Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the generic implementation of LoopInfo used for both Loops and
     11 // MachineLoops.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
     16 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
     17 
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/Analysis/LoopInfo.h"
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 // APIs for simple analysis of the loop. See header notes.
     26 
     27 /// getExitingBlocks - Return all blocks inside the loop that have successors
     28 /// outside of the loop.  These are the blocks _inside of the current loop_
     29 /// which branch out.  The returned list is always unique.
     30 ///
     31 template<class BlockT, class LoopT>
     32 void LoopBase<BlockT, LoopT>::
     33 getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
     34   // Sort the blocks vector so that we can use binary search to do quick
     35   // lookups.
     36   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
     37   std::sort(LoopBBs.begin(), LoopBBs.end());
     38 
     39   typedef GraphTraits<BlockT*> BlockTraits;
     40   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
     41     for (typename BlockTraits::ChildIteratorType I =
     42            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
     43          I != E; ++I)
     44       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
     45         // Not in current loop? It must be an exit block.
     46         ExitingBlocks.push_back(*BI);
     47         break;
     48       }
     49 }
     50 
     51 /// getExitingBlock - If getExitingBlocks would return exactly one block,
     52 /// return that block. Otherwise return null.
     53 template<class BlockT, class LoopT>
     54 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
     55   SmallVector<BlockT*, 8> ExitingBlocks;
     56   getExitingBlocks(ExitingBlocks);
     57   if (ExitingBlocks.size() == 1)
     58     return ExitingBlocks[0];
     59   return 0;
     60 }
     61 
     62 /// getExitBlocks - Return all of the successor blocks of this loop.  These
     63 /// are the blocks _outside of the current loop_ which are branched to.
     64 ///
     65 template<class BlockT, class LoopT>
     66 void LoopBase<BlockT, LoopT>::
     67 getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
     68   // Sort the blocks vector so that we can use binary search to do quick
     69   // lookups.
     70   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
     71   std::sort(LoopBBs.begin(), LoopBBs.end());
     72 
     73   typedef GraphTraits<BlockT*> BlockTraits;
     74   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
     75     for (typename BlockTraits::ChildIteratorType I =
     76            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
     77          I != E; ++I)
     78       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
     79         // Not in current loop? It must be an exit block.
     80         ExitBlocks.push_back(*I);
     81 }
     82 
     83 /// getExitBlock - If getExitBlocks would return exactly one block,
     84 /// return that block. Otherwise return null.
     85 template<class BlockT, class LoopT>
     86 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
     87   SmallVector<BlockT*, 8> ExitBlocks;
     88   getExitBlocks(ExitBlocks);
     89   if (ExitBlocks.size() == 1)
     90     return ExitBlocks[0];
     91   return 0;
     92 }
     93 
     94 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
     95 template<class BlockT, class LoopT>
     96 void LoopBase<BlockT, LoopT>::
     97 getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
     98   // Sort the blocks vector so that we can use binary search to do quick
     99   // lookups.
    100   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    101   array_pod_sort(LoopBBs.begin(), LoopBBs.end());
    102 
    103   typedef GraphTraits<BlockT*> BlockTraits;
    104   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
    105     for (typename BlockTraits::ChildIteratorType I =
    106            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
    107          I != E; ++I)
    108       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
    109         // Not in current loop? It must be an exit block.
    110         ExitEdges.push_back(Edge(*BI, *I));
    111 }
    112 
    113 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    114 /// loop has a preheader if there is only one edge to the header of the loop
    115 /// from outside of the loop.  If this is the case, the block branching to the
    116 /// header of the loop is the preheader node.
    117 ///
    118 /// This method returns null if there is no preheader for the loop.
    119 ///
    120 template<class BlockT, class LoopT>
    121 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
    122   // Keep track of nodes outside the loop branching to the header...
    123   BlockT *Out = getLoopPredecessor();
    124   if (!Out) return 0;
    125 
    126   // Make sure there is only one exit out of the preheader.
    127   typedef GraphTraits<BlockT*> BlockTraits;
    128   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
    129   ++SI;
    130   if (SI != BlockTraits::child_end(Out))
    131     return 0;  // Multiple exits from the block, must not be a preheader.
