Home | History | Annotate | Download | only in openssh
      1 /* $OpenBSD: moduli.c,v 1.22 2010/11/10 01:33:07 djm Exp $ */
      2 /*
      3  * Copyright 1994 Phil Karn <karn (at) qualcomm.com>
      4  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson (at) greendragon.com>
      5  * Copyright 2000 Niels Provos <provos (at) citi.umich.edu>
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Two-step process to generate safe primes for DHGEX
     31  *
     32  *  Sieve candidates for "safe" primes,
     33  *  suitable for use as Diffie-Hellman moduli;
     34  *  that is, where q = (p-1)/2 is also prime.
     35  *
     36  * First step: generate candidate primes (memory intensive)
     37  * Second step: test primes' safety (processor intensive)
     38  */
     39 
     40 #include "includes.h"
     41 
     42 #include <sys/types.h>
     43 
     44 #include <openssl/bn.h>
     45 #include <openssl/dh.h>
     46 
     47 #include <stdio.h>
     48 #include <stdlib.h>
     49 #include <string.h>
     50 #include <stdarg.h>
     51 #include <time.h>
     52 
     53 #include "xmalloc.h"
     54 #include "dh.h"
     55 #include "log.h"
     56 
     57 #include "openbsd-compat/openssl-compat.h"
     58 
     59 /*
     60  * File output defines
     61  */
     62 
     63 /* need line long enough for largest moduli plus headers */
     64 #define QLINESIZE		(100+8192)
     65 
     66 /*
     67  * Size: decimal.
     68  * Specifies the number of the most significant bit (0 to M).
     69  * WARNING: internally, usually 1 to N.
     70  */
     71 #define QSIZE_MINIMUM		(511)
     72 
     73 /*
     74  * Prime sieving defines
     75  */
     76 
     77 /* Constant: assuming 8 bit bytes and 32 bit words */
     78 #define SHIFT_BIT	(3)
     79 #define SHIFT_BYTE	(2)
     80 #define SHIFT_WORD	(SHIFT_BIT+SHIFT_BYTE)
     81 #define SHIFT_MEGABYTE	(20)
     82 #define SHIFT_MEGAWORD	(SHIFT_MEGABYTE-SHIFT_BYTE)
     83 
     84 /*
     85  * Using virtual memory can cause thrashing.  This should be the largest
     86  * number that is supported without a large amount of disk activity --
     87  * that would increase the run time from hours to days or weeks!
     88  */
     89 #define LARGE_MINIMUM	(8UL)	/* megabytes */
     90 
     91 /*
     92  * Do not increase this number beyond the unsigned integer bit size.
     93  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
     94  */
     95 #define LARGE_MAXIMUM	(127UL)	/* megabytes */
     96 
     97 /*
     98  * Constant: when used with 32-bit integers, the largest sieve prime
     99  * has to be less than 2**32.
    100  */
    101 #define SMALL_MAXIMUM	(0xffffffffUL)
    102 
    103 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
    104 #define TINY_NUMBER	(1UL<<16)
    105 
    106 /* Ensure enough bit space for testing 2*q. */
    107 #define TEST_MAXIMUM	(1UL<<16)
    108 #define TEST_MINIMUM	(QSIZE_MINIMUM + 1)
    109 /* real TEST_MINIMUM	(1UL << (SHIFT_WORD - TEST_POWER)) */
    110 #define TEST_POWER	(3)	/* 2**n, n < SHIFT_WORD */
    111 
    112 /* bit operations on 32-bit words */
    113 #define BIT_CLEAR(a,n)	((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
    114 #define BIT_SET(a,n)	((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
    115 #define BIT_TEST(a,n)	((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
    116 
    117 /*
    118  * Prime testing defines
    119  */
    120 
    121 /* Minimum number of primality tests to perform */
    122 #define TRIAL_MINIMUM	(4)
    123 
    124 /*
    125  * Sieving data (XXX - move to struct)
    126  */
    127 
    128 /* sieve 2**16 */
    129 static u_int32_t *TinySieve, tinybits;
    130 
    131 /* sieve 2**30 in 2**16 parts */
    132 static u_int32_t *SmallSieve, smallbits, smallbase;
    133 
    134 /* sieve relative to the initial value */
    135 static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
    136 static u_int32_t largebits, largememory;	/* megabytes */
    137 static BIGNUM *largebase;
    138 
    139 int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
    140 int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
    141 
    142 /*
    143  * print moduli out in consistent form,
    144  */
