1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define LOG_TAG "String" 18 19 #include "JNIHelp.h" 20 #include "JniConstants.h" 21 #include "ScopedPrimitiveArray.h" 22 #include "jni.h" 23 #include "unicode/utf16.h" 24 25 #include <string.h> 26 27 /** 28 * Approximates java.lang.UnsafeByteSequence so we don't have to pay the cost of calling back into 29 * Java when converting a char[] to a UTF-8 byte[]. This lets us have UTF-8 conversions slightly 30 * faster than ICU for large char[]s without paying for the NIO overhead with small char[]s. 31 * 32 * We could avoid this by keeping the UTF-8 bytes on the native heap until we're done and only 33 * creating a byte[] on the Java heap when we know how big it needs to be, but one shouldn't lie 34 * to the garbage collector (nor hide potentially large allocations from it). 35 * 36 * Because a call to append might require an allocation, it might fail. Callers should always 37 * check the return value of append. 38 */ 39 class NativeUnsafeByteSequence { 40 public: 41 NativeUnsafeByteSequence(JNIEnv* env) 42 : mEnv(env), mJavaArray(NULL), mRawArray(NULL), mSize(-1), mOffset(0) 43 { 44 } 45 46 ~NativeUnsafeByteSequence() { 47 // Release our pointer to the raw array, copying changes back to the Java heap. 48 if (mRawArray != NULL) { 49 mEnv->ReleaseByteArrayElements(mJavaArray, mRawArray, 0); 50 } 51 } 52 53 bool append(jbyte b) { 54 if (mOffset == mSize && !resize(mSize * 2)) { 55 return false; 56 } 57 mRawArray[mOffset++] = b; 58 return true; 59 } 60 61 bool resize(int newSize) { 62 if (newSize == mSize) { 63 return true; 64 } 65 66 // Allocate a new array. 67 jbyteArray newJavaArray = mEnv->NewByteArray(newSize); 68 if (newJavaArray == NULL) { 69 return false; 70 } 71 jbyte* newRawArray = mEnv->GetByteArrayElements(newJavaArray, NULL); 72 if (newRawArray == NULL) { 73 return false; 74 } 75 76 // Copy data out of the old array and then let go of it. 77 // Note that we may be trimming the array. 78 if (mRawArray != NULL) { 79 memcpy(newRawArray, mRawArray, mOffset); 80 mEnv->ReleaseByteArrayElements(mJavaArray, mRawArray, JNI_ABORT); 81 mEnv->DeleteLocalRef(mJavaArray); 82 } 83 84 // Point ourselves at the new array. 85 mJavaArray = newJavaArray; 86 mRawArray = newRawArray; 87 mSize = newSize; 88 return true; 89 } 90 91 jbyteArray toByteArray() { 92 // Trim any unused space, if necessary. 93 bool okay = resize(mOffset); 94 return okay ? mJavaArray : NULL; 95 } 96 97 private: 98 JNIEnv* mEnv; 99 jbyteArray mJavaArray; 100 jbyte* mRawArray; 101 jint mSize; 102 jint mOffset; 103 104 // Disallow copy and assignment. 105 NativeUnsafeByteSequence(const NativeUnsafeByteSequence&); 106 void operator=(const NativeUnsafeByteSequence&); 107 }; 108 109 static void Charsets_asciiBytesToChars(JNIEnv* env, jclass, jbyteArray javaBytes, jint offset, jint length, jcharArray javaChars) { 110 ScopedByteArrayRO bytes(env, javaBytes); 111 if (bytes.get() == NULL) { 112 return; 113 } 114 ScopedCharArrayRW chars(env, javaChars); 115 if (chars.get() == NULL) { 116 return; 117 } 118 119 const jbyte* src = &bytes[offset]; 120 jchar* dst = &chars[0]; 121 static const jchar REPLACEMENT_CHAR = 0xfffd; 122 for (int i = length - 1; i >= 0; --i) { 123 jchar ch = static_cast<jchar>(*src++ & 0xff); 124 *dst++ = (ch <= 0x7f) ? ch : REPLACEMENT_CHAR; 125 } 126 } 127 128 static void Charsets_isoLatin1BytesToChars(JNIEnv* env, jclass, jbyteArray javaBytes, jint offset, jint length, jcharArray javaChars) { 129 ScopedByteArrayRO bytes(env, javaBytes); 130 if (bytes.get() == NULL) { 131 return; 132 } 133 ScopedCharArrayRW chars(env, javaChars); 134 if (chars.get() == NULL) { 135 return; 136 } 137 138 const jbyte* src = &bytes[offset]; 139 jchar* dst = &chars[0]; 140 for (int i = length - 1; i >= 0; --i) { 141 *dst++ = static_cast<jchar>(*src++ & 0xff); 142 } 143 } 144 145 /** 146 * Translates the given characters to US-ASCII or ISO-8859-1 bytes, using the fact that 147 * Unicode code points between U+0000 and U+007f inclusive are identical to US-ASCII, while 148 * U+0000 to U+00ff inclusive are identical to ISO-8859-1. 