Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 #include "dex/quick/mir_to_lir-inl.h"
     19 #include "x86_lir.h"
     20 
     21 namespace art {
     22 
     23 #define MAX_ASSEMBLER_RETRIES 50
     24 
     25 const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
     26   { kX8632BitData, kData,    IS_UNARY_OP,            { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data",  "0x!0d" },
     27   { kX86Bkpt,      kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
     28   { kX86Nop,       kNop,     IS_UNARY_OP,            { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop",   "" },
     29 
     30 #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
     31                      rm8_r8, rm32_r32, \
     32                      r8_rm8, r32_rm32, \
     33                      ax8_i8, ax32_i32, \
     34                      rm8_i8, rm8_i8_modrm, \
     35                      rm32_i32, rm32_i32_modrm, \
     36                      rm32_i8, rm32_i8_modrm) \
     37 { kX86 ## opname ## 8MR, kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
     38 { kX86 ## opname ## 8AR, kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     39 { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0,            0,      0 }, #opname "8TR", "fs:[!0d],!1r" }, \
     40 { kX86 ## opname ## 8RR, kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RR", "!0r,!1r" }, \
     41 { kX86 ## opname ## 8RM, kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
     42 { kX86 ## opname ## 8RA, kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     43 { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0,            0,      0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
     44 { kX86 ## opname ## 8RI, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
     45 { kX86 ## opname ## 8MI, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
     46 { kX86 ## opname ## 8AI, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     47 { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0,      1 }, #opname "8TI", "fs:[!0d],!1d" }, \
     48   \
     49 { kX86 ## opname ## 16MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
     50 { kX86 ## opname ## 16AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_r32, 0, 0, 0,              0,        0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     51 { kX86 ## opname ## 16TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0,              0,        0 }, #opname "16TR", "fs:[!0d],!1r" }, \
     52 { kX86 ## opname ## 16RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RR", "!0r,!1r" }, \
     53 { kX86 ## opname ## 16RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
     54 { kX86 ## opname ## 16RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66,          0,    r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     55 { kX86 ## opname ## 16RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0,              0,        0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
     56 { kX86 ## opname ## 16RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
     57 { kX86 ## opname ## 16MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
     58 { kX86 ## opname ## 16AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     59 { kX86 ## opname ## 16TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0,        2 }, #opname "16TI", "fs:[!0d],!1d" }, \
     60 { kX86 ## opname ## 16RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16RI8", "!0r,!1d" }, \
     61 { kX86 ## opname ## 16MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
     62 { kX86 ## opname ## 16AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0x66,          0,    rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
     63 { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
     64   \
     65 { kX86 ## opname ## 32MR,  kMemReg,    mem_use | IS_TERTIARY_OP |           REG_USE02  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
     66 { kX86 ## opname ## 32AR,  kArrayReg,  mem_use | IS_QUIN_OP     |           REG_USE014 | SETS_CCODES | uses_ccodes, { 0,             0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
     67 { kX86 ## opname ## 32TR,  kThreadReg, mem_use | IS_BINARY_OP   |           REG_USE1   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0,              0,        0 }, #opname "32TR", "fs:[!0d],!1r" }, \
     68 { kX86 ## opname ## 32RR,  kRegReg,              IS_BINARY_OP   | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RR", "!0r,!1r" }, \
     69 { kX86 ## opname ## 32RM,  kRegMem,    IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
     70 { kX86 ## opname ## 32RA,  kRegArray,  IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0,             0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
     71 { kX86 ## opname ## 32RT,  kRegThread, IS_LOAD | IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0,              0,        0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
     72 { kX86 ## opname ## 32RI,  kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
     73 { kX86 ## opname ## 32MI,  kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
     74 { kX86 ## opname ## 32AI,  kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
     75 { kX86 ## opname ## 32TI,  kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0,        4 }, #opname "32TI", "fs:[!0d],!1d" }, \
     76 { kX86 ## opname ## 32RI8, kRegImm,              IS_BINARY_OP   | reg_def | REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32RI8", "!0r,!1d" }, \
     77 { kX86 ## opname ## 32MI8, kMemImm,    mem_use | IS_TERTIARY_OP |           REG_USE0   | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
     78 { kX86 ## opname ## 32AI8, kArrayImm,  mem_use | IS_QUIN_OP     |           REG_USE01  | SETS_CCODES | uses_ccodes, { 0,             0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
     79 { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP   |                        SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8,  0, 0, rm32_i8_modrm,  0,        1 }, #opname "32TI8", "fs:[!0d],!1d" }
     80 
     81 ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
     82   0x00 /* RegMem8/Reg8 */,     0x01 /* RegMem32/Reg32 */,
     83   0x02 /* Reg8/RegMem8 */,     0x03 /* Reg32/RegMem32 */,
     84   0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
     85   0x80, 0x0 /* RegMem8/imm8 */,
     86   0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
     87 ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
     88   0x08 /* RegMem8/Reg8 */,     0x09 /* RegMem32/Reg32 */,
     89   0x0A /* Reg8/RegMem8 */,     0x0B /* Reg32/RegMem32 */,
     90   0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
     91   0x80, 0x1 /* RegMem8/imm8 */,
     92   0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
     93 ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
     94   0x10 /* RegMem8/Reg8 */,     0x11 /* RegMem32/Reg32 */,
     95   0x12 /* Reg8/RegMem8 */,     0x13 /* Reg32/RegMem32 */,
     96   0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
     97   0x80, 0x2 /* RegMem8/imm8 */,
     98   0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
     99 ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
    100   0x18 /* RegMem8/Reg8 */,     0x19 /* RegMem32/Reg32 */,
    101   0x1A /* Reg8/RegMem8 */,     0x1B /* Reg32/RegMem32 */,
    102   0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
    103   0x80, 0x3 /* RegMem8/imm8 */,
    104   0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
    105 ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
    106   0x20 /* RegMem8/Reg8 */,     0x21 /* RegMem32/Reg32 */,
    107   0x22 /* Reg8/RegMem8 */,     0x23 /* Reg32/RegMem32 */,
    108   0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
    109   0x80, 0x4 /* RegMem8/imm8 */,
    110   0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
    111 ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
    112   0x28 /* RegMem8/Reg8 */,     0x29 /* RegMem32/Reg32 */,
    113   0x2A /* Reg8/RegMem8 */,     0x2B /* Reg32/RegMem32 */,
    114   0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
    115   0x80, 0x5 /* RegMem8/imm8 */,
    116   0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
    117 ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
    118   0x30 /* RegMem8/Reg8 */,     0x31 /* RegMem32/Reg32 */,
    119   0x32 /* Reg8/RegMem8 */,     0x33 /* Reg32/RegMem32 */,
    120   0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
    121   0x80, 0x6 /* RegMem8/imm8 */,
    122   0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
    123 ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
    124   0x38 /* RegMem8/Reg8 */,     0x39 /* RegMem32/Reg32 */,
    125   0x3A /* Reg8/RegMem8 */,     0x3B /* Reg32/RegMem32 */,
    126   0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
    127   0x80, 0x7 /* RegMem8/imm8 */,
    128   0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
    129 #undef ENCODING_MAP
    130 
    131   { kX86Imul16RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
    132   { kX86Imul16RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
    133   { kX86Imul16RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    134 
    135   { kX86Imul32RRI,   kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
    136   { kX86Imul32RMI,   kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
