1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 12 #include <stdlib.h> 13 #include <stdio.h> 14 #include <string.h> 15 #include <limits.h> 16 #include <assert.h> 17 #include <math.h> 18 19 #include "vp9/common/vp9_alloccommon.h" 20 #include "vp9/common/vp9_common.h" 21 #include "vp9/encoder/vp9_ratectrl.h" 22 #include "vp9/common/vp9_entropymode.h" 23 #include "vpx_mem/vpx_mem.h" 24 #include "vp9/common/vp9_systemdependent.h" 25 #include "vp9/encoder/vp9_encodemv.h" 26 #include "vp9/common/vp9_quant_common.h" 27 #include "vp9/common/vp9_seg_common.h" 28 29 #define MIN_BPB_FACTOR 0.005 30 #define MAX_BPB_FACTOR 50 31 32 // Bits Per MB at different Q (Multiplied by 512) 33 #define BPER_MB_NORMBITS 9 34 35 static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = 36 { 1, 2, 3, 4, 5 }; 37 38 // These functions use formulaic calculations to make playing with the 39 // quantizer tables easier. If necessary they can be replaced by lookup 40 // tables if and when things settle down in the experimental bitstream 41 double vp9_convert_qindex_to_q(int qindex) { 42 // Convert the index to a real Q value (scaled down to match old Q values) 43 return vp9_ac_quant(qindex, 0) / 4.0; 44 } 45 46 int vp9_gfboost_qadjust(int qindex) { 47 const double q = vp9_convert_qindex_to_q(qindex); 48 return (int)((0.00000828 * q * q * q) + 49 (-0.0055 * q * q) + 50 (1.32 * q) + 79.3); 51 } 52 53 static int kfboost_qadjust(int qindex) { 54 const double q = vp9_convert_qindex_to_q(qindex); 55 return (int)((0.00000973 * q * q * q) + 56 (-0.00613 * q * q) + 57 (1.316 * q) + 121.2); 58 } 59 60 int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex, 61 double correction_factor) { 62 const double q = vp9_convert_qindex_to_q(qindex); 63 int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000; 64 65 // q based adjustment to baseline enumerator 66 enumerator += (int)(enumerator * q) >> 12; 67 return (int)(0.5 + (enumerator * correction_factor / q)); 68 } 69 70 void vp9_save_coding_context(VP9_COMP *cpi) { 71 CODING_CONTEXT *const cc = &cpi->coding_context; 72 VP9_COMMON *cm = &cpi->common; 73 74 // Stores a snapshot of key state variables which can subsequently be 75 // restored with a call to vp9_restore_coding_context. These functions are 76 // intended for use in a re-code loop in vp9_compress_frame where the 77 // quantizer value is adjusted between loop iterations. 78 vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); 79 vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); 80 vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); 81 82 vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); 83 84 vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, 85 cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); 86 87 vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); 88 vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); 89 90 cc->fc = cm->fc; 91 } 92 93 void vp9_restore_coding_context(VP9_COMP *cpi) { 94 CODING_CONTEXT *const cc = &cpi->coding_context; 95 VP9_COMMON *cm = &cpi->common; 96 97 // Restore key state variables to the snapshot state stored in the 98 // previous call to vp9_save_coding_context. 99 vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); 100 vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); 101 vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); 102 103 vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); 104 105 vpx_memcpy(cm->last_frame_seg_map, 106 cpi->coding_context.last_frame_seg_map_copy, 107 (cm->mi_rows * cm->mi_cols)); 108 109 vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); 110 vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); 111 112 cm->fc = cc->fc; 113 } 114 115 void vp9_setup_key_frame(VP9_COMP *cpi) { 116 VP9_COMMON *cm = &cpi->common; 117 118 vp9_setup_past_independence(cm); 119 120 // interval before next GF 121 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 122 /* All