1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 2 * 3 * LibTomCrypt is a library that provides various cryptographic 4 * algorithms in a highly modular and flexible manner. 5 * 6 * The library is free for all purposes without any express 7 * guarantee it works. 8 * 9 * Tom St Denis, tomstdenis (at) gmail.com, http://libtomcrypt.com 10 */ 11 12 /** 13 @file kasumi.c 14 Implementation of the 3GPP Kasumi block cipher 15 Derived from the 3GPP standard source code 16 */ 17 18 #include "tomcrypt.h" 19 20 #ifdef LTC_KASUMI 21 22 typedef unsigned u16; 23 24 #define ROL16(x, y) ((((x)<<(y)) | ((x)>>(16-(y)))) & 0xFFFF) 25 26 const struct ltc_cipher_descriptor kasumi_desc = { 27 "kasumi", 28 21, 29 16, 16, 8, 8, 30 &kasumi_setup, 31 &kasumi_ecb_encrypt, 32 &kasumi_ecb_decrypt, 33 &kasumi_test, 34 &kasumi_done, 35 &kasumi_keysize, 36 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 37 }; 38 39 static u16 FI( u16 in, u16 subkey ) 40 { 41 u16 nine, seven; 42 static const u16 S7[128] = { 43 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33, 44 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81, 45 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43, 46 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98, 47 117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87, 48 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66, 49 102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44, 50 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3 }; 51 static const u16 S9[512] = { 52 167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397, 53 183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177, 54 175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400, 55 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76, 56 165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223, 57 501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163, 58 232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135, 59 344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27, 60 487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124, 61 475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364, 62 363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229, 63 439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277, 64 465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282, 65 173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330, 66 280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454, 67 132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374, 68 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285, 69 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32, 70 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355, 71 185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190, 72 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111, 73 336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18, 74 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84, 75 414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201, 76 266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133, 77 311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404, 78 485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127, 79 312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398, 80 284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451, 81 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402, 82 438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380, 83 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461}; 84 85 /* The sixteen bit input is split into two unequal halves, * 86 * nine bits and seven bits - as is the subkey */ 87 88 nine = (u16)(in>>7)&0x1FF; 89 seven = (u16)(in&0x7F); 90 91 /* Now run the various operations */ 92 nine = (u16)(S9[nine] ^ seven); 93 seven = (u16)(S7[seven] ^ (nine & 0x7F)); 94 seven ^= (subkey>>9); 95 nine ^= (subkey&0x1FF); 96 nine = (u16)(S9[nine] ^ seven); 97 seven = (u16)(S7[seven] ^ (nine & 0x7F)); 98 return (u16)(seven<<9) + nine; 99 } 100 101 static ulong32 FO( ulong32 in, int round_no, symmetric_key *key) 102 { 103 u16 left, right; 104 105 /* Split the input into two 16-bit words */ 106 left = (u16)(in>>16); 107 right = (u16) in&0xFFFF; 108 109 /* Now apply the same basic transformation three times */ 110 left ^= key->kasumi.KOi1[round_no]; 111 left = FI( left, key->kasumi.KIi1[round_no] ); 112 left ^= right; 113 114 right ^= key->kasumi.KOi2[round_no]; 115 right = FI( right, key->kasumi.KIi2[round_no] ); 116 right ^= left; 117 118 left ^= key->kasumi.KOi3[round_no]; 119 left = FI( left, key->kasumi.KIi3[round_no] ); 120 left ^= right; 121 122 return (((ulong32)right)<<16)+left; 123 } 124 125 static ulong32 FL( ulong32 in, int round_no, symmetric_key *key ) 126 { 127 u16 l, r, a, b; 128 /* split