    137   { kX86Imul32RAI,   kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    138   { kX86Imul32RRI8,  kRegRegImm,             IS_TERTIARY_OP | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
    139   { kX86Imul32RMI8,  kRegMemImm,   IS_LOAD | IS_QUAD_OP     | REG_DEF0_USE1  | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
    140   { kX86Imul32RAI8,  kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
    141 
    142   { kX86Mov8MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
    143   { kX86Mov8AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
    144   { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
    145   { kX86Mov8RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
    146   { kX86Mov8RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
    147   { kX86Mov8RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    148   { kX86Mov8RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
    149   { kX86Mov8RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
    150   { kX86Mov8MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
    151   { kX86Mov8AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
    152   { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
    153 
    154   { kX86Mov16MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
    155   { kX86Mov16AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0x66,          0,    0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
    156   { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
    157   { kX86Mov16RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
    158   { kX86Mov16RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
    159   { kX86Mov16RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0x66,          0,    0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    160   { kX86Mov16RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
    161   { kX86Mov16RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0x66,          0,    0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
    162   { kX86Mov16MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
    163   { kX86Mov16AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0x66,          0,    0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
    164   { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
    165 
    166   { kX86Mov32MR, kMemReg,    IS_STORE | IS_TERTIARY_OP | REG_USE02,      { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
    167   { kX86Mov32AR, kArrayReg,  IS_STORE | IS_QUIN_OP     | REG_USE014,     { 0,             0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
    168   { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP   | REG_USE1,       { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
    169   { kX86Mov32RR, kRegReg,               IS_BINARY_OP   | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
    170   { kX86Mov32RM, kRegMem,    IS_LOAD  | IS_TERTIARY_OP | REG_DEF0_USE1,  { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
    171   { kX86Mov32RA, kRegArray,  IS_LOAD  | IS_QUIN_OP     | REG_DEF0_USE12, { 0,             0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    172   { kX86Mov32RT, kRegThread, IS_LOAD  | IS_BINARY_OP   | REG_DEF0,       { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
    173   { kX86Mov32RI, kMovRegImm,            IS_BINARY_OP   | REG_DEF0,       { 0,             0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
    174   { kX86Mov32MI, kMemImm,    IS_STORE | IS_TERTIARY_OP | REG_USE0,       { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
    175   { kX86Mov32AI, kArrayImm,  IS_STORE | IS_QUIN_OP     | REG_USE01,      { 0,             0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
    176   { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP,                    { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
    177 
    178   { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
    179 
    180 #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
    181 { kX86 ## opname ## 8RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
    182 { kX86 ## opname ## 8MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
    183 { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    184 { kX86 ## opname ## 8RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8RC", "!0r,cl" }, \
    185 { kX86 ## opname ## 8MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8MC", "[!0r+!1d],cl" }, \
    186 { kX86 ## opname ## 8AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD2, 0, 0, modrm_opcode, 0,    1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
    187   \
    188 { kX86 ## opname ## 16RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
    189 { kX86 ## opname ## 16MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
    190 { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    191 { kX86 ## opname ## 16RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16RC", "!0r,cl" }, \
    192 { kX86 ## opname ## 16MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16MC", "[!0r+!1d],cl" }, \
    193 { kX86 ## opname ## 16AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0,    1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
    194   \
    195 { kX86 ## opname ## 32RI, kShiftRegImm,                        IS_BINARY_OP   | REG_DEF0_USE0 |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
    196 { kX86 ## opname ## 32MI, kShiftMemImm,   IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
    197 { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     |            SETS_CCODES, { 0,    0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
    198 { kX86 ## opname ## 32RC, kShiftRegCl,                         IS_BINARY_OP   | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32RC", "!0r,cl" }, \
    199 { kX86 ## opname ## 32MC, kShiftMemCl,    IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0      | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32MC", "[!0r+!1d],cl" }, \
    200 { kX86 ## opname ## 32AC, kShiftArrayCl,  IS_LOAD | IS_STORE | IS_QUIN_OP     | REG_USE01     | REG_USEC | SETS_CCODES, { 0,    0, 0xD3, 0, 0, modrm_opcode, 0,    0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
    201 
    202   SHIFT_ENCODING_MAP(Rol, 0x0),
    203   SHIFT_ENCODING_MAP(Ror, 0x1),
    204   SHIFT_ENCODING_MAP(Rcl, 0x2),
    205   SHIFT_ENCODING_MAP(Rcr, 0x3),
    206   SHIFT_ENCODING_MAP(Sal, 0x4),
    207   SHIFT_ENCODING_MAP(Shr, 0x5),
    208   SHIFT_ENCODING_MAP(Sar, 0x7),
    209 #undef SHIFT_ENCODING_MAP
    210 
    211   { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
    212 
    213   { kX86Test8RI,  kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
    214   { kX86Test8MI,  kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
    215   { kX86Test8AI,  kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
    216   { kX86Test16RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
    217   { kX86Test16MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
    218   { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
    219   { kX86Test32RI, kRegImm,             IS_BINARY_OP   | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
    220   { kX86Test32MI, kMemImm,   IS_LOAD | IS_TERTIARY_OP | REG_USE0  | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
    221   { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP     | REG_USE01 | SETS_CCODES, { 0,    0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
    222   { kX86Test32RR, kRegReg,             IS_BINARY_OP   | REG_USE01 | SETS_CCODES, { 0,    0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
    223 
    224 #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
    225                            reg, reg_kind, reg_flags, \
    226                            mem, mem_kind, mem_flags, \
    227                            arr, arr_kind, arr_flags, imm, \
    228                            b_flags, hw_flags, w_flags, \
    229                            b_format, hw_format, w_format) \
    230 { kX86 ## opname ## 8 ## reg,  reg_kind,                      reg_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
    231 { kX86 ## opname ## 8 ## mem,  mem_kind, IS_LOAD | is_store | mem_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
    232 { kX86 ## opname ## 8 ## arr,  arr_kind, IS_LOAD | is_store | arr_flags | b_flags  | sets_ccodes, { 0,    0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
    233 { kX86 ## opname ## 16 ## reg, reg_kind,                      reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
    234 { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
    235 { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
    236 { kX86 ## opname ## 32 ## reg, reg_kind,                      reg_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
    237 { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
    238 { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags  | sets_ccodes, { 0,    0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
    239 
    240   UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0,           R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
    241   UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
    242 
    243   UNARY_ENCODING_MAP(Mul,     0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
    244   UNARY_ENCODING_MAP(Imul,    0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA,  REG_DEFAD_USEA,  "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
    245   UNARY_ENCODING_MAP(Divmod,  0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
