1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef SANDBOX_SRC_POLICY_ENGINE_PROCESSOR_H__ 6 #define SANDBOX_SRC_POLICY_ENGINE_PROCESSOR_H__ 7 8 #include "base/basictypes.h" 9 #include "sandbox/win/src/policy_engine_params.h" 10 #include "sandbox/win/src/policy_engine_opcodes.h" 11 12 namespace sandbox { 13 14 // This header contains the core policy evaluator. In its simplest form 15 // it evaluates a stream of opcodes assuming that they are laid out in 16 // memory as opcode groups. 17 // 18 // An opcode group has N comparison opcodes plus 1 action opcode. For 19 // example here we have 3 opcode groups (A, B,C): 20 // 21 // [comparison 1] <-- group A start 22 // [comparison 2] 23 // [comparison 3] 24 // [action A ] 25 // [comparison 1] <-- group B start 26 // [action B ] 27 // [comparison 1] <-- group C start 28 // [comparison 2] 29 // [action C ] 30 // 31 // The opcode evaluator proceeds from the top, evaluating each opcode in 32 // sequence. An opcode group is evaluated until the first comparison that 33 // returns false. At that point the rest of the group is skipped and evaluation 34 // resumes with the first comparison of the next group. When all the comparisons 35 // in a group have evaluated to true and the action is reached. The group is 36 // considered a matching group. 37 // 38 // In the 'ShortEval' mode evaluation stops when it reaches the end or the first 39 // matching group. The action opcode from this group is the resulting policy 40 // action. 41 // 42 // In the 'RankedEval' mode evaluation stops only when it reaches the end of the 43 // the opcode stream. In the process all matching groups are saved and at the 44 // end the 'best' group is selected (what makes the best is TBD) and the action 45 // from this group is the resulting policy action. 46 // 47 // As explained above, the policy evaluation of a group is a logical AND of 48 // the evaluation of each opcode. However an opcode can request kPolUseOREval 49 // which makes the evaluation to use logical OR. Given that each opcode can 50 // request its evaluation result to be negated with kPolNegateEval you can 51 // achieve the negation of the total group evaluation. This means that if you 52 // need to express: 53 // if (!(c1 && c2 && c3)) 54 // You can do it by: 55 // if ((!c1) || (!c2) || (!c3)) 56 // 57 58 // Possible outcomes of policy evaluation. 59 enum PolicyResult { 60 NO_POLICY_MATCH, 61 POLICY_MATCH, 62 POLICY_ERROR 63 }; 64 65 // Policy evaluation flags 66 // TODO(cpu): implement the options 0 & 4. 67 // 68 // Stop evaluating as soon as an error is encountered. 69 const uint32 kStopOnErrors = 0; 70 // Ignore all non fatal opcode evaluation errors. 71 const uint32 kIgnoreErrors = 1; 72 // Short-circuit evaluation: Only evaluate until opcode group that 73 // evaluated to true has been found. 74 const uint32 kShortEval = 2; 75 // Discussed briefly at the policy design meeting. It will evaluate 76 // all rules and then return the 'best' rule that evaluated true. 77 const uint32 kRankedEval = 4; 78 79 // This class evaluates a policy-opcode stream given the memory where the 80 // opcodes are and an input 'parameter set'. 81 // 82 // This class is designed to be callable from interception points 83 // as low as the NtXXXX service level (it is not currently safe, but 84 // it is designed to be made safe). 85 // 86 // Its usage in an interception is: 87 // 88 // POLPARAMS_BEGIN(eval_params) 89 // POLPARAM(param1) 90 // POLPARAM(param2) 91 // POLPARAM(param3) 92 // POLPARAM(param4) 93 // POLPARAM(param5) 94 // POLPARAMS_END; 95 // 96 // PolicyProcessor pol_evaluator(policy_memory); 97 // PolicyResult pr = pol_evaluator.Evaluate(ShortEval, eval_params, 98 // _countof(eval_params)); 99 // if (NO_POLICY_MATCH == pr) { 100 // EvalResult policy_action = pol_evaluator.GetAction(); 101 // // apply policy here... 102 // } 103 // 104 // Where the POLPARAM() arguments are derived from the intercepted function 105 // arguments, and represent all the 'interesting' policy inputs, and 106 // policy_memory is a memory buffer containing the opcode stream that is the 107 // relevant policy for this intercept. 108 class PolicyProcessor { 109 public: 110 // policy_buffer contains opcodes made with OpcodeFactory. They are usually 111 // created in the broker process and evaluated in the target process. 112 113 // This constructor is just a variant of the previous constructor. 114 explicit PolicyProcessor(PolicyBuffer* policy) 115 : policy_(policy) { 116 SetInternalState(0, EVAL_FALSE); 117 } 118 119 // Evaluates a policy-opcode stream. See the comments at the top of this 120 // class for more info. Returns POLICY_MATCH if a rule set was found that 121 // matches an active policy. 122 PolicyResult Evaluate(uint32 options, 123 ParameterSet* parameters, 124 size_t parameter_count); 125 126 // If the result of Evaluate() was POLICY_MATCH, calling this function returns 127 // the recommended policy action. 128 EvalResult GetAction() const; 129 130 private: 131 struct { 132 size_t current_index_; 133 EvalResult current_result_; 134 } state_; 135 136 // Sets the currently matching action result. 137 void SetInternalState(size_t index, EvalResult result); 138 139 PolicyBuffer* policy_; 140 DISALLOW_COPY_AND_ASSIGN(PolicyProcessor); 141 }; 142 143 } // namespace sandbox 144 145 #endif // SANDBOX_SRC_POLICY_ENGINE_PROCESSOR_H__ 146