buffers are implicitly updated on key frames. */ 123 cpi->refresh_golden_frame = 1; 124 cpi->refresh_alt_ref_frame = 1; 125 } 126 127 void vp9_setup_inter_frame(VP9_COMP *cpi) { 128 VP9_COMMON *cm = &cpi->common; 129 if (cm->error_resilient_mode || cm->intra_only) 130 vp9_setup_past_independence(cm); 131 132 assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS); 133 cm->fc = cm->frame_contexts[cm->frame_context_idx]; 134 } 135 136 static int estimate_bits_at_q(int frame_kind, int q, int mbs, 137 double correction_factor) { 138 const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor)); 139 140 // Attempt to retain reasonable accuracy without overflow. The cutoff is 141 // chosen such that the maximum product of Bpm and MBs fits 31 bits. The 142 // largest Bpm takes 20 bits. 143 return (mbs > (1 << 11)) ? (bpm >> BPER_MB_NORMBITS) * mbs 144 : (bpm * mbs) >> BPER_MB_NORMBITS; 145 } 146 147 148 static void calc_iframe_target_size(VP9_COMP *cpi) { 149 // boost defaults to half second 150 int target; 151 152 // Clear down mmx registers to allow floating point in what follows 153 vp9_clear_system_state(); // __asm emms; 154 155 // New Two pass RC 156 target = cpi->per_frame_bandwidth; 157 158 if (cpi->oxcf.rc_max_intra_bitrate_pct) { 159 int max_rate = cpi->per_frame_bandwidth 160 * cpi->oxcf.rc_max_intra_bitrate_pct / 100; 161 162 if (target > max_rate) 163 target = max_rate; 164 } 165 166 cpi->this_frame_target = target; 167 } 168 169 170 // Do the best we can to define the parameters for the next GF based 171 // on what information we have available. 172 // 173 // In this experimental code only two pass is supported 174 // so we just use the interval determined in the two pass code. 175 static void calc_gf_params(VP9_COMP *cpi) { 176 // Set the gf interval 177 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 178 } 179 180 181 static void calc_pframe_target_size(VP9_COMP *cpi) { 182 const int min_frame_target = MAX(cpi->min_frame_bandwidth, 183 cpi->av_per_frame_bandwidth >> 5); 184 if (cpi->refresh_alt_ref_frame) { 185 // Special alt reference frame case 186 // Per frame bit target for the alt ref frame 187 cpi->per_frame_bandwidth = cpi->twopass.gf_bits; 188 cpi->this_frame_target = cpi->per_frame_bandwidth; 189 } else { 190 // Normal frames (gf,and inter) 191 cpi->this_frame_target = cpi->per_frame_bandwidth; 192 } 193 194 // Check that the total sum of adjustments is not above the maximum allowed. 195 // That is, having allowed for the KF and GF penalties, we have not pushed 196 // the current inter-frame target too low. If the adjustment we apply here is 197 // not capable of recovering all the extra bits we have spent in the KF or GF, 198 // then the remainder will have to be recovered over a longer time span via 199 // other buffer / rate control mechanisms. 200 if (cpi->this_frame_target < min_frame_target) 201 cpi->this_frame_target = min_frame_target; 202 203 if (!cpi->refresh_alt_ref_frame) 204 // Note the baseline target data rate for this inter frame. 205 cpi->inter_frame_target = cpi->this_frame_target; 206 207 // Adjust target frame size for Golden Frames: 208 if (cpi->frames_till_gf_update_due == 0) { 209 const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] 210 : cpi->oxcf.fixed_q; 211 212 cpi->refresh_golden_frame = 1; 213 214 calc_gf_params(cpi); 215 216 // If we are using alternate ref instead of gf then do not apply the boost 217 // It will instead be applied to the altref update 218 // Jims modified boost 219 if (!cpi->source_alt_ref_active) { 220 if (cpi->oxcf.fixed_q < 0) { 221 // The spend on the GF is defined in the two pass code 222 // for two pass encodes 223 cpi->this_frame_target = cpi->per_frame_bandwidth; 224 } else { 225 cpi->this_frame_target = 226 (estimate_bits_at_q(1, q, cpi->common.MBs, 1.0) 227 * cpi->last_boost) / 100; 228 } 229 } else { 230 // If there is an active ARF at this location use the minimum 