 ///   %C = select %cond, %B, 0
     78 ///   %D = or %A, %C
     79 ///
     80 /// Assuming that the specified instruction is an operand to the select, return
     81 /// a bitmask indicating which operands of this instruction are foldable if they
     82 /// equal the other incoming value of the select.
     83 ///
     84 static unsigned GetSelectFoldableOperands(Instruction *I) {
     85   switch (I->getOpcode()) {
     86   case Instruction::Add:
     87   case Instruction::Mul:
     88   case Instruction::And:
     89   case Instruction::Or:
     90   case Instruction::Xor:
     91     return 3;              // Can fold through either operand.
     92   case Instruction::Sub:   // Can only fold on the amount subtracted.
     93   case Instruction::Shl:   // Can only fold on the shift amount.
     94   case Instruction::LShr:
     95   case Instruction::AShr:
     96     return 1;
     97   default:
     98     return 0;              // Cannot fold
     99   }
    100 }
    101 
    102 /// GetSelectFoldableConstant - For the same transformation as the previous
    103 /// function, return the identity constant that goes into the select.
    104 static Constant *GetSelectFoldableConstant(Instruction *I) {
    105   switch (I->getOpcode()) {
    106   default: llvm_unreachable("This cannot happen!");
    107   case Instruction::Add:
    108   case Instruction::Sub:
    109   case Instruction::Or:
    110   case Instruction::Xor:
    111   case Instruction::Shl:
    112   case Instruction::LShr:
    113   case Instruction::AShr:
    114     return Constant::getNullValue(I->getType());
    115   case Instruction::And:
    116     return Constant::getAllOnesValue(I->getType());
    117   case Instruction::Mul:
    118     return ConstantInt::get(I->getType(), 1);
    119   }
    120 }
    121 
    122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
    123 /// have the same opcode and only one use each.  Try to simplify this.
    124 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
    125                                           Instruction *FI) {
    126   if (TI->getNumOperands() == 1) {
    127     // If this is a non-volatile load or a cast from the same type,
    128     // merge.
    129     if (TI->isCast()) {
    130       Type *FIOpndTy = FI->getOperand(0)->getType();
    131       if (TI->getOperand(0)->getType() != FIOpndTy)
    132         return 0;
    133       // The select condition may be a vector. We may only change the operand
    134       // type if the vector width remains the same (and matches the condition).
    135       Type *CondTy = SI.getCondition()->getType();
    136       if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
    137           CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
    138         return 0;
    139     } else {
    140       return 0;  // unknown unary op.
    141     }
    142 
    143     // Fold this by inserting a select from the input values.
    144     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
    145                                          FI->getOperand(0), SI.getName()+".v");
    146     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
    147                             TI->getType());
    148   }
    149 
    150   // Only handle binary operators here.
    151   if (!isa<BinaryOperator>(TI))
    152     return 0;
    153 
    154   // Figure out if the operations have any operands in common.
    155   Value *MatchOp, *OtherOpT, *OtherOpF;
    156   bool MatchIsOpZero;
    157   if (TI->getOperand(0) == FI->getOperand(0)) {
    158     MatchOp  = TI->getOperand(0);
    159     OtherOpT = TI->getOperand(1);
    160     OtherOpF = FI->getOperand(1);
    161     MatchIsOpZero = true;
    162   } else if (TI->getOperand(1) == FI->getOperand(1)) {
    163     MatchOp  = TI->getOperand(1);
    164     OtherOpT = TI->getOperand(0);
    165     OtherOpF = FI->getOperand(0);
    166     MatchIsOpZero = false;
    167   } else if (!TI->isCommutative()) {
    168     return 0;
    169   } else if (TI->getOperand(0) == FI->getOperand(1)) {
    170     MatchOp  = TI->getOperand(0);
    171     OtherOpT = TI->getOperand(1);
    172     OtherOpF = FI->getOperand(0);
    173     MatchIsOpZero = true;
    174   } else if (TI->getOperand(1) == FI->getOperand(0)) {
    175     MatchOp  = TI->getOperand(1);
    176     OtherOpT = TI->getOperand(0);
    177     OtherOpF = FI->getOperand(1);
    178     MatchIsOpZero = true;
    179   } else {
    180     return 0;
    181   }
    182 
    183   // If we reach here, they do have operations in common.