    132 
    133   // The predecessor has exactly one successor, so it is a preheader.
    134   return Out;
    135 }
    136 
    137 /// getLoopPredecessor - If the given loop's header has exactly one unique
    138 /// predecessor outside the loop, return it. Otherwise return null.
    139 /// This is less strict that the loop "preheader" concept, which requires
    140 /// the predecessor to have exactly one successor.
    141 ///
    142 template<class BlockT, class LoopT>
    143 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
    144   // Keep track of nodes outside the loop branching to the header...
    145   BlockT *Out = 0;
    146 
    147   // Loop over the predecessors of the header node...
    148   BlockT *Header = getHeader();
    149   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    150   for (typename InvBlockTraits::ChildIteratorType PI =
    151          InvBlockTraits::child_begin(Header),
    152          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    153     typename InvBlockTraits::NodeType *N = *PI;
    154     if (!contains(N)) {     // If the block is not in the loop...
    155       if (Out && Out != N)
    156         return 0;             // Multiple predecessors outside the loop
    157       Out = N;
    158     }
    159   }
    160 
    161   // Make sure there is only one exit out of the preheader.
    162   assert(Out && "Header of loop has no predecessors from outside loop?");
    163   return Out;
    164 }
    165 
    166 /// getLoopLatch - If there is a single latch block for this loop, return it.
    167 /// A latch block is a block that contains a branch back to the header.
    168 template<class BlockT, class LoopT>
    169 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
    170   BlockT *Header = getHeader();
    171   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    172   typename InvBlockTraits::ChildIteratorType PI =
    173     InvBlockTraits::child_begin(Header);
    174   typename InvBlockTraits::ChildIteratorType PE =
    175     InvBlockTraits::child_end(Header);
    176   BlockT *Latch = 0;
    177   for (; PI != PE; ++PI) {
    178     typename InvBlockTraits::NodeType *N = *PI;
    179     if (contains(N)) {
    180       if (Latch) return 0;
    181       Latch = N;
    182     }
    183   }
    184 
    185   return Latch;
    186 }
    187 
    188 //===----------------------------------------------------------------------===//
    189 // APIs for updating loop information after changing the CFG
    190 //
    191 
    192 /// addBasicBlockToLoop - This method is used by other analyses to update loop
    193 /// information.  NewBB is set to be a new member of the current loop.
    194 /// Because of this, it is added as a member of all parent loops, and is added
    195 /// to the specified LoopInfo object as being in the current basic block.  It
    196 /// is not valid to replace the loop header with this method.
    197 ///
    198 template<class BlockT, class LoopT>
    199 void LoopBase<BlockT, LoopT>::
    200 addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
    201   assert((Blocks.empty() || LIB[getHeader()] == this) &&
    202          "Incorrect LI specified for this loop!");
    203   assert(NewBB && "Cannot add a null basic block to the loop!");
    204   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
    205 
    206   LoopT *L = static_cast<LoopT *>(this);
    207 
    208   // Add the loop mapping to the LoopInfo object...
    209   LIB.BBMap[NewBB] = L;
    210 
    211   // Add the basic block to this loop and all parent loops...
    212   while (L) {
    213     L->Blocks.push_back(NewBB);
    214     L = L->getParentLoop();
    215   }
    216 }
    217 
    218 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    219 /// the OldChild entry in our children list with NewChild, and updates the
    220 /// parent pointer of OldChild to be null and the NewChild to be this loop.
    221 /// This updates the loop depth of the new child.
    222 template<class BlockT, class LoopT>
    223 void LoopBase<BlockT, LoopT>::
    224 replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
    225   assert(OldChild->ParentLoop == this && "This loop is already broken!");
    226   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    227   typename std::vector<LoopT *>::iterator I =
    228     std::find(SubLoops.begin(), SubLoops.end(), OldChild);
    229   assert(I != SubLoops.end() && "OldChild not in loop!");
    230   *I = NewChild;
    231   OldChild->ParentLoop = 0;
    232   NewChild->ParentLoop = static_cast<LoopT *>(this);
    233 }
    234 
    235 /// verifyLoop - Verify loop structure
    236 template<class BlockT, class LoopT>
    237 void LoopBase<BlockT, LoopT>::verifyLoop() const {
    238 #ifndef NDEBUG
    239   assert(!Blocks.empty() && "Loop header is missing");
    240 
    241   // Setup for using a depth-first iterator to visit every block in the loop.