    145 static int
    146 qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
    147     u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
    148 {
    149 	struct tm *gtm;
    150 	time_t time_now;
    151 	int res;
    152 
    153 	time(&time_now);
    154 	gtm = gmtime(&time_now);
    155 
    156 	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
    157 	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
    158 	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
    159 	    otype, otests, otries, osize, ogenerator);
    160 
    161 	if (res < 0)
    162 		return (-1);
    163 
    164 	if (BN_print_fp(ofile, omodulus) < 1)
    165 		return (-1);
    166 
    167 	res = fprintf(ofile, "\n");
    168 	fflush(ofile);
    169 
    170 	return (res > 0 ? 0 : -1);
    171 }
    172 
    173 
    174 /*
    175  ** Sieve p's and q's with small factors
    176  */
    177 static void
    178 sieve_large(u_int32_t s)
    179 {
    180 	u_int32_t r, u;
    181 
    182 	debug3("sieve_large %u", s);
    183 	largetries++;
    184 	/* r = largebase mod s */
    185 	r = BN_mod_word(largebase, s);
    186 	if (r == 0)
    187 		u = 0; /* s divides into largebase exactly */
    188 	else
    189 		u = s - r; /* largebase+u is first entry divisible by s */
    190 
    191 	if (u < largebits * 2) {
    192 		/*
    193 		 * The sieve omits p's and q's divisible by 2, so ensure that
    194 		 * largebase+u is odd. Then, step through the sieve in
    195 		 * increments of 2*s
    196 		 */
    197 		if (u & 0x1)
    198 			u += s; /* Make largebase+u odd, and u even */
    199 
    200 		/* Mark all multiples of 2*s */
    201 		for (u /= 2; u < largebits; u += s)
    202 			BIT_SET(LargeSieve, u);
    203 	}
    204 
    205 	/* r = p mod s */
    206 	r = (2 * r + 1) % s;
    207 	if (r == 0)
    208 		u = 0; /* s divides p exactly */
    209 	else
    210 		u = s - r; /* p+u is first entry divisible by s */
    211 
    212 	if (u < largebits * 4) {
    213 		/*
    214 		 * The sieve omits p's divisible by 4, so ensure that
    215 		 * largebase+u is not. Then, step through the sieve in
    216 		 * increments of 4*s
    217 		 */
    218 		while (u & 0x3) {
    219 			if (SMALL_MAXIMUM - u < s)
    220 				return;
    221 			u += s;
    222 		}
    223 
    224 		/* Mark all multiples of 4*s */
    225 		for (u /= 4; u < largebits; u += s)
    226 			BIT_SET(LargeSieve, u);
    227 	}
    228 }
    229 
    230 /*
    231  * list candidates for Sophie-Germain primes (where q = (p-1)/2)
    232  * to standard output.
    233  * The list is checked against small known primes (less than 2**30).
    234  */
    235 int
    236 gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
    237 {
    238 	BIGNUM *q;
    239 	u_int32_t j, r, s, t;
    240 	u_int32_t smallwords = TINY_NUMBER >> 6;
    241 	u_int32_t tinywords = TINY_NUMBER >> 6;
    242 	time_t time_start, time_stop;
    243 	u_int32_t i;
    244 	int ret = 0;
    245 
    246 	largememory = memory;
    247 
    248 	if (memory != 0 &&
    249 	    (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
    250 		error("Invalid memory amount (min %ld, max %ld)",
    251 		    LARGE_MINIMUM, LARGE_MAXIMUM);
    252 		return (-1);
    253 	}
    254 
    255 	/*
    256 	 * Set power to the length in bits of the prime to be generated.
    257 	 * This is changed to 1 less than the desired safe prime moduli p.
    258 	 */
    259 	if (power > TEST_MAXIMUM) {
    260 		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
    261 		return (-1);
    262 	} else if (power < TEST_MINIMUM) {
    263 		error("Too few bits: %u < %u", power, TEST_MINIMUM);
    264 		return (-1);
    265 	}
    266 	power--; /* decrement before squaring */
    267 
    268 	/*
    269 	 * The density of ordinary primes is on the order of 1/bits, so the
    270 	 * density of safe primes should be about (1/bits)**2. Set test range
    271 	 * to something well above bits**2 to be reasonably sure (but not
    272 	 * guaranteed) of catching at least one safe prime.
    273 	 */
    274 	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
    275 
    276 	/*
    277 	 * Need idea of how much memory is available. We don't have to use all
    278 	 * of it.