    246   UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
    247 #undef UNARY_ENCODING_MAP
    248 
    249 #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
    250 { kX86 ## opname ## RR, kRegReg,             IS_BINARY_OP   | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
    251 { kX86 ## opname ## RM, kRegMem,   IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01,  { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
    252 { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP     | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
    253 
    254   EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
    255   { kX86MovsdMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
    256   { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
    257 
    258   EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
    259   { kX86MovssMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
    260   { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP     | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
    261 
    262   EXT_0F_ENCODING_MAP(Cvtsi2sd,  0xF2, 0x2A, REG_DEF0),
    263   EXT_0F_ENCODING_MAP(Cvtsi2ss,  0xF3, 0x2A, REG_DEF0),
    264   EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
    265   EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
    266   EXT_0F_ENCODING_MAP(Cvtsd2si,  0xF2, 0x2D, REG_DEF0),
    267   EXT_0F_ENCODING_MAP(Cvtss2si,  0xF3, 0x2D, REG_DEF0),
    268   EXT_0F_ENCODING_MAP(Ucomisd,   0x66, 0x2E, SETS_CCODES),
    269   EXT_0F_ENCODING_MAP(Ucomiss,   0x00, 0x2E, SETS_CCODES),
    270   EXT_0F_ENCODING_MAP(Comisd,    0x66, 0x2F, SETS_CCODES),
    271   EXT_0F_ENCODING_MAP(Comiss,    0x00, 0x2F, SETS_CCODES),
    272   EXT_0F_ENCODING_MAP(Orps,      0x00, 0x56, REG_DEF0),
    273   EXT_0F_ENCODING_MAP(Xorps,     0x00, 0x57, REG_DEF0),
    274   EXT_0F_ENCODING_MAP(Addsd,     0xF2, 0x58, REG_DEF0),
    275   EXT_0F_ENCODING_MAP(Addss,     0xF3, 0x58, REG_DEF0),
    276   EXT_0F_ENCODING_MAP(Mulsd,     0xF2, 0x59, REG_DEF0),
    277   EXT_0F_ENCODING_MAP(Mulss,     0xF3, 0x59, REG_DEF0),
    278   EXT_0F_ENCODING_MAP(Cvtsd2ss,  0xF2, 0x5A, REG_DEF0),
    279   EXT_0F_ENCODING_MAP(Cvtss2sd,  0xF3, 0x5A, REG_DEF0),
    280   EXT_0F_ENCODING_MAP(Subsd,     0xF2, 0x5C, REG_DEF0),
    281   EXT_0F_ENCODING_MAP(Subss,     0xF3, 0x5C, REG_DEF0),
    282   EXT_0F_ENCODING_MAP(Divsd,     0xF2, 0x5E, REG_DEF0),
    283   EXT_0F_ENCODING_MAP(Divss,     0xF3, 0x5E, REG_DEF0),
    284 
    285   { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
    286   { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
    287 
    288   EXT_0F_ENCODING_MAP(Movdxr,    0x66, 0x6E, REG_DEF0),
    289   { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0   | REG_USE01,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
    290   { kX86MovdrxMR, kMemReg,      IS_STORE | IS_TERTIARY_OP | REG_USE02,  { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
    291   { kX86MovdrxAR, kArrayReg,    IS_STORE | IS_QUIN_OP     | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
    292 
    293   { kX86Set8R, kRegCond,              IS_BINARY_OP   | REG_DEF0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
    294   { kX86Set8M, kMemCond,   IS_STORE | IS_TERTIARY_OP | REG_USE0  | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
    295   { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP     | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
    296 
    297   // TODO: load/store?
    298   // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
    299   { kX86Mfence, kReg,                 NO_OPERAND,     { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
    300 
    301   EXT_0F_ENCODING_MAP(Imul16,  0x66, 0xAF, REG_DEF0 | SETS_CCODES),
    302   EXT_0F_ENCODING_MAP(Imul32,  0x00, 0xAF, REG_DEF0 | SETS_CCODES),
    303 
    304   { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
    305   { kX86CmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
    306   { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
    307   { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
    308   { kX86LockCmpxchgMR, kMemReg,   IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
    309   { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
    310 
    311   EXT_0F_ENCODING_MAP(Movzx8,  0x00, 0xB6, REG_DEF0),
    312   EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
    313   EXT_0F_ENCODING_MAP(Movsx8,  0x00, 0xBE, REG_DEF0),
    314   EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
    315 #undef EXT_0F_ENCODING_MAP
    316 
    317   { kX86Jcc8,  kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x70, 0,    0, 0, 0, 0 }, "Jcc8",  "!1c !0t" },
    318   { kX86Jcc32, kJcc,  IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0,             0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
    319   { kX86Jmp8,  kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xEB, 0,    0, 0, 0, 0 }, "Jmp8",  "!0t" },
    320   { kX86Jmp32, kJmp,  IS_UNARY_OP  | IS_BRANCH | NEEDS_FIXUP,               { 0,             0, 0xE9, 0,    0, 0, 0, 0 }, "Jmp32", "!0t" },
    321   { kX86JmpR,  kJmp,  IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xFF, 0,    0, 4, 0, 0 }, "JmpR",  "!0r" },
    322   { kX86CallR, kCall, IS_UNARY_OP  | IS_BRANCH | REG_USE0,                  { 0,             0, 0xE8, 0,    0, 0, 0, 0 }, "CallR", "!0r" },
    323   { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0,        { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
    324   { kX86CallA, kCall, IS_QUAD_OP   | IS_BRANCH | IS_LOAD | REG_USE01,       { 0,             0, 0xFF, 0,    0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
    325   { kX86CallT, kCall, IS_UNARY_OP  | IS_BRANCH | IS_LOAD,                   { THREAD_PREFIX, 0, 0xFF, 0,    0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
    326   { kX86Ret,   kNullary, NO_OPERAND | IS_BRANCH,                            { 0,             0, 0xC3, 0,    0, 0, 0, 0 }, "Ret", "" },
    327 
    328   { kX86StartOfMethod, kMacro,  IS_UNARY_OP | SETS_CCODES,             { 0, 0, 0,    0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
    329   { kX86PcRelLoadRA,   kPcRel,  IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA",   "!0r,[!1r+!2r<<!3d+!4p]" },
    330   { kX86PcRelAdr,      kPcRel,  IS_LOAD | IS_BINARY_OP | REG_DEF0,     { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr",      "!0r,!1d" },
    331 };
    332 
    333 static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
    334   size_t size = 0;
    335   if (entry->skeleton.prefix1 > 0) {
    336     ++size;
    337     if (entry->skeleton.prefix2 > 0) {
    338       ++size;
    339     }
    340   }
    341   ++size;  // opcode
    342   if (entry->skeleton.opcode == 0x0F) {
    343     ++size;
    344     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
    345       ++size;
    346     }
    347   }
    348   ++size;  // modrm
    349   if (has_sib || base == rX86_SP) {
    350     // SP requires a SIB byte.
    351     ++size;
    352   }
    353   if (displacement != 0 || base == rBP) {
    354     // BP requires an explicit displacement, even when it's 0.
    355     if (entry->opcode != kX86Lea32RA) {
    356       DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
    357     }
    358     size += IS_SIMM8(displacement) ? 1 : 4;
    359   }
    360   size += entry->skeleton.immediate_bytes;
    361   return size;
    362 }
    363 
    364 int X86Mir2Lir::GetInsnSize(LIR* lir) {
    365   const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
    366   switch (entry->kind) {
    367     case kData:
    368       return 4;  // 4 bytes of data
    369     case kNop:
    370       return lir->operands[0];  // length of nop is sole operand
    371     case kNullary:
    372       return 1;  // 1 byte of opcode
    373     case kReg:  // lir operands - 0: reg
    374       return ComputeSize(entry, 0, 0, false);
    375     case kMem:  // lir operands - 0: base, 1: disp
    376       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    377     case kArray:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
    378       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    379     case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
    380       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    381     case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
    382       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    383     case kThreadReg:  // lir operands - 0: disp, 1: reg
    384       return ComputeSize(entry, 0, lir->operands[0], false);
    385     case kRegReg:
    386       return ComputeSize(entry, 0, 0, false);
    387     case kRegRegStore:
    388       return ComputeSize(entry, 0, 0, false);
    389     case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
    390       return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
    391     case kRegArray:   // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
    392       return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
    393     case kRegThread:  // lir operands - 0: reg, 1: disp
    394       return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    395     case kRegImm: {  // lir operands - 0: reg, 1: immediate
    396       size_t size = ComputeSize(entry, 0, 0, false);
    397       if (entry->skeleton.ax_opcode == 0) {
    398         return size;
    399       } else {
    400         // AX opcodes don't require the modrm byte.
