Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #include "ceres/autodiff_cost_function.h"
     32 
     33 #include <cstddef>
     34 
     35 #include "gtest/gtest.h"
     36 #include "ceres/cost_function.h"
     37 
     38 namespace ceres {
     39 namespace internal {
     40 
     41 class BinaryScalarCost {
     42  public:
     43   explicit BinaryScalarCost(double a): a_(a) {}
     44   template <typename T>
     45   bool operator()(const T* const x, const T* const y,
     46                   T* cost) const {
     47     cost[0] = x[0] * y[0] + x[1] * y[1]  - T(a_);
     48     return true;
     49   }
     50  private:
     51   double a_;
     52 };
     53 
     54 TEST(AutodiffCostFunction, BilinearDifferentiationTest) {
     55   CostFunction* cost_function  =
     56     new AutoDiffCostFunction<BinaryScalarCost, 1, 2, 2>(
     57         new BinaryScalarCost(1.0));
     58 
     59   double** parameters = new double*[2];
     60   parameters[0] = new double[2];
     61   parameters[1] = new double[2];
     62 
     63   parameters[0][0] = 1;
     64   parameters[0][1] = 2;
     65 
     66   parameters[1][0] = 3;
     67   parameters[1][1] = 4;
     68 
     69   double** jacobians = new double*[2];
     70   jacobians[0] = new double[2];
     71   jacobians[1] = new double[2];
     72 
     73   double residuals = 0.0;
     74 
     75   cost_function->Evaluate(parameters, &residuals, NULL);
     76   EXPECT_EQ(10.0, residuals);
     77   cost_function->Evaluate(parameters, &residuals, jacobians);
     78 
     79   EXPECT_EQ(3, jacobians[0][0]);
     80   EXPECT_EQ(4, jacobians[0][1]);
     81   EXPECT_EQ(1, jacobians[1][0]);
     82   EXPECT_EQ(2, jacobians[1][1]);
     83 
     84   delete[] jacobians[0];
     85   delete[] jacobians[1];
     86   delete[] parameters[0];
     87   delete[] parameters[1];
     88   delete[] jacobians;
     89   delete[] parameters;
     90   delete cost_function;
     91 }
     92 
     93 struct TenParameterCost {
     94   template <typename T>
     95   bool operator()(const T* const x0,
     96                   const T* const x1,
     97                   const T* const x2,
     98                   const T* const x3,
     99                   const T* const x4,
    100                   const T* const x5,
    101                   const T* const x6,
    102                   const T* const x7,
    103                   const T* const x8,
    104                   const T* const x9,
    105                   T* cost) const {
    106     cost[0] = *x0 + *x1 + *x2 + *x3 + *x4 + *x5 + *x6 + *x7 + *x8 + *x9;
    107     return true;
    108   }
    109 };
    110 
    111 TEST(AutodiffCostFunction, ManyParameterAutodiffInstantiates) {
    112   CostFunction* cost_function  =
    113       new AutoDiffCostFunction<
    114           TenParameterCost, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1>(
    115               new TenParameterCost);
    116 
    117   double** parameters = new double*[10];
    118   double** jacobians = new double*[10];
    119   for (int i = 0; i < 10; ++i) {
    120     parameters[i] = new double[1];
    121     parameters[i][0] = i;
    122     jacobians[i] = new double[1];
    123   }
    124 
    125   double residuals = 0.0;
    126 
    127   cost_function->Evaluate(parameters, &residuals, NULL);
    128   EXPECT_EQ(45.0, residuals);
    129 
    130   cost_function->Evaluate(parameters, &residuals, jacobians);
    131   EXPECT_EQ(residuals, 45.0);
    132   for (int i = 0; i < 10; ++i) {
    133     EXPECT_EQ(1.0, jacobians[i][0]);
    134   }
    135 
    136   for (int i = 0; i < 10; ++i) {
    137     delete[] jacobians[i];
    138     delete[] parameters[i];
    139   }
    140   delete[] jacobians;
    141   delete[] parameters;
    142   delete cost_function;
    143 }
    144 
    145 }  // namespace internal
    146 }  // namespace ceres
    147