Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 #include "dex/quick/mir_to_lir-inl.h"
     19 #include "x86_lir.h"
     20 
     21 namespace art {
     22 
     23 /* This file contains codegen for the X86 ISA */
     24 
     25 LIR* X86Mir2Lir::OpFpRegCopy(int r_dest, int r_src) {
     26   int opcode;
     27   /* must be both DOUBLE or both not DOUBLE */
     28   DCHECK_EQ(X86_DOUBLEREG(r_dest), X86_DOUBLEREG(r_src));
     29   if (X86_DOUBLEREG(r_dest)) {
     30     opcode = kX86MovsdRR;
     31   } else {
     32     if (X86_SINGLEREG(r_dest)) {
     33       if (X86_SINGLEREG(r_src)) {
     34         opcode = kX86MovssRR;
     35       } else {  // Fpr <- Gpr
     36         opcode = kX86MovdxrRR;
     37       }
     38     } else {  // Gpr <- Fpr
     39       DCHECK(X86_SINGLEREG(r_src));
     40       opcode = kX86MovdrxRR;
     41     }
     42   }
     43   DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
     44   LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest, r_src);
     45   if (r_dest == r_src) {
     46     res->flags.is_nop = true;
     47   }
     48   return res;
     49 }
     50 
     51 bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
     52   return true;
     53 }
     54 
     55 bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
     56   return false;
     57 }
     58 
     59 bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
     60   return true;
     61 }
     62 
     63 bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
     64   return false;  // TUNING
     65 }
     66 
     67 /*
     68  * Load a immediate using a shortcut if possible; otherwise
     69  * grab from the per-translation literal pool.  If target is
     70  * a high register, build constant into a low register and copy.
     71  *
     72  * No additional register clobbering operation performed. Use this version when
     73  * 1) r_dest is freshly returned from AllocTemp or
     74  * 2) The codegen is under fixed register usage
     75  */
     76 LIR* X86Mir2Lir::LoadConstantNoClobber(int r_dest, int value) {
     77   int r_dest_save = r_dest;
     78   if (X86_FPREG(r_dest)) {
     79     if (value == 0) {
     80       return NewLIR2(kX86XorpsRR, r_dest, r_dest);
     81     }
     82     DCHECK(X86_SINGLEREG(r_dest));
     83     r_dest = AllocTemp();
     84   }
     85 
     86   LIR *res;
     87   if (value == 0) {
     88     res = NewLIR2(kX86Xor32RR, r_dest, r_dest);
     89   } else {
     90     // Note, there is no byte immediate form of a 32 bit immediate move.
     91     res = NewLIR2(kX86Mov32RI, r_dest, value);
     92   }
     93 
     94   if (X86_FPREG(r_dest_save)) {
     95     NewLIR2(kX86MovdxrRR, r_dest_save, r_dest);
     96     FreeTemp(r_dest);
     97   }
     98 
     99   return res;
    100 }
    101 
    102 LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
    103   LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
    104   res->target = target;
    105   return res;
    106 }
    107 
    108 LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
    109   LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
    110                         X86ConditionEncoding(cc));
    111   branch->target = target;
    112   return branch;
    113 }
    114 
    115 LIR* X86Mir2Lir::OpReg(OpKind op, int r_dest_src) {
    116   X86OpCode opcode = kX86Bkpt;
    117   switch (op) {
    118     case kOpNeg: opcode = kX86Neg32R; break;
    119     case kOpNot: opcode = kX86Not32R; break;
    120     case kOpBlx: opcode = kX86CallR; break;
    121     default:
    122       LOG(FATAL) << "Bad case in OpReg " << op;
    123   }
    124   return NewLIR1(opcode, r_dest_src);
    125 }
    126 
    127 LIR* X86Mir2Lir::OpRegImm(OpKind op, int r_dest_src1, int value) {
    128   X86OpCode opcode = kX86Bkpt;
    129   bool byte_imm = IS_SIMM8(value);
    130   DCHECK(!X86_FPREG(r_dest_src1));
    131   switch (op) {
    132     case kOpLsl: opcode = kX86Sal32RI; break;
    133     case kOpLsr: opcode = kX86Shr32RI; break;
    134     case kOpAsr: opcode = kX86Sar32RI; break;
    135     case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
    136     case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
    137     case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
    138     // case kOpSbb: opcode = kX86Sbb32RI; break;
    139     case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