    184   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
    185                                        OtherOpF, SI.getName()+".v");
    186 
    187   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
    188     if (MatchIsOpZero)
    189       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
    190     else
    191       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
    192   }
    193   llvm_unreachable("Shouldn't get here");
    194 }
    195 
    196 static bool isSelect01(Constant *C1, Constant *C2) {
    197   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
    198   if (!C1I)
    199     return false;
    200   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
    201   if (!C2I)
    202     return false;
    203   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
    204     return false;
    205   return C1I->isOne() || C1I->isAllOnesValue() ||
    206          C2I->isOne() || C2I->isAllOnesValue();
    207 }
    208 
    209 /// FoldSelectIntoOp - Try fold the select into one of the operands to
    210 /// facilitate further optimization.
    211 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
    212                                             Value *FalseVal) {
    213   // See the comment above GetSelectFoldableOperands for a description of the
    214   // transformation we are doing here.
    215   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
    216     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
    217         !isa<Constant>(FalseVal)) {
    218       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
    219         unsigned OpToFold = 0;
    220         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
    221           OpToFold = 1;
    222         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
    223           OpToFold = 2;
    224         }
    225 
    226         if (OpToFold) {
    227           Constant *C = GetSelectFoldableConstant(TVI);
    228           Value *OOp = TVI->getOperand(2-OpToFold);
    229           // Avoid creating select between 2 constants unless it's selecting
    230           // between 0, 1 and -1.
    231           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    232             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
    233             NewSel->takeName(TVI);
    234             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
    235             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
    236                                                         FalseVal, NewSel);
    237             if (isa<PossiblyExactOperator>(BO))
    238               BO->setIsExact(TVI_BO->isExact());
    239             if (isa<OverflowingBinaryOperator>(BO)) {
    240               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
    241               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
    242             }
    243             return BO;
    244           }
    245         }
    246       }
    247     }
    248   }
    249 
    250   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
    251     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
    252         !isa<Constant>(TrueVal)) {
    253       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
    254         unsigned OpToFold = 0;
    255         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
    256           OpToFold = 1;
    257         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
    258           OpToFold = 2;
    259         }
    260 
    261         if (OpToFold) {
    262           Constant *C = GetSelectFoldableConstant(FVI);
    263           Value *OOp = FVI->getOperand(2-OpToFold);
    264           // Avoid creating select between 2 constants unless it's selecting
    265           // between 0, 1 and -1.
    266           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
    267             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
    268             NewSel->takeName(FVI);
    269             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
    270             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
    271                                                         TrueVal, NewSel);
    272             if (isa<PossiblyExactOperator>(BO))
    273               BO->setIsExact(FVI_BO->isExact());
    274             if (isa<OverflowingBinaryOperator>(BO)) {
    275               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
    276               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
    277             }
    278             return BO;
    279           }
    280         }
    281       }
    282     }
    283   }
    284 
    285   return 0;
    286 }
    287 
    288 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
    289 /// replaced with RepOp.
    290 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
    291                                      const DataLayout *TD,
    292                                      const TargetLibraryInfo *TLI) {
    293   // Trivial replacement.
    294   if (V == Op)
    295     return RepOp;
    296 
    297   Instruction *I = dyn_cast<Instruction>(V);
    298   if (!I)
    299     return 0;
    300 
    301   // If this is a binary operator, try to simplify it with the replaced op.
    302   if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
    303     if (B->getOperand(0) == Op)
    304       return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
    305     if (B->getOperand(1) == Op)
    306       return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
    307   }
    308 
    309   // Same for CmpInsts.