231 // bits on this frame even if it is a constructed arf. 232 // The active maximum quantizer insures that an appropriate 233 // number of bits will be spent if needed for constructed ARFs. 234 cpi->this_frame_target = 0; 235 } 236 } 237 } 238 239 240 void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) { 241 const int q = cpi->common.base_qindex; 242 int correction_factor = 100; 243 double rate_correction_factor; 244 double adjustment_limit; 245 246 int projected_size_based_on_q = 0; 247 248 // Clear down mmx registers to allow floating point in what follows 249 vp9_clear_system_state(); // __asm emms; 250 251 if (cpi->common.frame_type == KEY_FRAME) { 252 rate_correction_factor = cpi->key_frame_rate_correction_factor; 253 } else { 254 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 255 rate_correction_factor = cpi->gf_rate_correction_factor; 256 else 257 rate_correction_factor = cpi->rate_correction_factor; 258 } 259 260 // Work out how big we would have expected the frame to be at this Q given 261 // the current correction factor. 262 // Stay in double to avoid int overflow when values are large 263 projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, 264 cpi->common.MBs, 265 rate_correction_factor); 266 267 // Work out a size correction factor. 268 if (projected_size_based_on_q > 0) 269 correction_factor = 270 (100 * cpi->projected_frame_size) / projected_size_based_on_q; 271 272 // More heavily damped adjustment used if we have been oscillating either side 273 // of target. 274 switch (damp_var) { 275 case 0: 276 adjustment_limit = 0.75; 277 break; 278 case 1: 279 adjustment_limit = 0.375; 280 break; 281 case 2: 282 default: 283 adjustment_limit = 0.25; 284 break; 285 } 286 287 // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) 288 if (correction_factor > 102) { 289 // We are not already at the worst allowable quality 290 correction_factor = 291 (int)(100 + ((correction_factor - 100) * adjustment_limit)); 292 rate_correction_factor = 293 ((rate_correction_factor * correction_factor) / 100); 294 295 // Keep rate_correction_factor within limits 296 if (rate_correction_factor > MAX_BPB_FACTOR) 297 rate_correction_factor = MAX_BPB_FACTOR; 298 } else if (correction_factor < 99) { 299 // We are not already at the best allowable quality 300 correction_factor = 301 (int)(100 - ((100 - correction_factor) * adjustment_limit)); 302 rate_correction_factor = 303 ((rate_correction_factor * correction_factor) / 100); 304 305 // Keep rate_correction_factor within limits 306 if (rate_correction_factor < MIN_BPB_FACTOR) 307 rate_correction_factor = MIN_BPB_FACTOR; 308 } 309 310 if (cpi->common.frame_type == KEY_FRAME) { 311 cpi->key_frame_rate_correction_factor = rate_correction_factor; 312 } else { 313 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 314 cpi->gf_rate_correction_factor = rate_correction_factor; 315 else 316 cpi->rate_correction_factor = rate_correction_factor; 317 } 318 } 319 320 321 int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { 322 int q = cpi->active_worst_quality; 323 324 int i; 325 int last_error = INT_MAX; 326 int target_bits_per_mb; 327 int bits_per_mb_at_this_q; 328 double correction_factor; 329 330 // Select the appropriate correction factor based upon type of frame. 331 if (cpi->common.frame_type == KEY_FRAME) { 332 correction_factor = cpi->key_frame_rate_correction_factor; 333 } else { 334 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 335 correction_factor = cpi->gf_rate_correction_factor; 336 else 337 correction_factor = cpi->rate_correction_factor; 338 } 339 340 // Calculate required scaling factor based on target frame size and size of 341 // frame produced using previous Q. 342 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) 343 target_bits_per_mb = 344 (target_bits_per_frame / cpi->common.MBs) 345 << BPER_MB_NORMBITS; // Case where we would overflow int 346 else 347 target_bits_per_mb = 348 (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs; 349 350 i = cpi->active_best_quality; 351 352 do { 353 bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i, 354 correction_factor); 355 356 if (bits_per_mb_at_this_q <= target_bits_per_mb) { 357 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) 358 q = i; 359 else 360 q = i - 1; 361 362 break; 363 } else { 364 last_error = bits_per_mb_at_this_q - target_bits_per_mb; 365 } 366 } while (++i <= cpi->active_worst_quality); 367 368 return q; 369 } 370 371 372 static int estimate_keyframe_frequency(VP9_COMP *cpi) { 373 int i; 374 375 // Average key frame frequency 376 int av_key_frame_frequency = 0; 377 378 /* First key frame at start of sequence is a special case. We have no 379 * frequency data. 380 */ 381 if (cpi->key_frame_count == 1) { 382 /* Assume a default of 1 kf every 2 seconds, or the max kf interval, 383 * whichever is smaller. 384 */ 385 int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1; 386 av_key_frame_frequency = (int)cpi->output_framerate * 2; 387 388 if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq) 389 av_key_frame_frequency = cpi->oxcf.key_freq; 390 391 cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1] 392 = av_key_frame_frequency; 393 } else { 394 unsigned int total_weight = 0; 395 int last_kf_interval = 396 (cpi->frames_since_key > 0) ? cpi->frames_since_key : 1; 397 398 /* reset keyframe context and calculate weighted average of last 399 * KEY_FRAME_CONTEXT keyframes 400 */ 401 for (i = 0; i < KEY_FRAME_CONTEXT; i++) { 402 if (i < KEY_FRAME_CONTEXT - 1) 403 cpi->prior_key_frame_distance[i] 404 = cpi->prior_key_frame_distance[i + 1]; 405 else 406 cpi->prior_key_frame_distance[i] = last_kf_interval; 407 408 av_key_frame_frequency += prior_key_frame_weight[i] 409 * cpi->prior_key_frame_distance[i]; 410 total_weight += prior_key_frame_weight[i]; 411 } 412 413 av_key_frame_frequency /= total_weight; 414 } 415 return av_key_frame_frequency; 416 } 417 418 419 void vp9_adjust_key_frame_context(VP9_COMP *cpi) { 420 // Clear down mmx registers to allow floating point in what follows 421 vp9_clear_system_state(); 422 423 cpi->frames_since_key = 0; 424 cpi->key_frame_count++; 425 } 426 427 428 void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit, 429 int *frame_over_shoot_limit) { 430 // Set-up bounds on acceptable frame size: 431 if (cpi->oxcf.fixed_q >= 0) { 432 // Fixed Q scenario: frame size never outranges target (there is no target!) 433 *frame_under_shoot_limit = 0; 434 *frame_over_shoot_limit = INT_MAX; 435 } else { 436 if (cpi->common.frame_type == KEY_FRAME) { 437 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; 438 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; 439 } else { 440 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) { 441 *frame_over_shoot_limit = cpi->this_frame_target * 9 / 8; 442 *frame_under_shoot_limit = cpi->this_frame_target * 7 / 8; 443 } else { 444 // Stron overshoot limit for constrained quality 445 if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { 446 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; 447 *frame_under_shoot_limit = cpi->this_frame_target * 2 / 8; 448 } else { 449 *frame_over_shoot_limit = cpi->this_frame_target * 11 / 8; 450 *frame_under_shoot_limit = cpi->this_frame_target * 5 / 8; 451 } 452 } 453 } 454 455 // For very small rate targets where the fractional adjustment 456 // (eg * 7/8) may be tiny make sure there is at least a minimum 457 // range. 458 *frame_over_shoot_limit += 200; 459 *frame_under_shoot_limit -= 200; 460 if (*frame_under_shoot_limit < 0) 461 *frame_under_shoot_limit = 0; 462 } 463 } 464 465 466 // return of 0 means drop frame 467 int vp9_pick_frame_size(VP9_COMP *cpi) { 468 VP9_COMMON *cm = &cpi->common; 469 470 if (cm->frame_type == KEY_FRAME) 471 calc_iframe_target_size(cpi); 472 else 473 calc_pframe_target_size(cpi); 474 475 return 1; 476 } 477