    140     case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
    141     case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
    142     case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
    143     case kOpMov: return LoadConstantNoClobber(r_dest_src1, value);
    144     case kOpMul:
    145       opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
    146       return NewLIR3(opcode, r_dest_src1, r_dest_src1, value);
    147     default:
    148       LOG(FATAL) << "Bad case in OpRegImm " << op;
    149   }
    150   return NewLIR2(opcode, r_dest_src1, value);
    151 }
    152 
    153 LIR* X86Mir2Lir::OpRegReg(OpKind op, int r_dest_src1, int r_src2) {
    154     X86OpCode opcode = kX86Nop;
    155     bool src2_must_be_cx = false;
    156     switch (op) {
    157         // X86 unary opcodes
    158       case kOpMvn:
    159         OpRegCopy(r_dest_src1, r_src2);
    160         return OpReg(kOpNot, r_dest_src1);
    161       case kOpNeg:
    162         OpRegCopy(r_dest_src1, r_src2);
    163         return OpReg(kOpNeg, r_dest_src1);
    164         // X86 binary opcodes
    165       case kOpSub: opcode = kX86Sub32RR; break;
    166       case kOpSbc: opcode = kX86Sbb32RR; break;
    167       case kOpLsl: opcode = kX86Sal32RC; src2_must_be_cx = true; break;
    168       case kOpLsr: opcode = kX86Shr32RC; src2_must_be_cx = true; break;
    169       case kOpAsr: opcode = kX86Sar32RC; src2_must_be_cx = true; break;
    170       case kOpMov: opcode = kX86Mov32RR; break;
    171       case kOpCmp: opcode = kX86Cmp32RR; break;
    172       case kOpAdd: opcode = kX86Add32RR; break;
    173       case kOpAdc: opcode = kX86Adc32RR; break;
    174       case kOpAnd: opcode = kX86And32RR; break;
    175       case kOpOr:  opcode = kX86Or32RR; break;
    176       case kOpXor: opcode = kX86Xor32RR; break;
    177       case kOp2Byte:
    178         // Use shifts instead of a byte operand if the source can't be byte accessed.
    179         if (r_src2 >= 4) {
    180           NewLIR2(kX86Mov32RR, r_dest_src1, r_src2);
    181           NewLIR2(kX86Sal32RI, r_dest_src1, 24);
    182           return NewLIR2(kX86Sar32RI, r_dest_src1, 24);
    183         } else {
    184           opcode = kX86Movsx8RR;
    185         }
    186         break;
    187       case kOp2Short: opcode = kX86Movsx16RR; break;
    188       case kOp2Char: opcode = kX86Movzx16RR; break;
    189       case kOpMul: opcode = kX86Imul32RR; break;
    190       default:
    191         LOG(FATAL) << "Bad case in OpRegReg " << op;
    192         break;
    193     }
    194     CHECK(!src2_must_be_cx || r_src2 == rCX);
    195     return NewLIR2(opcode, r_dest_src1, r_src2);
    196 }
    197 
    198 LIR* X86Mir2Lir::OpRegMem(OpKind op, int r_dest, int rBase,
    199               int offset) {
    200   X86OpCode opcode = kX86Nop;
    201   switch (op) {
    202       // X86 binary opcodes
    203     case kOpSub: opcode = kX86Sub32RM; break;
    204     case kOpMov: opcode = kX86Mov32RM; break;
    205     case kOpCmp: opcode = kX86Cmp32RM; break;
    206     case kOpAdd: opcode = kX86Add32RM; break;
    207     case kOpAnd: opcode = kX86And32RM; break;
    208     case kOpOr:  opcode = kX86Or32RM; break;
    209     case kOpXor: opcode = kX86Xor32RM; break;
    210     case kOp2Byte: opcode = kX86Movsx8RM; break;
    211     case kOp2Short: opcode = kX86Movsx16RM; break;
    212     case kOp2Char: opcode = kX86Movzx16RM; break;
    213     case kOpMul:
    214     default:
    215       LOG(FATAL) << "Bad case in OpRegMem " << op;
    216       break;
    217   }
    218   return NewLIR3(opcode, r_dest, rBase, offset);
    219 }
    220 
    221 LIR* X86Mir2Lir::OpRegRegReg(OpKind op, int r_dest, int r_src1,
    222                  int r_src2) {
    223   if (r_dest != r_src1 && r_dest != r_src2) {
    224     if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
    225       if (r_src1 == r_src2) {
    226         OpRegCopy(r_dest, r_src1);
    227         return OpRegImm(kOpLsl, r_dest, 1);
    228       } else if (r_src1 != rBP) {
    229         return NewLIR5(kX86Lea32RA, r_dest, r_src1 /* base */,
    230                        r_src2 /* index */, 0 /* scale */, 0 /* disp */);
    231       } else {
    232         return NewLIR5(kX86Lea32RA, r_dest, r_src2 /* base */,
    233                        r_src1 /* index */, 0 /* scale */, 0 /* disp */);
    234       }
    235     } else {
    236       OpRegCopy(r_dest, r_src1);