    401         int reg = lir->operands[0];
    402         return size - (reg == rAX ? 1 : 0);
    403       }
    404     }
    405     case kMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
    406       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    407     case kArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
    408       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    409     case kThreadImm:  // lir operands - 0: disp, 1: imm
    410       return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    411     case kRegRegImm:  // lir operands - 0: reg, 1: reg, 2: imm
    412       return ComputeSize(entry, 0, 0, false);
    413     case kRegMemImm:  // lir operands - 0: reg, 1: base, 2: disp, 3: imm
    414       return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
    415     case kRegArrayImm:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
    416       return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
    417     case kMovRegImm:  // lir operands - 0: reg, 1: immediate
    418       return 1 + entry->skeleton.immediate_bytes;
    419     case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
    420       // Shift by immediate one has a shorter opcode.
    421       return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
    422     case kShiftMemImm:  // lir operands - 0: base, 1: disp, 2: immediate
    423       // Shift by immediate one has a shorter opcode.
    424       return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
    425              (lir->operands[2] == 1 ? 1 : 0);
    426     case kShiftArrayImm:  // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
    427       // Shift by immediate one has a shorter opcode.
    428       return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
    429              (lir->operands[4] == 1 ? 1 : 0);
    430     case kShiftRegCl:
    431       return ComputeSize(entry, 0, 0, false);
    432     case kShiftMemCl:  // lir operands - 0: base, 1: disp, 2: cl
    433       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    434     case kShiftArrayCl:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
    435       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    436     case kRegCond:  // lir operands - 0: reg, 1: cond
    437       return ComputeSize(entry, 0, 0, false);
    438     case kMemCond:  // lir operands - 0: base, 1: disp, 2: cond
    439       return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    440     case kArrayCond:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
    441       return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    442     case kJcc:
    443       if (lir->opcode == kX86Jcc8) {
    444         return 2;  // opcode + rel8
    445       } else {
    446         DCHECK(lir->opcode == kX86Jcc32);
    447         return 6;  // 2 byte opcode + rel32
    448       }
    449     case kJmp:
    450       if (lir->opcode == kX86Jmp8) {
    451         return 2;  // opcode + rel8
    452       } else if (lir->opcode == kX86Jmp32) {
    453         return 5;  // opcode + rel32
    454       } else {
    455         DCHECK(lir->opcode == kX86JmpR);
    456         return 2;  // opcode + modrm
    457       }
    458     case kCall:
    459       switch (lir->opcode) {
    460         case kX86CallR: return 2;  // opcode modrm
    461         case kX86CallM:  // lir operands - 0: base, 1: disp
    462           return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
    463         case kX86CallA:  // lir operands - 0: base, 1: index, 2: scale, 3: disp
    464           return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
    465         case kX86CallT:  // lir operands - 0: disp
    466           return ComputeSize(entry, 0, 0x12345678, false);  // displacement size is always 32bit
    467         default:
    468           break;
    469       }
    470       break;
    471     case kPcRel:
    472       if (entry->opcode == kX86PcRelLoadRA) {
    473         // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
    474         return ComputeSize(entry, lir->operands[1], 0x12345678, true);
    475       } else {
    476         DCHECK(entry->opcode == kX86PcRelAdr);
    477         return 5;  // opcode with reg + 4 byte immediate
    478       }
    479     case kMacro:
    480       DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
    481       return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
    482           ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
    483           (lir->operands[0] == rAX  ? 1 : 0);  // shorter ax encoding
    484     default:
    485       break;
    486   }
    487   UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
    488   return 0;
    489 }
    490 
    491 static uint8_t ModrmForDisp(int base, int disp) {
    492   // BP requires an explicit disp, so do not omit it in the 0 case
    493   if (disp == 0 && base != rBP) {
    494     return 0;
    495   } else if (IS_SIMM8(disp)) {
    496     return 1;
    497   } else {
    498     return 2;
    499   }
    500 }
    501 
    502 void X86Mir2Lir::EmitDisp(int base, int disp) {
    503   // BP requires an explicit disp, so do not omit it in the 0 case
    504   if (disp == 0 && base != rBP) {
    505     return;
    506   } else if (IS_SIMM8(disp)) {
    507     code_buffer_.push_back(disp & 0xFF);
    508   } else {
    509     code_buffer_.push_back(disp & 0xFF);
    510     code_buffer_.push_back((disp >> 8) & 0xFF);
    511     code_buffer_.push_back((disp >> 16) & 0xFF);
    512     code_buffer_.push_back((disp >> 24) & 0xFF);
    513   }
    514 }
    515 
    516 void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
    517   if (entry->skeleton.prefix1 != 0) {
    518     code_buffer_.push_back(entry->skeleton.prefix1);
    519     if (entry->skeleton.prefix2 != 0) {
    520       code_buffer_.push_back(entry->skeleton.prefix2);
    521     }
    522   } else {
    523     DCHECK_EQ(0, entry->skeleton.prefix2);
    524   }
    525   code_buffer_.push_back(entry->skeleton.opcode);
    526   if (entry->skeleton.opcode == 0x0F) {
    527     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    528     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    529       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    530     } else {
    531       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    532     }
    533   } else {
    534     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    535     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    536   }
    537   if (X86_FPREG(reg)) {
    538     reg = reg & X86_FP_REG_MASK;
    539   }
    540   if (reg >= 4) {
    541     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    542         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    543   }
    544   DCHECK_LT(reg, 8);
    545   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    546   code_buffer_.push_back(modrm);
    547   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    548   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    549 }
    550 
    551 void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
    552   if (entry->skeleton.prefix1 != 0) {
    553     code_buffer_.push_back(entry->skeleton.prefix1);
    554     if (entry->skeleton.prefix2 != 0) {
    555       code_buffer_.push_back(entry->skeleton.prefix2);
    556     }
    557   } else {
    558     DCHECK_EQ(0, entry->skeleton.prefix2);
    559   }
    560   code_buffer_.push_back(entry->skeleton.opcode);
    561   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    562   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    563   DCHECK_LT(entry->skeleton.modrm_opcode, 8);
    564   DCHECK_LT(base, 8);
    565   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
    566   code_buffer_.push_back(modrm);
    567   EmitDisp(base, disp);
    568   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    569   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    570 }
    571 
    572 void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
    573                        uint8_t base, int disp, uint8_t reg) {
    574   if (entry->skeleton.prefix1 != 0) {
    575     code_buffer_.push_back(entry->skeleton.prefix1);
    576     if (entry->skeleton.prefix2 != 0) {
    577       code_buffer_.push_back(entry->skeleton.prefix2);
    578     }
    579   } else {
    580     DCHECK_EQ(0, entry->skeleton.prefix2);
    581   }
    582   code_buffer_.push_back(entry->skeleton.opcode);
    583   if (entry->skeleton.opcode == 0x0F) {
    584     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    585     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    586       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    587     } else {
    588       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    589     }
    590   } else {
    591     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    592     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    593   }
    594   if (X86_FPREG(reg)) {
    595     reg = reg & X86_FP_REG_MASK;
    596   }
    597   if (reg >= 4) {
    598     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    599         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    600   }
    601   DCHECK_LT(reg, 8);
    602   DCHECK_LT(base, 8);
    603   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
    604   code_buffer_.push_back(modrm);
    605   if (base == rX86_SP) {
    606     // Special SIB for SP base
    607     code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
    608   }
    609   EmitDisp(base, disp);
    610   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    611   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    612   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    613 }
    614 
    615 void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
    616                        uint8_t reg, uint8_t base, int disp) {
    617   // Opcode will flip operands.