    310   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    311     if (C->getOperand(0) == Op)
    312       return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
    313                              TLI);
    314     if (C->getOperand(1) == Op)
    315       return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
    316                              TLI);
    317   }
    318 
    319   // TODO: We could hand off more cases to instsimplify here.
    320 
    321   // If all operands are constant after substituting Op for RepOp then we can
    322   // constant fold the instruction.
    323   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
    324     // Build a list of all constant operands.
    325     SmallVector<Constant*, 8> ConstOps;
    326     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    327       if (I->getOperand(i) == Op)
    328         ConstOps.push_back(CRepOp);
    329       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
    330         ConstOps.push_back(COp);
    331       else
    332         break;
    333     }
    334 
    335     // All operands were constants, fold it.
    336     if (ConstOps.size() == I->getNumOperands()) {
    337       if (CmpInst *C = dyn_cast<CmpInst>(I))
    338         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
    339                                                ConstOps[1], TD, TLI);
    340 
    341       if (LoadInst *LI = dyn_cast<LoadInst>(I))
    342         if (!LI->isVolatile())
    343           return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
    344 
    345       return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
    346                                       ConstOps, TD, TLI);
    347     }
    348   }
    349 
    350   return 0;
    351 }
    352 
    353 /// foldSelectICmpAndOr - We want to turn:
    354 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
    355 /// into:
    356 ///   (or (shl (and X, C1), C3), y)
    357 /// iff:
    358 ///   C1 and C2 are both powers of 2
    359 /// where:
    360 ///   C3 = Log(C2) - Log(C1)
    361 ///
    362 /// This transform handles cases where:
    363 /// 1. The icmp predicate is inverted
    364 /// 2. The select operands are reversed
    365 /// 3. The magnitude of C2 and C1 are flipped
    366 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
    367                                   Value *FalseVal,
    368                                   InstCombiner::BuilderTy *Builder) {
    369   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    370   if (!IC || !IC->isEquality())
    371     return 0;
    372 
    373   Value *CmpLHS = IC->getOperand(0);
    374   Value *CmpRHS = IC->getOperand(1);
    375 
    376   if (!match(CmpRHS, m_Zero()))
    377     return 0;
    378 
    379   Value *X;
    380   const APInt *C1;
    381   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
    382     return 0;
    383 
    384   const APInt *C2;
    385   bool OrOnTrueVal = false;
    386   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
    387   if (!OrOnFalseVal)
    388     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
    389 
    390   if (!OrOnFalseVal && !OrOnTrueVal)
    391     return 0;
    392 
    393   Value *V = CmpLHS;
    394   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
    395 
    396   unsigned C1Log = C1->logBase2();
    397   unsigned C2Log = C2->logBase2();
    398   if (C2Log > C1Log) {
    399     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    400     V = Builder->CreateShl(V, C2Log - C1Log);
    401   } else if (C1Log > C2Log) {
    402     V = Builder->CreateLShr(V, C1Log - C2Log);
    403     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    404   } else
    405     V = Builder->CreateZExtOrTrunc(V, Y->getType());
    406 
    407   ICmpInst::Predicate Pred = IC->getPredicate();
    408   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
    409       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
    410     V = Builder->CreateXor(V, *C2);
    411 
    412   return Builder->CreateOr(V, Y);
    413 }
    414 
    415 /// visitSelectInstWithICmp - Visit a SelectInst that has an
    416 /// ICmpInst as its first operand.
    417 ///
    418 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
    419                                                    ICmpInst *ICI) {
    420   bool Changed = false;
    421   ICmpInst::Predicate Pred = ICI->getPredicate();
    422   Value *CmpLHS = ICI->getOperand(0);
    423   Value *CmpRHS = ICI->getOperand(1);
    424   Value *TrueVal = SI.getTrueValue();
    425   Value *FalseVal = SI.getFalseValue();
    426 
    427   // Check cases where the comparison is with a constant that
    428   // can be adjusted to fit the min/max idiom. We may move or edit ICI
    429   // here, so make sure the select is the only user.