    237       return OpRegReg(op, r_dest, r_src2);
    238     }
    239   } else if (r_dest == r_src1) {
    240     return OpRegReg(op, r_dest, r_src2);
    241   } else {  // r_dest == r_src2
    242     switch (op) {
    243       case kOpSub:  // non-commutative
    244         OpReg(kOpNeg, r_dest);
    245         op = kOpAdd;
    246         break;
    247       case kOpSbc:
    248       case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
    249         int t_reg = AllocTemp();
    250         OpRegCopy(t_reg, r_src1);
    251         OpRegReg(op, t_reg, r_src2);
    252         LIR* res = OpRegCopy(r_dest, t_reg);
    253         FreeTemp(t_reg);
    254         return res;
    255       }
    256       case kOpAdd:  // commutative
    257       case kOpOr:
    258       case kOpAdc:
    259       case kOpAnd:
    260       case kOpXor:
    261         break;
    262       default:
    263         LOG(FATAL) << "Bad case in OpRegRegReg " << op;
    264     }
    265     return OpRegReg(op, r_dest, r_src1);
    266   }
    267 }
    268 
    269 LIR* X86Mir2Lir::OpRegRegImm(OpKind op, int r_dest, int r_src,
    270                  int value) {
    271   if (op == kOpMul) {
    272     X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
    273     return NewLIR3(opcode, r_dest, r_src, value);
    274   } else if (op == kOpAnd) {
    275     if (value == 0xFF && r_src < 4) {
    276       return NewLIR2(kX86Movzx8RR, r_dest, r_src);
    277     } else if (value == 0xFFFF) {
    278       return NewLIR2(kX86Movzx16RR, r_dest, r_src);
    279     }
    280   }
    281   if (r_dest != r_src) {
    282     if (false && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
    283       // TODO: fix bug in LEA encoding when disp == 0
    284       return NewLIR5(kX86Lea32RA, r_dest,  r5sib_no_base /* base */,
    285                      r_src /* index */, value /* scale */, 0 /* disp */);
    286     } else if (op == kOpAdd) {  // lea add special case
    287       return NewLIR5(kX86Lea32RA, r_dest, r_src /* base */,
    288                      r4sib_no_index /* index */, 0 /* scale */, value /* disp */);
    289     }
    290     OpRegCopy(r_dest, r_src);
    291   }
    292   return OpRegImm(op, r_dest, value);
    293 }
    294 
    295 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset thread_offset) {
    296   X86OpCode opcode = kX86Bkpt;
    297   switch (op) {
    298     case kOpBlx: opcode = kX86CallT;  break;
    299     default:
    300       LOG(FATAL) << "Bad opcode: " << op;
    301       break;
    302   }
    303   return NewLIR1(opcode, thread_offset.Int32Value());
    304 }
    305 
    306 LIR* X86Mir2Lir::OpMem(OpKind op, int rBase, int disp) {
    307   X86OpCode opcode = kX86Bkpt;
    308   switch (op) {
    309     case kOpBlx: opcode = kX86CallM;  break;
    310     default:
    311       LOG(FATAL) << "Bad opcode: " << op;
    312       break;
    313   }
    314   return NewLIR2(opcode, rBase, disp);
    315 }
    316 
    317 LIR* X86Mir2Lir::LoadConstantWide(int r_dest_lo, int r_dest_hi, int64_t value) {
    318     int32_t val_lo = Low32Bits(value);
    319     int32_t val_hi = High32Bits(value);
    320     LIR *res;
    321     if (X86_FPREG(r_dest_lo)) {
    322       DCHECK(X86_FPREG(r_dest_hi));  // ignore r_dest_hi
    323       if (value == 0) {
    324         return NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
    325       } else {
    326         if (val_lo == 0) {
    327           res = NewLIR2(kX86XorpsRR, r_dest_lo, r_dest_lo);
    328         } else {
    329           res = LoadConstantNoClobber(r_dest_lo, val_lo);
    330         }
    331         if (val_hi != 0) {
    332           LoadConstantNoClobber(r_dest_hi, val_hi);
    333           NewLIR2(kX86PsllqRI, r_dest_hi, 32);
    334           NewLIR2(kX86OrpsRR, r_dest_lo, r_dest_hi);
    335         }
    336       }
    337     } else {
    338       res = LoadConstantNoClobber(r_dest_lo, val_lo);
    339       LoadConstantNoClobber(r_dest_hi, val_hi);
    340     }
    341     return res;
    342 }
    343 
    344 LIR* X86Mir2Lir::LoadBaseIndexedDisp(int rBase, int r_index, int scale,
    345                                      int displacement, int r_dest, int r_dest_hi, OpSize size,
    346                                      int s_reg) {
    347   LIR *load = NULL;
    348   LIR *load2 = NULL;
    349   bool is_array = r_index != INVALID_REG;
    350   bool pair = false;