    618   EmitMemReg(entry, base, disp, reg);
    619 }
    620 
    621 void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
    622                   int scale, int disp) {
    623   if (entry->skeleton.prefix1 != 0) {
    624     code_buffer_.push_back(entry->skeleton.prefix1);
    625     if (entry->skeleton.prefix2 != 0) {
    626       code_buffer_.push_back(entry->skeleton.prefix2);
    627     }
    628   } else {
    629     DCHECK_EQ(0, entry->skeleton.prefix2);
    630   }
    631   code_buffer_.push_back(entry->skeleton.opcode);
    632   if (entry->skeleton.opcode == 0x0F) {
    633     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    634     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    635       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    636     } else {
    637       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    638     }
    639   } else {
    640     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    641     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    642   }
    643   if (X86_FPREG(reg)) {
    644     reg = reg & X86_FP_REG_MASK;
    645   }
    646   DCHECK_LT(reg, 8);
    647   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
    648   code_buffer_.push_back(modrm);
    649   DCHECK_LT(scale, 4);
    650   DCHECK_LT(index, 8);
    651   DCHECK_LT(base, 8);
    652   uint8_t sib = (scale << 6) | (index << 3) | base;
    653   code_buffer_.push_back(sib);
    654   EmitDisp(base, disp);
    655   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    656   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    657   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    658 }
    659 
    660 void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
    661                   uint8_t reg) {
    662   // Opcode will flip operands.
    663   EmitRegArray(entry, reg, base, index, scale, disp);
    664 }
    665 
    666 void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
    667   DCHECK_NE(entry->skeleton.prefix1, 0);
    668   code_buffer_.push_back(entry->skeleton.prefix1);
    669   if (entry->skeleton.prefix2 != 0) {
    670     code_buffer_.push_back(entry->skeleton.prefix2);
    671   }
    672   code_buffer_.push_back(entry->skeleton.opcode);
    673   if (entry->skeleton.opcode == 0x0F) {
    674     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    675     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    676       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    677     } else {
    678       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    679     }
    680   } else {
    681     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    682     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    683   }
    684   if (X86_FPREG(reg)) {
    685     reg = reg & X86_FP_REG_MASK;
    686   }
    687   if (reg >= 4) {
    688     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    689         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    690   }
    691   DCHECK_LT(reg, 8);
    692   uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
    693   code_buffer_.push_back(modrm);
    694   code_buffer_.push_back(disp & 0xFF);
    695   code_buffer_.push_back((disp >> 8) & 0xFF);
    696   code_buffer_.push_back((disp >> 16) & 0xFF);
    697   code_buffer_.push_back((disp >> 24) & 0xFF);
    698   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    699   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    700   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    701 }
    702 
    703 void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
    704   if (entry->skeleton.prefix1 != 0) {
    705     code_buffer_.push_back(entry->skeleton.prefix1);
    706     if (entry->skeleton.prefix2 != 0) {
    707       code_buffer_.push_back(entry->skeleton.prefix2);
    708     }
    709   } else {
    710     DCHECK_EQ(0, entry->skeleton.prefix2);
    711   }
    712   code_buffer_.push_back(entry->skeleton.opcode);
    713   if (entry->skeleton.opcode == 0x0F) {
    714     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    715     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    716       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    717     } else {
    718       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    719     }
    720   } else {
    721     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    722     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    723   }
    724   if (X86_FPREG(reg1)) {
    725     reg1 = reg1 & X86_FP_REG_MASK;
    726   }
    727   if (X86_FPREG(reg2)) {
    728     reg2 = reg2 & X86_FP_REG_MASK;
    729   }
    730   DCHECK_LT(reg1, 8);
    731   DCHECK_LT(reg2, 8);
    732   uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
    733   code_buffer_.push_back(modrm);
    734   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    735   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    736   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    737 }
    738 
    739 void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
    740                           uint8_t reg1, uint8_t reg2, int32_t imm) {
    741   if (entry->skeleton.prefix1 != 0) {
    742     code_buffer_.push_back(entry->skeleton.prefix1);
    743     if (entry->skeleton.prefix2 != 0) {
    744       code_buffer_.push_back(entry->skeleton.prefix2);
    745     }
    746   } else {
    747     DCHECK_EQ(0, entry->skeleton.prefix2);
    748   }
    749   code_buffer_.push_back(entry->skeleton.opcode);
    750   if (entry->skeleton.opcode == 0x0F) {
    751     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    752     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    753       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    754     } else {
    755       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    756     }
    757   } else {
    758     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    759     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    760   }
    761   if (X86_FPREG(reg1)) {
    762     reg1 = reg1 & X86_FP_REG_MASK;
    763   }
    764   if (X86_FPREG(reg2)) {
    765     reg2 = reg2 & X86_FP_REG_MASK;
    766   }
    767   DCHECK_LT(reg1, 8);
    768   DCHECK_LT(reg2, 8);
    769   uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
    770   code_buffer_.push_back(modrm);
    771   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
    772   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    773   switch (entry->skeleton.immediate_bytes) {
    774     case 1:
    775       DCHECK(IS_SIMM8(imm));
    776       code_buffer_.push_back(imm & 0xFF);
    777       break;
    778     case 2:
    779       DCHECK(IS_SIMM16(imm));
    780       code_buffer_.push_back(imm & 0xFF);
    781       code_buffer_.push_back((imm >> 8) & 0xFF);
    782       break;
    783     case 4:
    784       code_buffer_.push_back(imm & 0xFF);
    785       code_buffer_.push_back((imm >> 8) & 0xFF);
    786       code_buffer_.push_back((imm >> 16) & 0xFF);
    787       code_buffer_.push_back((imm >> 24) & 0xFF);
    788       break;
    789     default:
    790       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    791                  << ") for instruction: " << entry->name;
    792       break;
    793   }
    794 }
    795 
    796 void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    797   if (entry->skeleton.prefix1 != 0) {
    798     code_buffer_.push_back(entry->skeleton.prefix1);
    799     if (entry->skeleton.prefix2 != 0) {
    800       code_buffer_.push_back(entry->skeleton.prefix2);