    279 	 */
    280 	if (largememory > LARGE_MAXIMUM) {
    281 		logit("Limited memory: %u MB; limit %lu MB",
    282 		    largememory, LARGE_MAXIMUM);
    283 		largememory = LARGE_MAXIMUM;
    284 	}
    285 
    286 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
    287 		logit("Increased memory: %u MB; need %u bytes",
    288 		    largememory, (largewords << SHIFT_BYTE));
    289 		largewords = (largememory << SHIFT_MEGAWORD);
    290 	} else if (largememory > 0) {
    291 		logit("Decreased memory: %u MB; want %u bytes",
    292 		    largememory, (largewords << SHIFT_BYTE));
    293 		largewords = (largememory << SHIFT_MEGAWORD);
    294 	}
    295 
    296 	TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
    297 	tinybits = tinywords << SHIFT_WORD;
    298 
    299 	SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
    300 	smallbits = smallwords << SHIFT_WORD;
    301 
    302 	/*
    303 	 * dynamically determine available memory
    304 	 */
    305 	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
    306 		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
    307 
    308 	largebits = largewords << SHIFT_WORD;
    309 	largenumbers = largebits * 2;	/* even numbers excluded */
    310 
    311 	/* validation check: count the number of primes tried */
    312 	largetries = 0;
    313 	if ((q = BN_new()) == NULL)
    314 		fatal("BN_new failed");
    315 
    316 	/*
    317 	 * Generate random starting point for subprime search, or use
    318 	 * specified parameter.
    319 	 */
    320 	if ((largebase = BN_new()) == NULL)
    321 		fatal("BN_new failed");
    322 	if (start == NULL) {
    323 		if (BN_rand(largebase, power, 1, 1) == 0)
    324 			fatal("BN_rand failed");
    325 	} else {
    326 		if (BN_copy(largebase, start) == NULL)
    327 			fatal("BN_copy: failed");
    328 	}
    329 
    330 	/* ensure odd */
    331 	if (BN_set_bit(largebase, 0) == 0)
    332 		fatal("BN_set_bit: failed");
    333 
    334 	time(&time_start);
    335 
    336 	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
    337 	    largenumbers, power);
    338 	debug2("start point: 0x%s", BN_bn2hex(largebase));
    339 
    340 	/*
    341 	 * TinySieve
    342 	 */
    343 	for (i = 0; i < tinybits; i++) {
    344 		if (BIT_TEST(TinySieve, i))
    345 			continue; /* 2*i+3 is composite */
    346 
    347 		/* The next tiny prime */
    348 		t = 2 * i + 3;
    349 
    350 		/* Mark all multiples of t */
    351 		for (j = i + t; j < tinybits; j += t)
    352 			BIT_SET(TinySieve, j);
    353 
    354 		sieve_large(t);
    355 	}
    356 
    357 	/*
    358 	 * Start the small block search at the next possible prime. To avoid
    359 	 * fencepost errors, the last pass is skipped.
    360 	 */
    361 	for (smallbase = TINY_NUMBER + 3;
    362 	    smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
    363 	    smallbase += TINY_NUMBER) {
    364 		for (i = 0; i < tinybits; i++) {
    365 			if (BIT_TEST(TinySieve, i))
    366 				continue; /* 2*i+3 is composite */
    367 
    368 			/* The next tiny prime */
    369 			t = 2 * i + 3;
    370 			r = smallbase % t;
    371 
    372 			if (r == 0) {
    373 				s = 0; /* t divides into smallbase exactly */
    374 			} else {
    375 				/* smallbase+s is first entry divisible by t */
    376 				s = t - r;
    377 			}
    378 
    379 			/*
    380 			 * The sieve omits even numbers, so ensure that
    381 			 * smallbase+s is odd. Then, step through the sieve
    382 			 * in increments of 2*t
    383 			 */
    384 			if (s & 1)
    385 				s += t; /* Make smallbase+s odd, and s even */
    386 
    387 			/* Mark all multiples of 2*t */
    388 			for (s /= 2; s < smallbits; s += t)
    389 				BIT_SET(SmallSieve, s);
    390 		}
    391 
    392 		/*
    393 		 * SmallSieve
    394 		 */
    395 		for (i = 0; i < smallbits; i++) {
    396 			if (BIT_TEST(SmallSieve, i))
    397 				continue; /* 2*i+smallbase is composite */
    398 
    399 			/* The next small prime */
    400 			sieve_large((2 * i) + smallbase);
    401 		}
    402 
    403 		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
    404 	}
    405 
    406 	time(&time_stop);
    407 
    408 	logit("%.24s Sieved with %u small primes in %ld seconds",