    351   bool is64bit = false;
    352   X86OpCode opcode = kX86Nop;
    353   switch (size) {
    354     case kLong:
    355     case kDouble:
    356       is64bit = true;
    357       if (X86_FPREG(r_dest)) {
    358         opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
    359         if (X86_SINGLEREG(r_dest)) {
    360           DCHECK(X86_FPREG(r_dest_hi));
    361           DCHECK_EQ(r_dest, (r_dest_hi - 1));
    362           r_dest = S2d(r_dest, r_dest_hi);
    363         }
    364         r_dest_hi = r_dest + 1;
    365       } else {
    366         pair = true;
    367         opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
    368       }
    369       // TODO: double store is to unaligned address
    370       DCHECK_EQ((displacement & 0x3), 0);
    371       break;
    372     case kWord:
    373     case kSingle:
    374       opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
    375       if (X86_FPREG(r_dest)) {
    376         opcode = is_array ? kX86MovssRA : kX86MovssRM;
    377         DCHECK(X86_SINGLEREG(r_dest));
    378       }
    379       DCHECK_EQ((displacement & 0x3), 0);
    380       break;
    381     case kUnsignedHalf:
    382       opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
    383       DCHECK_EQ((displacement & 0x1), 0);
    384       break;
    385     case kSignedHalf:
    386       opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
    387       DCHECK_EQ((displacement & 0x1), 0);
    388       break;
    389     case kUnsignedByte:
    390       opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
    391       break;
    392     case kSignedByte:
    393       opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
    394       break;
    395     default:
    396       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
    397   }
    398 
    399   if (!is_array) {
    400     if (!pair) {
    401       load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    402     } else {
    403       if (rBase == r_dest) {
    404         load2 = NewLIR3(opcode, r_dest_hi, rBase,
    405                         displacement + HIWORD_OFFSET);
    406         load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    407       } else {
    408         load = NewLIR3(opcode, r_dest, rBase, displacement + LOWORD_OFFSET);
    409         load2 = NewLIR3(opcode, r_dest_hi, rBase,
    410                         displacement + HIWORD_OFFSET);
    411       }
    412     }
    413     if (rBase == rX86_SP) {
    414       AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    415                               true /* is_load */, is64bit);
    416       if (pair) {
    417         AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
    418                                 true /* is_load */, is64bit);
    419       }
    420     }
    421   } else {
    422     if (!pair) {
    423       load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    424                      displacement + LOWORD_OFFSET);
    425     } else {
    426       if (rBase == r_dest) {
    427         load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
    428                         displacement + HIWORD_OFFSET);
    429         load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    430                        displacement + LOWORD_OFFSET);
    431       } else {
    432         load = NewLIR5(opcode, r_dest, rBase, r_index, scale,
    433                        displacement + LOWORD_OFFSET);
    434         load2 = NewLIR5(opcode, r_dest_hi, rBase, r_index, scale,
    435                         displacement + HIWORD_OFFSET);
    436       }
    437     }
    438   }
    439 
    440   return load;
    441 }
    442 
    443 /* Load value from base + scaled index. */
    444 LIR* X86Mir2Lir::LoadBaseIndexed(int rBase,
    445                      int r_index, int r_dest, int scale, OpSize size) {
    446   return LoadBaseIndexedDisp(rBase, r_index, scale, 0,
    447                              r_dest, INVALID_REG, size, INVALID_SREG);
    448 }
    449 
    450 LIR* X86Mir2Lir::LoadBaseDisp(int rBase, int displacement,
    451                   int r_dest, OpSize size, int s_reg) {
    452   return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    453                              r_dest, INVALID_REG, size, s_reg);
    454 }
    455 
    456 LIR* X86Mir2Lir::LoadBaseDispWide(int rBase, int displacement,