out the left and right halves */ 129 l = (u16)(in>>16); 130 r = (u16)(in)&0xFFFF; 131 /* do the FL() operations */ 132 a = (u16) (l & key->kasumi.KLi1[round_no]); 133 r ^= ROL16(a,1); 134 b = (u16)(r | key->kasumi.KLi2[round_no]); 135 l ^= ROL16(b,1); 136 /* put the two halves back together */ 137 138 return (((ulong32)l)<<16) + r; 139 } 140 141 int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) 142 { 143 ulong32 left, right, temp; 144 int n; 145 146 LTC_ARGCHK(pt != NULL); 147 LTC_ARGCHK(ct != NULL); 148 LTC_ARGCHK(skey != NULL); 149 150 LOAD32H(left, pt); 151 LOAD32H(right, pt+4); 152 153 for (n = 0; n <= 7; ) { 154 temp = FL(left, n, skey); 155 temp = FO(temp, n++, skey); 156 right ^= temp; 157 temp = FO(right, n, skey); 158 temp = FL(temp, n++, skey); 159 left ^= temp; 160 } 161 162 STORE32H(left, ct); 163 STORE32H(right, ct+4); 164 165 return CRYPT_OK; 166 } 167 168 int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) 169 { 170 ulong32 left, right, temp; 171 int n; 172 173 LTC_ARGCHK(pt != NULL); 174 LTC_ARGCHK(ct != NULL); 175 LTC_ARGCHK(skey != NULL); 176 177 LOAD32H(left, ct); 178 LOAD32H(right, ct+4); 179 180 for (n = 7; n >= 0; ) { 181 temp = FO(right, n, skey); 182 temp = FL(temp, n--, skey); 183 left ^= temp; 184 temp = FL(left, n, skey); 185 temp = FO(temp, n--, skey); 186 right ^= temp; 187 } 188 189 STORE32H(left, pt); 190 STORE32H(right, pt+4); 191 192 return CRYPT_OK; 193 } 194 195 int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) 196 { 197 static const u16 C[8] = { 0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 }; 198 u16 ukey[8], Kprime[8]; 199 int n; 200 201 LTC_ARGCHK(key != NULL); 202 LTC_ARGCHK(skey != NULL); 203 204 if (keylen != 16) { 205 return CRYPT_INVALID_KEYSIZE; 206 } 207 208 if (num_rounds != 0 && num_rounds != 8) { 209 return CRYPT_INVALID_ROUNDS; 210 } 211 212 /* Start by ensuring the subkeys are endian correct on a 16-bit basis */ 213 for (n = 0; n < 8; n++ ) { 214 ukey[n] = (((u16)key[2*n]) << 8) | key[2*n+1]; 215 } 216 217 /* Now build the K'[] keys */ 218 for (n = 0; n < 8; n++) { 219 Kprime[n] = ukey[n] ^ C[n]; 220 } 221 222 /* Finally construct the various sub keys */ 223 for(n = 0; n < 8; n++) { 224 skey->kasumi.KLi1[n] = ROL16(ukey[n],1); 225 skey->kasumi.KLi2[n] = Kprime[(n+2)&0x7]; 226 skey->kasumi.KOi1[n] = ROL16(ukey[(n+1)&0x7],5); 227 skey->kasumi.KOi2[n] = ROL16(ukey[(n+5)&0x7],8); 228 skey->kasumi.KOi3[n] = ROL16(ukey[(n+6)&0x7],13); 229 skey->kasumi.KIi1[n] = Kprime[(n+4)&0x7]; 230 skey->kasumi.KIi2[n] = Kprime[(n+3)&0x7]; 231 skey->kasumi.KIi3[n] = Kprime[(n+7)&0x7]; 232 } 233 234 return CRYPT_OK; 235 } 236 237 void kasumi_done(symmetric_key *skey) 238 { 239 } 240 241 int kasumi_keysize(int *keysize) 242 { 243 LTC_ARGCHK(keysize != NULL); 244 if (*keysize >= 16) { 245 *keysize = 16; 246 return CRYPT_OK; 247 } else { 248 return CRYPT_INVALID_KEYSIZE; 249 } 250 } 251 252 int kasumi_test(void) 253 { 254 #ifndef LTC_TEST 255 return CRYPT_NOP; 256 #else 257 static const struct { 258 unsigned char key[16], pt[8], ct[8]; 259 } tests[] = { 260 261 { 262 { 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 263 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 264 { 0x4B, 0x58, 0xA7, 0x71, 0xAF, 0xC7, 0xE5, 0xE8 } 265 }, 266 267 { 268 { 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 269 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 270 { 0x7E, 0xEF, 0x11, 0x3C, 0x95, 0xBB, 0x5A, 0x77 } 271 }, 272 273 { 274 { 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 275 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 276 { 0x5F, 0x14, 0x06, 0x86, 0xD7, 0xAD, 0x5A, 0x39 }, 277 }, 278 279 { 280 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 }, 281 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 282 { 0x2E, 0x14, 0x91, 0xCF, 0x70, 0xAA, 0x46, 0x5D } 283 }, 284 285 { 286 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00 }, 287 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, 288 { 0xB5, 0x45, 0x86, 0xF4, 0xAB, 0x9A, 0xE5, 0x46 } 289 }, 290 291 }; 292 unsigned char buf[2][8]; 293 symmetric_key key; 294 int err, x; 295 296 for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) { 297 if ((err = kasumi_setup(tests[x].key, 16, 0, &key)) != CRYPT_OK) { 298 return err; 299 } 300 if ((err = kasumi_ecb_encrypt(tests[x].pt, buf[0], &key)) != CRYPT_OK) { 301 return err; 302 } 303 if ((err = kasumi_ecb_decrypt(tests[x].ct, buf[1], &key)) != CRYPT_OK) { 304 return err; 305 } 306 if (XMEMCMP(tests[x].pt, buf[1], 8) || XMEMCMP(tests[x].ct, buf[0], 8)) { 307 return CRYPT_FAIL_TESTVECTOR; 308 } 309 } 310 return CRYPT_OK; 311 #endif 312 } 313 314 #endif 315 316 /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/kasumi.c,v $ */ 317 /* $Revision: 1.7 $ */ 318 /* $Date: 2006/11/09 03:05:44 $ */ 319