    430   if (ICI->hasOneUse())
    431     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
    432       // X < MIN ? T : F  -->  F
    433       if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
    434           && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
    435         return ReplaceInstUsesWith(SI, FalseVal);
    436       // X > MAX ? T : F  -->  F
    437       else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
    438                && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
    439         return ReplaceInstUsesWith(SI, FalseVal);
    440       switch (Pred) {
    441       default: break;
    442       case ICmpInst::ICMP_ULT:
    443       case ICmpInst::ICMP_SLT:
    444       case ICmpInst::ICMP_UGT:
    445       case ICmpInst::ICMP_SGT: {
    446         // These transformations only work for selects over integers.
    447         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
    448         if (!SelectTy)
    449           break;
    450 
    451         Constant *AdjustedRHS;
    452         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
    453           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
    454         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
    455           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
    456 
    457         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
    458         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
    459         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
    460             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
    461           ; // Nothing to do here. Values match without any sign/zero extension.
    462 
    463         // Types do not match. Instead of calculating this with mixed types
    464         // promote all to the larger type. This enables scalar evolution to
    465         // analyze this expression.
    466         else if (CmpRHS->getType()->getScalarSizeInBits()
    467                  < SelectTy->getBitWidth()) {
    468           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
    469 
    470           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
    471           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
    472           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
    473           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
    474           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
    475                 sextRHS == FalseVal) {
    476             CmpLHS = TrueVal;
    477             AdjustedRHS = sextRHS;
    478           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
    479                      sextRHS == TrueVal) {
    480             CmpLHS = FalseVal;
    481             AdjustedRHS = sextRHS;
    482           } else if (ICI->isUnsigned()) {
    483             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
    484             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
    485             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
    486             // zext + signed compare cannot be changed:
    487             //    0xff <s 0x00, but 0x00ff >s 0x0000
    488             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
    489                 zextRHS == FalseVal) {
    490               CmpLHS = TrueVal;
    491               AdjustedRHS = zextRHS;
    492             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
    493                        zextRHS == TrueVal) {
    494               CmpLHS = FalseVal;
    495               AdjustedRHS = zextRHS;
    496             } else
    497               break;
    498           } else
    499             break;
    500         } else
    501           break;
    502 
    503         Pred = ICmpInst::getSwappedPredicate(Pred);
    504         CmpRHS = AdjustedRHS;
    505         std::swap(FalseVal, TrueVal);
    506         ICI->setPredicate(Pred);
    507         ICI->setOperand(0, CmpLHS);
    508         ICI->setOperand(1, CmpRHS);
    509         SI.setOperand(1, TrueVal);
    510         SI.setOperand(2, FalseVal);
    511 
    512         // Move ICI instruction right before the select instruction. Otherwise
    513         // the sext/zext value may be defined after the ICI instruction uses it.
    514         ICI->moveBefore(&SI);
    515 
    516         Changed = true;
    517         break;
    518       }
    519       }
    520     }
    521 
    522   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
    523   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
    524   // FIXME: Type and constness constraints could be lifted, but we have to
    525   //        watch code size carefully. We should consider xor instead of
    526   //        sub/add when we decide to do that.
    527   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
    528     if (TrueVal->getType() == Ty) {
    529       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
    530         ConstantInt *C1 = NULL, *C2 = NULL;
    531         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
    532           C1 = dyn_cast<ConstantInt>(TrueVal);
    533           C2 = dyn_cast<ConstantInt>(FalseVal);
    534         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
    535           C1 = dyn_cast<ConstantInt>(FalseVal);
    536           C2 = dyn_cast<ConstantInt>(TrueVal);
    537         }
    538         if (C1 && C2) {
    539           // This shift results in either -1 or 0.
    540           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
    541 
    542           // Check if we can express the operation with a single or.
    543           if (C2->isAllOnesValue())
    544             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
    545 
    546           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
    547           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
    548         }
    549       }
    550     }
    551   }
    552 
    553   // If we have an equality comparison then we know the value in one of the
    554   // arms of the select. See if substituting this value into the arm and
    555   // simplifying the result yields the same value as the other arm.