    242   SmallVector<BlockT*, 8> ExitBBs;
    243   getExitBlocks(ExitBBs);
    244   llvm::SmallPtrSet<BlockT*, 8> VisitSet;
    245   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
    246   df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
    247     BI = df_ext_begin(getHeader(), VisitSet),
    248     BE = df_ext_end(getHeader(), VisitSet);
    249 
    250   // Keep track of the number of BBs visited.
    251   unsigned NumVisited = 0;
    252 
    253   // Sort the blocks vector so that we can use binary search to do quick
    254   // lookups.
    255   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
    256   std::sort(LoopBBs.begin(), LoopBBs.end());
    257 
    258   // Check the individual blocks.
    259   for ( ; BI != BE; ++BI) {
    260     BlockT *BB = *BI;
    261     bool HasInsideLoopSuccs = false;
    262     bool HasInsideLoopPreds = false;
    263     SmallVector<BlockT *, 2> OutsideLoopPreds;
    264 
    265     typedef GraphTraits<BlockT*> BlockTraits;
    266     for (typename BlockTraits::ChildIteratorType SI =
    267            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
    268          SI != SE; ++SI)
    269       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
    270         HasInsideLoopSuccs = true;
    271         break;
    272       }
    273     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    274     for (typename InvBlockTraits::ChildIteratorType PI =
    275            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
    276          PI != PE; ++PI) {
    277       BlockT *N = *PI;
    278       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
    279         HasInsideLoopPreds = true;
    280       else
    281         OutsideLoopPreds.push_back(N);
    282     }
    283 
    284     if (BB == getHeader()) {
    285         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
    286     } else if (!OutsideLoopPreds.empty()) {
    287       // A non-header loop shouldn't be reachable from outside the loop,
    288       // though it is permitted if the predecessor is not itself actually
    289       // reachable.
    290       BlockT *EntryBB = BB->getParent()->begin();
    291         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
    292                NE = df_end(EntryBB); NI != NE; ++NI)
    293           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
    294             assert(*NI != OutsideLoopPreds[i] &&
    295                    "Loop has multiple entry points!");
    296     }
    297     assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
    298     assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
    299     assert(BB != getHeader()->getParent()->begin() &&
    300            "Loop contains function entry block!");
    301 
    302     NumVisited++;
    303   }
    304 
    305   assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
    306 
    307   // Check the subloops.
    308   for (iterator I = begin(), E = end(); I != E; ++I)
    309     // Each block in each subloop should be contained within this loop.
    310     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
    311          BI != BE; ++BI) {
    312         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
    313                "Loop does not contain all the blocks of a subloop!");
    314     }
    315 
    316   // Check the parent loop pointer.
    317   if (ParentLoop) {
    318     assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
    319            ParentLoop->end() &&
    320            "Loop is not a subloop of its parent!");
    321   }
    322 #endif
    323 }
    324 
    325 /// verifyLoop - Verify loop structure of this loop and all nested loops.
    326 template<class BlockT, class LoopT>
    327 void LoopBase<BlockT, LoopT>::verifyLoopNest(
    328   DenseSet<const LoopT*> *Loops) const {
    329   Loops->insert(static_cast<const LoopT *>(this));
    330   // Verify this loop.
    331   verifyLoop();
    332   // Verify the subloops.
    333   for (iterator I = begin(), E = end(); I != E; ++I)
    334     (*I)->verifyLoopNest(Loops);
    335 }
    336 
    337 template<class BlockT, class LoopT>
    338 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
    339   OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
    340        << " containing: ";
    341 
    342   for (unsigned i = 0; i < getBlocks().size(); ++i) {
    343     if (i) OS << ",";
    344     BlockT *BB = getBlocks()[i];
    345     WriteAsOperand(OS, BB, false);
    346     if (BB == getHeader())    OS << "<header>";
    347     if (BB == getLoopLatch()) OS << "<latch>";
    348     if (isLoopExiting(BB))    OS << "<exiting>";
    349   }
    350   OS << "\n";
    351 
    352   for (iterator I = begin(), E = end(); I != E; ++I)
    353     (*I)->print(OS, Depth+2);
    354 }
    355 
    356 //===----------------------------------------------------------------------===//
    357 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
    358 /// result does / not depend on use list (block predecessor) order.