    801     }
    802   } else {
    803     DCHECK_EQ(0, entry->skeleton.prefix2);
    804   }
    805   if (reg == rAX && entry->skeleton.ax_opcode != 0) {
    806     code_buffer_.push_back(entry->skeleton.ax_opcode);
    807   } else {
    808     code_buffer_.push_back(entry->skeleton.opcode);
    809     if (entry->skeleton.opcode == 0x0F) {
    810       code_buffer_.push_back(entry->skeleton.extra_opcode1);
    811       if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    812         code_buffer_.push_back(entry->skeleton.extra_opcode2);
    813       } else {
    814         DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    815       }
    816     } else {
    817       DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    818       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    819     }
    820     if (X86_FPREG(reg)) {
    821       reg = reg & X86_FP_REG_MASK;
    822     }
    823     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    824     code_buffer_.push_back(modrm);
    825   }
    826   switch (entry->skeleton.immediate_bytes) {
    827     case 1:
    828       DCHECK(IS_SIMM8(imm));
    829       code_buffer_.push_back(imm & 0xFF);
    830       break;
    831     case 2:
    832       DCHECK(IS_SIMM16(imm));
    833       code_buffer_.push_back(imm & 0xFF);
    834       code_buffer_.push_back((imm >> 8) & 0xFF);
    835       break;
    836     case 4:
    837       code_buffer_.push_back(imm & 0xFF);
    838       code_buffer_.push_back((imm >> 8) & 0xFF);
    839       code_buffer_.push_back((imm >> 16) & 0xFF);
    840       code_buffer_.push_back((imm >> 24) & 0xFF);
    841       break;
    842     default:
    843       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    844           << ") for instruction: " << entry->name;
    845       break;
    846   }
    847 }
    848 
    849 void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
    850   if (entry->skeleton.prefix1 != 0) {
    851     code_buffer_.push_back(entry->skeleton.prefix1);
    852     if (entry->skeleton.prefix2 != 0) {
    853       code_buffer_.push_back(entry->skeleton.prefix2);
    854     }
    855   } else {
    856     DCHECK_EQ(0, entry->skeleton.prefix2);
    857   }
    858   code_buffer_.push_back(entry->skeleton.opcode);
    859   if (entry->skeleton.opcode == 0x0F) {
    860     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    861     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    862       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    863     } else {
    864       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    865     }
    866   } else {
    867     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    868     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    869   }
    870   uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
    871   code_buffer_.push_back(modrm);
    872   code_buffer_.push_back(disp & 0xFF);
    873   code_buffer_.push_back((disp >> 8) & 0xFF);
    874   code_buffer_.push_back((disp >> 16) & 0xFF);
    875   code_buffer_.push_back((disp >> 24) & 0xFF);
    876   switch (entry->skeleton.immediate_bytes) {
    877     case 1:
    878       DCHECK(IS_SIMM8(imm));
    879       code_buffer_.push_back(imm & 0xFF);
    880       break;
    881     case 2:
    882       DCHECK(IS_SIMM16(imm));
    883       code_buffer_.push_back(imm & 0xFF);
    884       code_buffer_.push_back((imm >> 8) & 0xFF);
    885       break;
    886     case 4:
    887       code_buffer_.push_back(imm & 0xFF);
    888       code_buffer_.push_back((imm >> 8) & 0xFF);
    889       code_buffer_.push_back((imm >> 16) & 0xFF);
    890       code_buffer_.push_back((imm >> 24) & 0xFF);
    891       break;
    892     default:
    893       LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
    894           << ") for instruction: " << entry->name;
    895       break;
    896   }
    897   DCHECK_EQ(entry->skeleton.ax_opcode, 0);
    898 }
    899 
    900 void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    901   DCHECK_LT(reg, 8);
    902   code_buffer_.push_back(0xB8 + reg);
    903   code_buffer_.push_back(imm & 0xFF);
    904   code_buffer_.push_back((imm >> 8) & 0xFF);
    905   code_buffer_.push_back((imm >> 16) & 0xFF);
    906   code_buffer_.push_back((imm >> 24) & 0xFF);
    907 }
    908 
    909 void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
    910   if (entry->skeleton.prefix1 != 0) {
    911     code_buffer_.push_back(entry->skeleton.prefix1);
    912     if (entry->skeleton.prefix2 != 0) {
    913       code_buffer_.push_back(entry->skeleton.prefix2);
    914     }
    915   } else {
    916     DCHECK_EQ(0, entry->skeleton.prefix2);
    917   }
    918   if (imm != 1) {
    919     code_buffer_.push_back(entry->skeleton.opcode);
    920   } else {
    921     // Shorter encoding for 1 bit shift
    922     code_buffer_.push_back(entry->skeleton.ax_opcode);
    923   }
    924   if (entry->skeleton.opcode == 0x0F) {
    925     code_buffer_.push_back(entry->skeleton.extra_opcode1);
    926     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
    927       code_buffer_.push_back(entry->skeleton.extra_opcode2);
    928     } else {
    929       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    930     }
    931   } else {
    932     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    933     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    934   }
    935   if (reg >= 4) {
    936     DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
    937         << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    938   }
    939   DCHECK_LT(reg, 8);
    940   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    941   code_buffer_.push_back(modrm);
    942   if (imm != 1) {
    943     DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
    944     DCHECK(IS_SIMM8(imm));
    945     code_buffer_.push_back(imm & 0xFF);
    946   }
    947 }
    948 
    949 void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
    950   DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
    951   if (entry->skeleton.prefix1 != 0) {
    952     code_buffer_.push_back(entry->skeleton.prefix1);
    953     if (entry->skeleton.prefix2 != 0) {
    954       code_buffer_.push_back(entry->skeleton.prefix2);
    955     }
    956   } else {
    957     DCHECK_EQ(0, entry->skeleton.prefix2);
    958   }
    959   code_buffer_.push_back(entry->skeleton.opcode);
    960   DCHECK_EQ(0, entry->skeleton.extra_opcode1);
    961   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    962   DCHECK_LT(reg, 8);
    963   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    964   code_buffer_.push_back(modrm);
    965   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    966   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
    967 }
    968 
    969 void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
    970   if (entry->skeleton.prefix1 != 0) {
    971     code_buffer_.push_back(entry->skeleton.prefix1);
    972     if (entry->skeleton.prefix2 != 0) {
    973       code_buffer_.push_back(entry->skeleton.prefix2);
    974     }
    975   } else {
    976     DCHECK_EQ(0, entry->skeleton.prefix2);
    977   }
    978   DCHECK_EQ(0, entry->skeleton.ax_opcode);
    979   DCHECK_EQ(0x0F, entry->skeleton.opcode);
    980   code_buffer_.push_back(0x0F);
    981   DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
    982   code_buffer_.push_back(0x90 | condition);
    983   DCHECK_EQ(0, entry->skeleton.extra_opcode2);
    984   DCHECK_LT(reg, 8);