    556   if (Pred == ICmpInst::ICMP_EQ) {
    557     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    558         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    559       return ReplaceInstUsesWith(SI, FalseVal);
    560     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    561         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    562       return ReplaceInstUsesWith(SI, FalseVal);
    563   } else if (Pred == ICmpInst::ICMP_NE) {
    564     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
    565         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
    566       return ReplaceInstUsesWith(SI, TrueVal);
    567     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
    568         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
    569       return ReplaceInstUsesWith(SI, TrueVal);
    570   }
    571 
    572   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
    573 
    574   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
    575     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
    576       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
    577       SI.setOperand(1, CmpRHS);
    578       Changed = true;
    579     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
    580       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
    581       SI.setOperand(2, CmpRHS);
    582       Changed = true;
    583     }
    584   }
    585 
    586   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
    587     return ReplaceInstUsesWith(SI, V);
    588 
    589   return Changed ? &SI : 0;
    590 }
    591 
    592 
    593 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
    594 /// PHI node (but the two may be in different blocks).  See if the true/false
    595 /// values (V) are live in all of the predecessor blocks of the PHI.  For
    596 /// example, cases like this cannot be mapped:
    597 ///
    598 ///   X = phi [ C1, BB1], [C2, BB2]
    599 ///   Y = add
    600 ///   Z = select X, Y, 0
    601 ///
    602 /// because Y is not live in BB1/BB2.
    603 ///
    604 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
    605                                                    const SelectInst &SI) {
    606   // If the value is a non-instruction value like a constant or argument, it
    607   // can always be mapped.
    608   const Instruction *I = dyn_cast<Instruction>(V);
    609   if (I == 0) return true;
    610 
    611   // If V is a PHI node defined in the same block as the condition PHI, we can
    612   // map the arguments.
    613   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
    614 
    615   if (const PHINode *VP = dyn_cast<PHINode>(I))
    616     if (VP->getParent() == CondPHI->getParent())
    617       return true;
    618 
    619   // Otherwise, if the PHI and select are defined in the same block and if V is
    620   // defined in a different block, then we can transform it.
    621   if (SI.getParent() == CondPHI->getParent() &&
    622       I->getParent() != CondPHI->getParent())
    623     return true;
    624 
    625   // Otherwise we have a 'hard' case and we can't tell without doing more
    626   // detailed dominator based analysis, punt.
    627   return false;
    628 }
    629 
    630 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
    631 ///   SPF2(SPF1(A, B), C)
    632 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
    633                                         SelectPatternFlavor SPF1,
    634                                         Value *A, Value *B,
    635                                         Instruction &Outer,
    636                                         SelectPatternFlavor SPF2, Value *C) {
    637   if (C == A || C == B) {
    638     // MAX(MAX(A, B), B) -> MAX(A, B)
    639     // MIN(MIN(a, b), a) -> MIN(a, b)
    640     if (SPF1 == SPF2)
    641       return ReplaceInstUsesWith(Outer, Inner);
    642 
    643     // MAX(MIN(a, b), a) -> a
    644     // MIN(MAX(a, b), a) -> a
    645     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
    646         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
    647         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
    648         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
    649       return ReplaceInstUsesWith(Outer, C);
    650   }
    651 
    652   // TODO: MIN(MIN(A, 23), 97)
    653   return 0;
    654 }
    655 
    656 
    657 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
    658 /// both be) and we have an icmp instruction with zero, and we have an 'and'
    659 /// with the non-constant value and a power of two we can turn the select
    660 /// into a shift on the result of the 'and'.
    661 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
    662                                 ConstantInt *FalseVal,
    663                                 InstCombiner::BuilderTy *Builder) {
    664   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
    665   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
    666     return 0;
    667 
    668   if (!match(IC->getOperand(1), m_Zero()))
    669     return 0;
    670 
    671   ConstantInt *AndRHS;
    672   Value *LHS = IC->getOperand(0);
    673   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
    674     return 0;
    675 
    676   // If both select arms are non-zero see if we have a select of the form
    677   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
    678   // for 'x ? 2^n : 0' and fix the thing up at the end.