    359 ///
    360 
    361 /// Discover a subloop with the specified backedges such that: All blocks within
    362 /// this loop are mapped to this loop or a subloop. And all subloops within this
    363 /// loop have their parent loop set to this loop or a subloop.
    364 template<class BlockT, class LoopT>
    365 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
    366                                   LoopInfoBase<BlockT, LoopT> *LI,
    367                                   DominatorTreeBase<BlockT> &DomTree) {
    368   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    369 
    370   unsigned NumBlocks = 0;
    371   unsigned NumSubloops = 0;
    372 
    373   // Perform a backward CFG traversal using a worklist.
    374   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
    375   while (!ReverseCFGWorklist.empty()) {
    376     BlockT *PredBB = ReverseCFGWorklist.back();
    377     ReverseCFGWorklist.pop_back();
    378 
    379     LoopT *Subloop = LI->getLoopFor(PredBB);
    380     if (!Subloop) {
    381       if (!DomTree.isReachableFromEntry(PredBB))
    382         continue;
    383 
    384       // This is an undiscovered block. Map it to the current loop.
    385       LI->changeLoopFor(PredBB, L);
    386       ++NumBlocks;
    387       if (PredBB == L->getHeader())
    388           continue;
    389       // Push all block predecessors on the worklist.
    390       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
    391                                 InvBlockTraits::child_begin(PredBB),
    392                                 InvBlockTraits::child_end(PredBB));
    393     }
    394     else {
    395       // This is a discovered block. Find its outermost discovered loop.
    396       while (LoopT *Parent = Subloop->getParentLoop())
    397         Subloop = Parent;
    398 
    399       // If it is already discovered to be a subloop of this loop, continue.
    400       if (Subloop == L)
    401         continue;
    402 
    403       // Discover a subloop of this loop.
    404       Subloop->setParentLoop(L);
    405       ++NumSubloops;
    406       NumBlocks += Subloop->getBlocks().capacity();
    407       PredBB = Subloop->getHeader();
    408       // Continue traversal along predecessors that are not loop-back edges from
    409       // within this subloop tree itself. Note that a predecessor may directly
    410       // reach another subloop that is not yet discovered to be a subloop of
    411       // this loop, which we must traverse.
    412       for (typename InvBlockTraits::ChildIteratorType PI =
    413              InvBlockTraits::child_begin(PredBB),
    414              PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
    415         if (LI->getLoopFor(*PI) != Subloop)
    416           ReverseCFGWorklist.push_back(*PI);
    417       }
    418     }
    419   }
    420   L->getSubLoopsVector().reserve(NumSubloops);
    421   L->getBlocksVector().reserve(NumBlocks);
    422 }
    423 
    424 namespace {
    425 /// Populate all loop data in a stable order during a single forward DFS.
    426 template<class BlockT, class LoopT>
    427 class PopulateLoopsDFS {
    428   typedef GraphTraits<BlockT*> BlockTraits;
    429   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
    430 
    431   LoopInfoBase<BlockT, LoopT> *LI;
    432   DenseSet<const BlockT *> VisitedBlocks;
    433   std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
    434 
    435 public:
    436   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
    437     LI(li) {}
    438 
    439   void traverse(BlockT *EntryBlock);
    440 
    441 protected:
    442   void insertIntoLoop(BlockT *Block);
    443 
    444   BlockT *dfsSource() { return DFSStack.back().first; }
    445   SuccIterTy &dfsSucc() { return DFSStack.back().second; }
    446   SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
    447 
    448   void pushBlock(BlockT *Block) {
    449     DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
    450   }
    451 };
    452 } // anonymous
    453 
    454 /// Top-level driver for the forward DFS within the loop.