    457                       int r_dest_lo, int r_dest_hi, int s_reg) {
    458   return LoadBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    459                              r_dest_lo, r_dest_hi, kLong, s_reg);
    460 }
    461 
    462 LIR* X86Mir2Lir::StoreBaseIndexedDisp(int rBase, int r_index, int scale,
    463                                       int displacement, int r_src, int r_src_hi, OpSize size,
    464                                       int s_reg) {
    465   LIR *store = NULL;
    466   LIR *store2 = NULL;
    467   bool is_array = r_index != INVALID_REG;
    468   bool pair = false;
    469   bool is64bit = false;
    470   X86OpCode opcode = kX86Nop;
    471   switch (size) {
    472     case kLong:
    473     case kDouble:
    474       is64bit = true;
    475       if (X86_FPREG(r_src)) {
    476         opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
    477         if (X86_SINGLEREG(r_src)) {
    478           DCHECK(X86_FPREG(r_src_hi));
    479           DCHECK_EQ(r_src, (r_src_hi - 1));
    480           r_src = S2d(r_src, r_src_hi);
    481         }
    482         r_src_hi = r_src + 1;
    483       } else {
    484         pair = true;
    485         opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
    486       }
    487       // TODO: double store is to unaligned address
    488       DCHECK_EQ((displacement & 0x3), 0);
    489       break;
    490     case kWord:
    491     case kSingle:
    492       opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
    493       if (X86_FPREG(r_src)) {
    494         opcode = is_array ? kX86MovssAR : kX86MovssMR;
    495         DCHECK(X86_SINGLEREG(r_src));
    496       }
    497       DCHECK_EQ((displacement & 0x3), 0);
    498       break;
    499     case kUnsignedHalf:
    500     case kSignedHalf:
    501       opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
    502       DCHECK_EQ((displacement & 0x1), 0);
    503       break;
    504     case kUnsignedByte:
    505     case kSignedByte:
    506       opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
    507       break;
    508     default:
    509       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
    510   }
    511 
    512   if (!is_array) {
    513     if (!pair) {
    514       store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
    515     } else {
    516       store = NewLIR3(opcode, rBase, displacement + LOWORD_OFFSET, r_src);
    517       store2 = NewLIR3(opcode, rBase, displacement + HIWORD_OFFSET, r_src_hi);
    518     }
    519     if (rBase == rX86_SP) {
    520       AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
    521                               false /* is_load */, is64bit);
    522       if (pair) {
    523         AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
    524                                 false /* is_load */, is64bit);
    525       }
    526     }
    527   } else {
    528     if (!pair) {
    529       store = NewLIR5(opcode, rBase, r_index, scale,
    530                       displacement + LOWORD_OFFSET, r_src);
    531     } else {
    532       store = NewLIR5(opcode, rBase, r_index, scale,
    533                       displacement + LOWORD_OFFSET, r_src);
    534       store2 = NewLIR5(opcode, rBase, r_index, scale,
    535                        displacement + HIWORD_OFFSET, r_src_hi);
    536     }
    537   }
    538 
    539   return store;
    540 }
    541 
    542 /* store value base base + scaled index. */
    543 LIR* X86Mir2Lir::StoreBaseIndexed(int rBase, int r_index, int r_src,
    544                       int scale, OpSize size) {
    545   return StoreBaseIndexedDisp(rBase, r_index, scale, 0,
    546                               r_src, INVALID_REG, size, INVALID_SREG);
    547 }
    548 
    549 LIR* X86Mir2Lir::StoreBaseDisp(int rBase, int displacement,
    550                                int r_src, OpSize size) {
    551     return StoreBaseIndexedDisp(rBase, INVALID_REG, 0,
    552                                 displacement, r_src, INVALID_REG, size,
    553                                 INVALID_SREG);
    554 }
    555 
    556 LIR* X86Mir2Lir::StoreBaseDispWide(int rBase, int displacement,
    557                                    int r_src_lo, int r_src_hi) {
    558   return StoreBaseIndexedDisp(rBase, INVALID_REG, 0, displacement,
    559                               r_src_lo, r_src_hi, kLong, INVALID_SREG);
    560 }
    561 
    562 }  // namespace art
    563