    679   ConstantInt *Offset = 0;
    680   if (!TrueVal->isZero() && !FalseVal->isZero()) {
    681     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
    682       Offset = FalseVal;
    683     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
    684       Offset = TrueVal;
    685     else
    686       return 0;
    687 
    688     // Adjust TrueVal and FalseVal to the offset.
    689     TrueVal = ConstantInt::get(Builder->getContext(),
    690                                TrueVal->getValue() - Offset->getValue());
    691     FalseVal = ConstantInt::get(Builder->getContext(),
    692                                 FalseVal->getValue() - Offset->getValue());
    693   }
    694 
    695   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
    696   if (!AndRHS->getValue().isPowerOf2() ||
    697       (!TrueVal->getValue().isPowerOf2() &&
    698        !FalseVal->getValue().isPowerOf2()))
    699     return 0;
    700 
    701   // Determine which shift is needed to transform result of the 'and' into the
    702   // desired result.
    703   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
    704   unsigned ValZeros = ValC->getValue().logBase2();
    705   unsigned AndZeros = AndRHS->getValue().logBase2();
    706 
    707   // If types don't match we can still convert the select by introducing a zext
    708   // or a trunc of the 'and'. The trunc case requires that all of the truncated
    709   // bits are zero, we can figure that out by looking at the 'and' mask.
    710   if (AndZeros >= ValC->getBitWidth())
    711     return 0;
    712 
    713   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
    714   if (ValZeros > AndZeros)
    715     V = Builder->CreateShl(V, ValZeros - AndZeros);
    716   else if (ValZeros < AndZeros)
    717     V = Builder->CreateLShr(V, AndZeros - ValZeros);
    718 
    719   // Okay, now we know that everything is set up, we just don't know whether we
    720   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
    721   bool ShouldNotVal = !TrueVal->isZero();
    722   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
    723   if (ShouldNotVal)
    724     V = Builder->CreateXor(V, ValC);
    725 
    726   // Apply an offset if needed.
    727   if (Offset)
    728     V = Builder->CreateAdd(V, Offset);
    729   return V;
    730 }
    731 
    732 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
    733   Value *CondVal = SI.getCondition();
    734   Value *TrueVal = SI.getTrueValue();
    735   Value *FalseVal = SI.getFalseValue();
    736 
    737   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
    738     return ReplaceInstUsesWith(SI, V);
    739 
    740   if (SI.getType()->isIntegerTy(1)) {
    741     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
    742       if (C->getZExtValue()) {
    743         // Change: A = select B, true, C --> A = or B, C
    744         return BinaryOperator::CreateOr(CondVal, FalseVal);
    745       }
    746       // Change: A = select B, false, C --> A = and !B, C
    747       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    748       return BinaryOperator::CreateAnd(NotCond, FalseVal);
    749     }
    750     if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
    751       if (C->getZExtValue() == false) {
    752         // Change: A = select B, C, false --> A = and B, C
    753         return BinaryOperator::CreateAnd(CondVal, TrueVal);
    754       }
    755       // Change: A = select B, C, true --> A = or !B, C
    756       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    757       return BinaryOperator::CreateOr(NotCond, TrueVal);
    758     }
    759 
    760     // select a, b, a  -> a&b
    761     // select a, a, b  -> a|b
    762     if (CondVal == TrueVal)
    763       return BinaryOperator::CreateOr(CondVal, FalseVal);
    764     if (CondVal == FalseVal)
    765       return BinaryOperator::CreateAnd(CondVal, TrueVal);
    766 
    767     // select a, ~a, b -> (~a)&b
    768     // select a, b, ~a -> (~a)|b
    769     if (match(TrueVal, m_Not(m_Specific(CondVal))))
    770       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
    771     if (match(FalseVal, m_Not(m_Specific(CondVal))))
    772       return BinaryOperator::CreateOr(TrueVal, FalseVal);
    773   }
    774 
    775   // Selecting between two integer constants?