    455 template<class BlockT, class LoopT>
    456 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
    457   pushBlock(EntryBlock);
    458   VisitedBlocks.insert(EntryBlock);
    459   while (!DFSStack.empty()) {
    460     // Traverse the leftmost path as far as possible.
    461     while (dfsSucc() != dfsSuccEnd()) {
    462       BlockT *BB = *dfsSucc();
    463       ++dfsSucc();
    464       if (!VisitedBlocks.insert(BB).second)
    465         continue;
    466 
    467       // Push the next DFS successor onto the stack.
    468       pushBlock(BB);
    469     }
    470     // Visit the top of the stack in postorder and backtrack.
    471     insertIntoLoop(dfsSource());
    472     DFSStack.pop_back();
    473   }
    474 }
    475 
    476 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
    477 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
    478 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
    479 template<class BlockT, class LoopT>
    480 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
    481   LoopT *Subloop = LI->getLoopFor(Block);
    482   if (Subloop && Block == Subloop->getHeader()) {
    483     // We reach this point once per subloop after processing all the blocks in
    484     // the subloop.
    485     if (Subloop->getParentLoop())
    486       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
    487     else
    488       LI->addTopLevelLoop(Subloop);
    489 
    490     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
    491     // the lists, except for the loop header, which is always at the beginning.
    492     std::reverse(Subloop->getBlocksVector().begin()+1,
    493                  Subloop->getBlocksVector().end());
    494     std::reverse(Subloop->getSubLoopsVector().begin(),
    495                  Subloop->getSubLoopsVector().end());
    496 
    497     Subloop = Subloop->getParentLoop();
    498   }
    499   for (; Subloop; Subloop = Subloop->getParentLoop())
    500     Subloop->getBlocksVector().push_back(Block);
    501 }
    502 
    503 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
    504 /// interleaved with backward CFG traversals within each subloop
    505 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
    506 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
    507 /// Block vectors are then populated during a single forward CFG traversal
    508 /// (PopulateLoopDFS).
    509 ///
    510 /// During the two CFG traversals each block is seen three times:
    511 /// 1) Discovered and mapped by a reverse CFG traversal.
    512 /// 2) Visited during a forward DFS CFG traversal.
    513 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
    514 ///
    515 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
    516 /// insertions per block.
    517 template<class BlockT, class LoopT>
    518 void LoopInfoBase<BlockT, LoopT>::
    519 Analyze(DominatorTreeBase<BlockT> &DomTree) {
    520 
    521   // Postorder traversal of the dominator tree.
    522   DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
    523   for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
    524          DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
    525 
    526     BlockT *Header = DomIter->getBlock();
    527     SmallVector<BlockT *, 4> Backedges;
    528 
    529     // Check each predecessor of the potential loop header.
    530     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    531     for (typename InvBlockTraits::ChildIteratorType PI =
    532            InvBlockTraits::child_begin(Header),
    533            PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
    534 
    535       BlockT *Backedge = *PI;
    536 
    537       // If Header dominates predBB, this is a new loop. Collect the backedges.
    538       if (DomTree.dominates(Header, Backedge)
    539           && DomTree.isReachableFromEntry(Backedge)) {
    540         Backedges.push_back(Backedge);
    541       }
    542     }
    543     // Perform a backward CFG traversal to discover and map blocks in this loop.
    544     if (!Backedges.empty()) {
    545       LoopT *L = new LoopT(Header);
    546       discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
    547     }
    548   }
    549   // Perform a single forward CFG traversal to populate block and subloop
    550   // vectors for all loops.
    551   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
    552   DFS.traverse(DomRoot->getBlock());
    553 }
    554 
    555 // Debugging
    556 template<class BlockT, class LoopT>
    557 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
    558   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
    559     TopLevelLoops[i]->print(OS);
    560 #if 0
    561   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
    562          E = BBMap.end(); I != E; ++I)
    563     OS << "BB '" << I->first->getName() << "' level = "
    564        << I->second->getLoopDepth() << "\n";
    565 #endif
    566 }
    567 
    568 } // End llvm namespace
    569 
    570 #endif
    571