    985   uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
    986   code_buffer_.push_back(modrm);
    987   DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
    988 }
    989 
    990 void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
    991   if (entry->opcode == kX86Jmp8) {
    992     DCHECK(IS_SIMM8(rel));
    993     code_buffer_.push_back(0xEB);
    994     code_buffer_.push_back(rel & 0xFF);
    995   } else if (entry->opcode == kX86Jmp32) {
    996     code_buffer_.push_back(0xE9);
    997     code_buffer_.push_back(rel & 0xFF);
    998     code_buffer_.push_back((rel >> 8) & 0xFF);
    999     code_buffer_.push_back((rel >> 16) & 0xFF);
   1000     code_buffer_.push_back((rel >> 24) & 0xFF);
   1001   } else {
   1002     DCHECK(entry->opcode == kX86JmpR);
   1003     code_buffer_.push_back(entry->skeleton.opcode);
   1004     uint8_t reg = static_cast<uint8_t>(rel);
   1005     DCHECK_LT(reg, 8);
   1006     uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
   1007     code_buffer_.push_back(modrm);
   1008   }
   1009 }
   1010 
   1011 void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
   1012   DCHECK_LT(cc, 16);
   1013   if (entry->opcode == kX86Jcc8) {
   1014     DCHECK(IS_SIMM8(rel));
   1015     code_buffer_.push_back(0x70 | cc);
   1016     code_buffer_.push_back(rel & 0xFF);
   1017   } else {
   1018     DCHECK(entry->opcode == kX86Jcc32);
   1019     code_buffer_.push_back(0x0F);
   1020     code_buffer_.push_back(0x80 | cc);
   1021     code_buffer_.push_back(rel & 0xFF);
   1022     code_buffer_.push_back((rel >> 8) & 0xFF);
   1023     code_buffer_.push_back((rel >> 16) & 0xFF);
   1024     code_buffer_.push_back((rel >> 24) & 0xFF);
   1025   }
   1026 }
   1027 
   1028 void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
   1029   if (entry->skeleton.prefix1 != 0) {
   1030     code_buffer_.push_back(entry->skeleton.prefix1);
   1031     if (entry->skeleton.prefix2 != 0) {
   1032       code_buffer_.push_back(entry->skeleton.prefix2);
   1033     }
   1034   } else {
   1035     DCHECK_EQ(0, entry->skeleton.prefix2);
   1036   }
   1037   code_buffer_.push_back(entry->skeleton.opcode);
   1038   if (entry->skeleton.opcode == 0x0F) {
   1039     code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1040     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
   1041       code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1042     } else {
   1043       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1044     }
   1045   } else {
   1046     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1047     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1048   }
   1049   uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
   1050   code_buffer_.push_back(modrm);
   1051   if (base == rX86_SP) {
   1052     // Special SIB for SP base
   1053     code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
   1054   }
   1055   EmitDisp(base, disp);
   1056   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1057   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1058 }
   1059 
   1060 void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
   1061   DCHECK_NE(entry->skeleton.prefix1, 0);
   1062   code_buffer_.push_back(entry->skeleton.prefix1);
   1063   if (entry->skeleton.prefix2 != 0) {
   1064     code_buffer_.push_back(entry->skeleton.prefix2);
   1065   }
   1066   code_buffer_.push_back(entry->skeleton.opcode);
   1067   if (entry->skeleton.opcode == 0x0F) {
   1068     code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1069     if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) {
   1070       code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1071     } else {
   1072       DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1073     }
   1074   } else {
   1075     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1076     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1077   }
   1078   uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
   1079   code_buffer_.push_back(modrm);
   1080   code_buffer_.push_back(disp & 0xFF);
   1081   code_buffer_.push_back((disp >> 8) & 0xFF);
   1082   code_buffer_.push_back((disp >> 16) & 0xFF);
   1083   code_buffer_.push_back((disp >> 24) & 0xFF);
   1084   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1085   DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1086 }
   1087 
   1088 void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
   1089                       int base_or_table, uint8_t index, int scale, int table_or_disp) {
   1090   int disp;
   1091   if (entry->opcode == kX86PcRelLoadRA) {
   1092     Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp);
   1093     disp = tab_rec->offset;
   1094   } else {
   1095     DCHECK(entry->opcode == kX86PcRelAdr);
   1096     Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table);
   1097     disp = tab_rec->offset;
   1098   }
   1099   if (entry->skeleton.prefix1 != 0) {
   1100     code_buffer_.push_back(entry->skeleton.prefix1);
   1101     if (entry->skeleton.prefix2 != 0) {
   1102       code_buffer_.push_back(entry->skeleton.prefix2);
   1103     }
   1104   } else {
   1105     DCHECK_EQ(0, entry->skeleton.prefix2);
   1106   }
   1107   if (X86_FPREG(reg)) {
   1108     reg = reg & X86_FP_REG_MASK;
   1109   }
   1110   DCHECK_LT(reg, 8);
   1111   if (entry->opcode == kX86PcRelLoadRA) {
   1112     code_buffer_.push_back(entry->skeleton.opcode);
   1113     DCHECK_EQ(0, entry->skeleton.extra_opcode1);
   1114     DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1115     uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
   1116     code_buffer_.push_back(modrm);
   1117     DCHECK_LT(scale, 4);
   1118     DCHECK_LT(index, 8);
   1119     DCHECK_LT(base_or_table, 8);
   1120     uint8_t base = static_cast<uint8_t>(base_or_table);
   1121     uint8_t sib = (scale << 6) | (index << 3) | base;
   1122     code_buffer_.push_back(sib);
   1123     DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1124   } else {
   1125     code_buffer_.push_back(entry->skeleton.opcode + reg);
   1126   }
   1127   code_buffer_.push_back(disp & 0xFF);
   1128   code_buffer_.push_back((disp >> 8) & 0xFF);
   1129   code_buffer_.push_back((disp >> 16) & 0xFF);
   1130   code_buffer_.push_back((disp >> 24) & 0xFF);
   1131   DCHECK_EQ(0, entry->skeleton.modrm_opcode);
   1132   DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1133 }
   1134 
   1135 void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
   1136   DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
   1137   code_buffer_.push_back(0xE8);  // call +0
   1138   code_buffer_.push_back(0);
   1139   code_buffer_.push_back(0);
   1140   code_buffer_.push_back(0);
   1141   code_buffer_.push_back(0);
   1142 
   1143   DCHECK_LT(reg, 8);
   1144   code_buffer_.push_back(0x58 + reg);  // pop reg
   1145 
   1146   EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
   1147 }
   1148 
   1149 void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
   1150   UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
   1151                          << BuildInsnString(entry->fmt, lir, 0);
   1152   for (int i = 0; i < GetInsnSize(lir); ++i) {
   1153     code_buffer_.push_back(0xCC);  // push breakpoint instruction - int 3
   1154   }
   1155 }
   1156 
   1157 /*
   1158  * Assemble the LIR into binary instruction format.  Note that we may
   1159  * discover that pc-relative displacements may not fit the selected
   1160  * instruction.  In those cases we will try to substitute a new code
   1161  * sequence or request that the trace be shortened and retried.