    409 	    ctime(&time_stop), largetries, (long) (time_stop - time_start));
    410 
    411 	for (j = r = 0; j < largebits; j++) {
    412 		if (BIT_TEST(LargeSieve, j))
    413 			continue; /* Definitely composite, skip */
    414 
    415 		debug2("test q = largebase+%u", 2 * j);
    416 		if (BN_set_word(q, 2 * j) == 0)
    417 			fatal("BN_set_word failed");
    418 		if (BN_add(q, q, largebase) == 0)
    419 			fatal("BN_add failed");
    420 		if (qfileout(out, MODULI_TYPE_SOPHIE_GERMAIN,
    421 		    MODULI_TESTS_SIEVE, largetries,
    422 		    (power - 1) /* MSB */, (0), q) == -1) {
    423 			ret = -1;
    424 			break;
    425 		}
    426 
    427 		r++; /* count q */
    428 	}
    429 
    430 	time(&time_stop);
    431 
    432 	xfree(LargeSieve);
    433 	xfree(SmallSieve);
    434 	xfree(TinySieve);
    435 
    436 	logit("%.24s Found %u candidates", ctime(&time_stop), r);
    437 
    438 	return (ret);
    439 }
    440 
    441 /*
    442  * perform a Miller-Rabin primality test
    443  * on the list of candidates
    444  * (checking both q and p)
    445  * The result is a list of so-call "safe" primes
    446  */
    447 int
    448 prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
    449 {
    450 	BIGNUM *q, *p, *a;
    451 	BN_CTX *ctx;
    452 	char *cp, *lp;
    453 	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
    454 	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
    455 	time_t time_start, time_stop;
    456 	int res;
    457 
    458 	if (trials < TRIAL_MINIMUM) {
    459 		error("Minimum primality trials is %d", TRIAL_MINIMUM);
    460 		return (-1);
    461 	}
    462 
    463 	time(&time_start);
    464 
    465 	if ((p = BN_new()) == NULL)
    466 		fatal("BN_new failed");
    467 	if ((q = BN_new()) == NULL)
    468 		fatal("BN_new failed");
    469 	if ((ctx = BN_CTX_new()) == NULL)
    470 		fatal("BN_CTX_new failed");
    471 
    472 	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
    473 	    ctime(&time_start), trials, generator_wanted);
    474 
    475 	res = 0;
    476 	lp = xmalloc(QLINESIZE + 1);
    477 	while (fgets(lp, QLINESIZE + 1, in) != NULL) {
    478 		count_in++;
    479 		if (strlen(lp) < 14 || *lp == '!' || *lp == '#') {
    480 			debug2("%10u: comment or short line", count_in);
    481 			continue;
    482 		}
    483 
    484 		/* XXX - fragile parser */
    485 		/* time */
    486 		cp = &lp[14];	/* (skip) */
    487 
    488 		/* type */
    489 		in_type = strtoul(cp, &cp, 10);
    490 
    491 		/* tests */
    492 		in_tests = strtoul(cp, &cp, 10);
    493 
    494 		if (in_tests & MODULI_TESTS_COMPOSITE) {
    495 			debug2("%10u: known composite", count_in);
    496 			continue;
    497 		}
    498 
    499 		/* tries */
    500 		in_tries = strtoul(cp, &cp, 10);
    501 
    502 		/* size (most significant bit) */
    503 		in_size = strtoul(cp, &cp, 10);
    504 
    505 		/* generator (hex) */
    506 		generator_known = strtoul(cp, &cp, 16);
    507 
    508 		/* Skip white space */
    509 		cp += strspn(cp, " ");
    510 
    511 		/* modulus (hex) */
    512 		switch (in_type) {
    513 		case MODULI_TYPE_SOPHIE_GERMAIN:
    514 			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
    515 			a = q;
    516 			if (BN_hex2bn(&a, cp) == 0)
    517 				fatal("BN_hex2bn failed");
    518 			/* p = 2*q + 1 */
    519 			if (BN_lshift(p, q, 1) == 0)
    520 				fatal("BN_lshift failed");
    521 			if (BN_add_word(p, 1) == 0)
    522 				fatal("BN_add_word failed");
    523 			in_size += 1;
    524 			generator_known = 0;
    525 			break;
    526 		case MODULI_TYPE_UNSTRUCTURED:
    527 		case MODULI_TYPE_SAFE:
    528 		case MODULI_TYPE_SCHNORR:
    529 		case MODULI_TYPE_STRONG:
    530 		case MODULI_TYPE_UNKNOWN:
    531 			debug2("%10u: (%u)", count_in, in_type);
    532 			a = p;
    533 			if (BN_hex2bn(&a, cp) == 0)
    534 				fatal("BN_hex2bn failed");
    535 			/* q = (p-1) / 2 */
    536 			if (BN_rshift(q, p, 1) == 0)
    537 				fatal("BN_rshift failed");
    538 			break;
    539 		default:
    540 			debug2("Unknown prime type");
    541 			break;
    542 		}
    543 
    544 		/*
    545 		 * due to earlier inconsistencies in interpretation, check
    546 		 * the proposed bit size.