    776   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
    777     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
    778       // select C, 1, 0 -> zext C to int
    779       if (FalseValC->isZero() && TrueValC->getValue() == 1)
    780         return new ZExtInst(CondVal, SI.getType());
    781 
    782       // select C, -1, 0 -> sext C to int
    783       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
    784         return new SExtInst(CondVal, SI.getType());
    785 
    786       // select C, 0, 1 -> zext !C to int
    787       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
    788         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    789         return new ZExtInst(NotCond, SI.getType());
    790       }
    791 
    792       // select C, 0, -1 -> sext !C to int
    793       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
    794         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
    795         return new SExtInst(NotCond, SI.getType());
    796       }
    797 
    798       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
    799         return ReplaceInstUsesWith(SI, V);
    800     }
    801 
    802   // See if we are selecting two values based on a comparison of the two values.
    803   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
    804     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
    805       // Transform (X == Y) ? X : Y  -> Y
    806       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    807         // This is not safe in general for floating point:
    808         // consider X== -0, Y== +0.
    809         // It becomes safe if either operand is a nonzero constant.
    810         ConstantFP *CFPt, *CFPf;
    811         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    812               !CFPt->getValueAPF().isZero()) ||
    813             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    814              !CFPf->getValueAPF().isZero()))
    815         return ReplaceInstUsesWith(SI, FalseVal);
    816       }
    817       // Transform (X une Y) ? X : Y  -> X
    818       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    819         // This is not safe in general for floating point:
    820         // consider X== -0, Y== +0.
    821         // It becomes safe if either operand is a nonzero constant.
    822         ConstantFP *CFPt, *CFPf;
    823         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    824               !CFPt->getValueAPF().isZero()) ||
    825             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    826              !CFPf->getValueAPF().isZero()))
    827         return ReplaceInstUsesWith(SI, TrueVal);
    828       }
    829       // NOTE: if we wanted to, this is where to detect MIN/MAX
    830 
    831     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
    832       // Transform (X == Y) ? Y : X  -> X
    833       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
    834         // This is not safe in general for floating point:
    835         // consider X== -0, Y== +0.
    836         // It becomes safe if either operand is a nonzero constant.
    837         ConstantFP *CFPt, *CFPf;
    838         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    839               !CFPt->getValueAPF().isZero()) ||
    840             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    841              !CFPf->getValueAPF().isZero()))
    842           return ReplaceInstUsesWith(SI, FalseVal);
    843       }
    844       // Transform (X une Y) ? Y : X  -> Y
    845       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
    846         // This is not safe in general for floating point:
    847         // consider X== -0, Y== +0.
    848         // It becomes safe if either operand is a nonzero constant.
    849         ConstantFP *CFPt, *CFPf;
    850         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
    851               !CFPt->getValueAPF().isZero()) ||
    852             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
    853              !CFPf->getValueAPF().isZero()))
    854           return ReplaceInstUsesWith(SI, TrueVal);
    855       }
    856       // NOTE: if we wanted to, this is where to detect MIN/MAX
    857     }
    858     // NOTE: if we wanted to, this is where to detect ABS
    859   }
    860 
    861   // See if we are selecting two values based on a comparison of the two values.
    862   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
    863     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
    864       return Result;
    865 
    866   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
    867     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
    868       if (TI->hasOneUse() && FI->hasOneUse()) {
    869         Instruction *AddOp = 0, *SubOp = 0;
    870 
    871         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
    872         if (TI->getOpcode() == FI->getOpcode())
    873           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
    874             return IV;
    875 
    876         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
    877         // even legal for FP.