149 */ 150 static jbyteArray charsToBytes(JNIEnv* env, jcharArray javaChars, jint offset, jint length, jchar maxValidChar) { 151 ScopedCharArrayRO chars(env, javaChars); 152 if (chars.get() == NULL) { 153 return NULL; 154 } 155 156 jbyteArray javaBytes = env->NewByteArray(length); 157 ScopedByteArrayRW bytes(env, javaBytes); 158 if (bytes.get() == NULL) { 159 return NULL; 160 } 161 162 const jchar* src = &chars[offset]; 163 jbyte* dst = &bytes[0]; 164 for (int i = length - 1; i >= 0; --i) { 165 jchar ch = *src++; 166 if (ch > maxValidChar) { 167 ch = '?'; 168 } 169 *dst++ = static_cast<jbyte>(ch); 170 } 171 172 return javaBytes; 173 } 174 175 static jbyteArray Charsets_toAsciiBytes(JNIEnv* env, jclass, jcharArray javaChars, jint offset, jint length) { 176 return charsToBytes(env, javaChars, offset, length, 0x7f); 177 } 178 179 static jbyteArray Charsets_toIsoLatin1Bytes(JNIEnv* env, jclass, jcharArray javaChars, jint offset, jint length) { 180 return charsToBytes(env, javaChars, offset, length, 0xff); 181 } 182 183 static jbyteArray Charsets_toUtf8Bytes(JNIEnv* env, jclass, jcharArray javaChars, jint offset, jint length) { 184 ScopedCharArrayRO chars(env, javaChars); 185 if (chars.get() == NULL) { 186 return NULL; 187 } 188 189 NativeUnsafeByteSequence out(env); 190 if (!out.resize(length)) { 191 return NULL; 192 } 193 194 const int end = offset + length; 195 for (int i = offset; i < end; ++i) { 196 jint ch = chars[i]; 197 if (ch < 0x80) { 198 // One byte. 199 if (!out.append(ch)) { 200 return NULL; 201 } 202 } else if (ch < 0x800) { 203 // Two bytes. 204 if (!out.append((ch >> 6) | 0xc0) || !out.append((ch & 0x3f) | 0x80)) { 205 return NULL; 206 } 207 } else if (U16_IS_SURROGATE(ch)) { 208 // A supplementary character. 209 jchar high = (jchar) ch; 210 jchar low = (i + 1 != end) ? chars[i + 1] : 0; 211 if (!U16_IS_SURROGATE_LEAD(high) || !U16_IS_SURROGATE_TRAIL(low)) { 212 if (!out.append('?')) { 213 return NULL; 214 } 215 continue; 216 } 217 // Now we know we have a *valid* surrogate pair, we can consume the low surrogate. 218 ++i; 219 ch = U16_GET_SUPPLEMENTARY(high, low); 220 // Four bytes. 221 jbyte b1 = (ch >> 18) | 0xf0; 222 jbyte b2 = ((ch >> 12) & 0x3f) | 0x80; 223 jbyte b3 = ((ch >> 6) & 0x3f) | 0x80; 224 jbyte b4 = (ch & 0x3f) | 0x80; 225 if (!out.append(b1) || !out.append(b2) || !out.append(b3) || !out.append(b4)) { 226 return NULL; 227 } 228 } else { 229 // Three bytes. 230 jbyte b1 = (ch >> 12) | 0xe0; 231 jbyte b2 = ((ch >> 6) & 0x3f) | 0x80; 232 jbyte b3 = (ch & 0x3f) | 0x80; 233 if (!out.append(b1) || !out.append(b2) || !out.append(b3)) { 234 return NULL; 235 } 236 } 237 } 238 return out.toByteArray(); 239 } 240 241 static JNINativeMethod gMethods[] = { 242 NATIVE_METHOD(Charsets, asciiBytesToChars, "([BII[C)V"), 243 NATIVE_METHOD(Charsets, isoLatin1BytesToChars, "([BII[C)V"), 244 NATIVE_METHOD(Charsets, toAsciiBytes, "([CII)[B"), 245 NATIVE_METHOD(Charsets, toIsoLatin1Bytes, "([CII)[B"), 246 NATIVE_METHOD(Charsets, toUtf8Bytes, "([CII)[B"), 247 }; 248 void register_java_nio_charset_Charsets(JNIEnv* env) { 249 jniRegisterNativeMethods(env, "java/nio/charset/Charsets", gMethods, NELEM(gMethods)); 250 } 251