    547 		 */
    548 		if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
    549 			debug2("%10u: bit size %u mismatch", count_in, in_size);
    550 			continue;
    551 		}
    552 		if (in_size < QSIZE_MINIMUM) {
    553 			debug2("%10u: bit size %u too short", count_in, in_size);
    554 			continue;
    555 		}
    556 
    557 		if (in_tests & MODULI_TESTS_MILLER_RABIN)
    558 			in_tries += trials;
    559 		else
    560 			in_tries = trials;
    561 
    562 		/*
    563 		 * guess unknown generator
    564 		 */
    565 		if (generator_known == 0) {
    566 			if (BN_mod_word(p, 24) == 11)
    567 				generator_known = 2;
    568 			else if (BN_mod_word(p, 12) == 5)
    569 				generator_known = 3;
    570 			else {
    571 				u_int32_t r = BN_mod_word(p, 10);
    572 
    573 				if (r == 3 || r == 7)
    574 					generator_known = 5;
    575 			}
    576 		}
    577 		/*
    578 		 * skip tests when desired generator doesn't match
    579 		 */
    580 		if (generator_wanted > 0 &&
    581 		    generator_wanted != generator_known) {
    582 			debug2("%10u: generator %d != %d",
    583 			    count_in, generator_known, generator_wanted);
    584 			continue;
    585 		}
    586 
    587 		/*
    588 		 * Primes with no known generator are useless for DH, so
    589 		 * skip those.
    590 		 */
    591 		if (generator_known == 0) {
    592 			debug2("%10u: no known generator", count_in);
    593 			continue;
    594 		}
    595 
    596 		count_possible++;
    597 
    598 		/*
    599 		 * The (1/4)^N performance bound on Miller-Rabin is
    600 		 * extremely pessimistic, so don't spend a lot of time
    601 		 * really verifying that q is prime until after we know
    602 		 * that p is also prime. A single pass will weed out the
    603 		 * vast majority of composite q's.
    604 		 */
    605 		if (BN_is_prime_ex(q, 1, ctx, NULL) <= 0) {
    606 			debug("%10u: q failed first possible prime test",
    607 			    count_in);
    608 			continue;
    609 		}
    610 
    611 		/*
    612 		 * q is possibly prime, so go ahead and really make sure
    613 		 * that p is prime. If it is, then we can go back and do
    614 		 * the same for q. If p is composite, chances are that
    615 		 * will show up on the first Rabin-Miller iteration so it
    616 		 * doesn't hurt to specify a high iteration count.
    617 		 */
    618 		if (!BN_is_prime_ex(p, trials, ctx, NULL)) {
    619 			debug("%10u: p is not prime", count_in);
    620 			continue;
    621 		}
    622 		debug("%10u: p is almost certainly prime", count_in);
    623 
    624 		/* recheck q more rigorously */
    625 		if (!BN_is_prime_ex(q, trials - 1, ctx, NULL)) {
    626 			debug("%10u: q is not prime", count_in);
    627 			continue;
    628 		}
    629 		debug("%10u: q is almost certainly prime", count_in);
    630 
    631 		if (qfileout(out, MODULI_TYPE_SAFE,
    632 		    in_tests | MODULI_TESTS_MILLER_RABIN,
    633 		    in_tries, in_size, generator_known, p)) {
    634 			res = -1;
    635 			break;
    636 		}
    637 
    638 		count_out++;
    639 	}
    640 
    641 	time(&time_stop);
    642 	xfree(lp);
    643 	BN_free(p);
    644 	BN_free(q);
    645 	BN_CTX_free(ctx);
    646 
    647 	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
    648 	    ctime(&time_stop), count_out, count_possible,
    649 	    (long) (time_stop - time_start));
    650 
    651 	return (res);
    652 }
    653