    878         if ((TI->getOpcode() == Instruction::Sub &&
    879              FI->getOpcode() == Instruction::Add) ||
    880             (TI->getOpcode() == Instruction::FSub &&
    881              FI->getOpcode() == Instruction::FAdd)) {
    882           AddOp = FI; SubOp = TI;
    883         } else if ((FI->getOpcode() == Instruction::Sub &&
    884                     TI->getOpcode() == Instruction::Add) ||
    885                    (FI->getOpcode() == Instruction::FSub &&
    886                     TI->getOpcode() == Instruction::FAdd)) {
    887           AddOp = TI; SubOp = FI;
    888         }
    889 
    890         if (AddOp) {
    891           Value *OtherAddOp = 0;
    892           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
    893             OtherAddOp = AddOp->getOperand(1);
    894           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
    895             OtherAddOp = AddOp->getOperand(0);
    896           }
    897 
    898           if (OtherAddOp) {
    899             // So at this point we know we have (Y -> OtherAddOp):
    900             //        select C, (add X, Y), (sub X, Z)
    901             Value *NegVal;  // Compute -Z
    902             if (SI.getType()->isFPOrFPVectorTy()) {
    903               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
    904             } else {
    905               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
    906             }
    907 
    908             Value *NewTrueOp = OtherAddOp;
    909             Value *NewFalseOp = NegVal;
    910             if (AddOp != TI)
    911               std::swap(NewTrueOp, NewFalseOp);
    912             Value *NewSel =
    913               Builder->CreateSelect(CondVal, NewTrueOp,
    914                                     NewFalseOp, SI.getName() + ".p");
    915 
    916             if (SI.getType()->isFPOrFPVectorTy())
    917               return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
    918             else
    919               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
    920           }
    921         }
    922       }
    923 
    924   // See if we can fold the select into one of our operands.
    925   if (SI.getType()->isIntegerTy()) {
    926     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
    927       return FoldI;
    928 
    929     // MAX(MAX(a, b), a) -> MAX(a, b)
    930     // MIN(MIN(a, b), a) -> MIN(a, b)
    931     // MAX(MIN(a, b), a) -> a
    932     // MIN(MAX(a, b), a) -> a
    933     Value *LHS, *RHS, *LHS2, *RHS2;
    934     if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
    935       if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
    936         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
    937                                           SI, SPF, RHS))
    938           return R;
    939       if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
    940         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
    941                                           SI, SPF, LHS))
    942           return R;
    943     }
    944 
    945     // TODO.
    946     // ABS(-X) -> ABS(X)
    947     // ABS(ABS(X)) -> ABS(X)
    948   }
    949 
    950   // See if we can fold the select into a phi node if the condition is a select.
    951   if (isa<PHINode>(SI.getCondition()))
    952     // The true/false values have to be live in the PHI predecessor's blocks.
    953     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
    954         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
    955       if (Instruction *NV = FoldOpIntoPhi(SI))
    956         return NV;
    957 
    958   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
    959     if (TrueSI->getCondition() == CondVal) {
    960       if (SI.getTrueValue() == TrueSI->getTrueValue())
    961         return 0;
    962       SI.setOperand(1, TrueSI->getTrueValue());
    963       return &SI;
    964     }
    965   }
    966   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
    967     if (FalseSI->getCondition() == CondVal) {
    968       if (SI.getFalseValue() == FalseSI->getFalseValue())
    969         return 0;
    970       SI.setOperand(2, FalseSI->getFalseValue());
    971       return &SI;
    972     }
    973   }
    974 
    975   if (BinaryOperator::isNot(CondVal)) {
    976     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
    977     SI.setOperand(1, FalseVal);
    978     SI.setOperand(2, TrueVal);
    979     return &SI;
    980   }
    981 
    982   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
    983     unsigned VWidth = VecTy->getNumElements();
    984     APInt UndefElts(VWidth, 0);
    985     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
    986     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
    987       if (V != &SI)
    988         return ReplaceInstUsesWith(SI, V);
    989       return &SI;
    990     }
    991 
    992     if (isa<ConstantAggregateZero>(CondVal)) {
    993       return ReplaceInstUsesWith(SI, FalseVal);
    994     }
    995   }
    996 
    997   return 0;
    998 }
    999