   1162  */
   1163 AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) {
   1164   LIR *lir;
   1165   AssemblerStatus res = kSuccess;  // Assume success
   1166 
   1167   const bool kVerbosePcFixup = false;
   1168   for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
   1169     if (lir->opcode < 0) {
   1170       continue;
   1171     }
   1172 
   1173     if (lir->flags.is_nop) {
   1174       continue;
   1175     }
   1176 
   1177     if (lir->flags.pcRelFixup) {
   1178       switch (lir->opcode) {
   1179         case kX86Jcc8: {
   1180           LIR *target_lir = lir->target;
   1181           DCHECK(target_lir != NULL);
   1182           int delta = 0;
   1183           uintptr_t pc;
   1184           if (IS_SIMM8(lir->operands[0])) {
   1185             pc = lir->offset + 2 /* opcode + rel8 */;
   1186           } else {
   1187             pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
   1188           }
   1189           uintptr_t target = target_lir->offset;
   1190           delta = target - pc;
   1191           if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
   1192             if (kVerbosePcFixup) {
   1193               LOG(INFO) << "Retry for JCC growth at " << lir->offset
   1194                   << " delta: " << delta << " old delta: " << lir->operands[0];
   1195             }
   1196             lir->opcode = kX86Jcc32;
   1197             SetupResourceMasks(lir);
   1198             res = kRetryAll;
   1199           }
   1200           if (kVerbosePcFixup) {
   1201             LOG(INFO) << "Source:";
   1202             DumpLIRInsn(lir, 0);
   1203             LOG(INFO) << "Target:";
   1204             DumpLIRInsn(target_lir, 0);
   1205             LOG(INFO) << "Delta " << delta;
   1206           }
   1207           lir->operands[0] = delta;
   1208           break;
   1209         }
   1210         case kX86Jcc32: {
   1211           LIR *target_lir = lir->target;
   1212           DCHECK(target_lir != NULL);
   1213           uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
   1214           uintptr_t target = target_lir->offset;
   1215           int delta = target - pc;
   1216           if (kVerbosePcFixup) {
   1217             LOG(INFO) << "Source:";
   1218             DumpLIRInsn(lir, 0);
   1219             LOG(INFO) << "Target:";
   1220             DumpLIRInsn(target_lir, 0);
   1221             LOG(INFO) << "Delta " << delta;
   1222           }
   1223           lir->operands[0] = delta;
   1224           break;
   1225         }
   1226         case kX86Jmp8: {
   1227           LIR *target_lir = lir->target;
   1228           DCHECK(target_lir != NULL);
   1229           int delta = 0;
   1230           uintptr_t pc;
   1231           if (IS_SIMM8(lir->operands[0])) {
   1232             pc = lir->offset + 2 /* opcode + rel8 */;
   1233           } else {
   1234             pc = lir->offset + 5 /* opcode + rel32 */;
   1235           }
   1236           uintptr_t target = target_lir->offset;
   1237           delta = target - pc;
   1238           if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
   1239             // Useless branch
   1240             lir->flags.is_nop = true;
   1241             if (kVerbosePcFixup) {
   1242               LOG(INFO) << "Retry for useless branch at " << lir->offset;
   1243             }
   1244             res = kRetryAll;
   1245           } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
   1246             if (kVerbosePcFixup) {
   1247               LOG(INFO) << "Retry for JMP growth at " << lir->offset;
   1248             }
   1249             lir->opcode = kX86Jmp32;
   1250             SetupResourceMasks(lir);
   1251             res = kRetryAll;
   1252           }
   1253           lir->operands[0] = delta;
   1254           break;
   1255         }
   1256         case kX86Jmp32: {
   1257           LIR *target_lir = lir->target;
   1258           DCHECK(target_lir != NULL);
   1259           uintptr_t pc = lir->offset + 5 /* opcode + rel32 */;
   1260           uintptr_t target = target_lir->offset;
   1261           int delta = target - pc;
   1262           lir->operands[0] = delta;
   1263           break;
   1264         }
   1265         default:
   1266           break;
   1267       }
   1268     }
   1269 
   1270     /*
   1271      * If one of the pc-relative instructions expanded we'll have
   1272      * to make another pass.  Don't bother to fully assemble the
   1273      * instruction.
   1274      */
   1275     if (res != kSuccess) {
   1276       continue;
   1277     }
   1278     CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
   1279     const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
   1280     size_t starting_cbuf_size = code_buffer_.size();
   1281     switch (entry->kind) {
   1282       case kData:  // 4 bytes of data
   1283         code_buffer_.push_back(lir->operands[0]);
   1284         break;
   1285       case kNullary:  // 1 byte of opcode
   1286         DCHECK_EQ(0, entry->skeleton.prefix1);
   1287         DCHECK_EQ(0, entry->skeleton.prefix2);
   1288         code_buffer_.push_back(entry->skeleton.opcode);
   1289         if (entry->skeleton.extra_opcode1 != 0) {
   1290           code_buffer_.push_back(entry->skeleton.extra_opcode1);
   1291           if (entry->skeleton.extra_opcode2 != 0) {
   1292             code_buffer_.push_back(entry->skeleton.extra_opcode2);
   1293           }
   1294         } else {
   1295           DCHECK_EQ(0, entry->skeleton.extra_opcode2);
   1296         }
   1297         DCHECK_EQ(0, entry->skeleton.modrm_opcode);
   1298         DCHECK_EQ(0, entry->skeleton.ax_opcode);
   1299         DCHECK_EQ(0, entry->skeleton.immediate_bytes);
   1300         break;
   1301       case kReg:  // lir operands - 0: reg
   1302         EmitOpReg(entry, lir->operands[0]);
   1303         break;
   1304       case kMem:  // lir operands - 0: base, 1: disp
   1305         EmitOpMem(entry, lir->operands[0], lir->operands[1]);
   1306         break;
   1307       case kMemReg:  // lir operands - 0: base, 1: disp, 2: reg
   1308         EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1309         break;
   1310       case kArrayReg:  // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
   1311         EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1312                      lir->operands[3], lir->operands[4]);
   1313         break;
   1314       case kRegMem:  // lir operands - 0: reg, 1: base, 2: disp
   1315         EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1316         break;
   1317       case kRegArray:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
   1318         EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1319                      lir->operands[3], lir->operands[4]);
   1320         break;
   1321       case kRegThread:  // lir operands - 0: reg, 1: disp
   1322         EmitRegThread(entry, lir->operands[0], lir->operands[1]);
   1323         break;
   1324       case kRegReg:  // lir operands - 0: reg1, 1: reg2
   1325         EmitRegReg(entry, lir->operands[0], lir->operands[1]);
   1326         break;
   1327       case kRegRegStore:  // lir operands - 0: reg2, 1: reg1
   1328         EmitRegReg(entry, lir->operands[1], lir->operands[0]);
   1329         break;
   1330       case kRegRegImm:
   1331         EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
   1332         break;
   1333       case kRegImm:  // lir operands - 0: reg, 1: immediate
   1334         EmitRegImm(entry, lir->operands[0], lir->operands[1]);
   1335         break;
   1336       case kThreadImm:  // lir operands - 0: disp, 1: immediate
   1337         EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
   1338         break;
   1339       case kMovRegImm:  // lir operands - 0: reg, 1: immediate
   1340         EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
   1341         break;
   1342       case kShiftRegImm:  // lir operands - 0: reg, 1: immediate
   1343         EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
   1344         break;
   1345       case kShiftRegCl:  // lir operands - 0: reg, 1: cl
   1346         EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
   1347         break;
   1348       case kRegCond:  // lir operands - 0: reg, 1: condition
   1349         EmitRegCond(entry, lir->operands[0], lir->operands[1]);
   1350         break;
   1351       case kJmp:  // lir operands - 0: rel
   1352         EmitJmp(entry, lir->operands[0]);
   1353         break;
   1354       case kJcc:  // lir operands - 0: rel, 1: CC, target assigned
   1355         EmitJcc(entry, lir->operands[0], lir->operands[1]);
   1356         break;
   1357       case kCall:
   1358         switch (entry->opcode) {
   1359           case kX86CallM:  // lir operands - 0: base, 1: disp
   1360             EmitCallMem(entry, lir->operands[0], lir->operands[1]);
   1361             break;
   1362           case kX86CallT:  // lir operands - 0: disp
   1363             EmitCallThread(entry, lir->operands[0]);
   1364             break;
   1365           default:
   1366             EmitUnimplemented(entry, lir);
   1367             break;
   1368         }
   1369         break;
   1370       case kPcRel:  // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
   1371         EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
   1372                   lir->operands[3], lir->operands[4]);
   1373         break;
   1374       case kMacro:
   1375         EmitMacro(entry, lir->operands[0], lir->offset);
   1376         break;
   1377       default:
   1378         EmitUnimplemented(entry, lir);
   1379         break;
   1380     }
   1381     CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
   1382              code_buffer_.size() - starting_cbuf_size)
   1383         << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
   1384   }
   1385   return res;
   1386 }
   1387 
   1388 }  // namespace art
   1389