Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "base/message_loop/message_pump_glib.h"
      6 
      7 #include <fcntl.h>
      8 #include <math.h>
      9 
     10 #include <glib.h>
     11 
     12 #include "base/logging.h"
     13 #include "base/posix/eintr_wrapper.h"
     14 #include "base/threading/platform_thread.h"
     15 
     16 namespace base {
     17 
     18 namespace {
     19 
     20 // Return a timeout suitable for the glib loop, -1 to block forever,
     21 // 0 to return right away, or a timeout in milliseconds from now.
     22 int GetTimeIntervalMilliseconds(const TimeTicks& from) {
     23   if (from.is_null())
     24     return -1;
     25 
     26   // Be careful here.  TimeDelta has a precision of microseconds, but we want a
     27   // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
     28   // 6?  It should be 6 to avoid executing delayed work too early.
     29   int delay = static_cast<int>(
     30       ceil((from - TimeTicks::Now()).InMillisecondsF()));
     31 
     32   // If this value is negative, then we need to run delayed work soon.
     33   return delay < 0 ? 0 : delay;
     34 }
     35 
     36 // A brief refresher on GLib:
     37 //     GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
     38 // On each iteration of the GLib pump, it calls each source's Prepare function.
     39 // This function should return TRUE if it wants GLib to call its Dispatch, and
     40 // FALSE otherwise.  It can also set a timeout in this case for the next time
     41 // Prepare should be called again (it may be called sooner).
     42 //     After the Prepare calls, GLib does a poll to check for events from the
     43 // system.  File descriptors can be attached to the sources.  The poll may block
     44 // if none of the Prepare calls returned TRUE.  It will block indefinitely, or
     45 // by the minimum time returned by a source in Prepare.
     46 //     After the poll, GLib calls Check for each source that returned FALSE
     47 // from Prepare.  The return value of Check has the same meaning as for Prepare,
     48 // making Check a second chance to tell GLib we are ready for Dispatch.
     49 //     Finally, GLib calls Dispatch for each source that is ready.  If Dispatch
     50 // returns FALSE, GLib will destroy the source.  Dispatch calls may be recursive
     51 // (i.e., you can call Run from them), but Prepare and Check cannot.
     52 //     Finalize is called when the source is destroyed.
     53 // NOTE: It is common for subsytems to want to process pending events while
     54 // doing intensive work, for example the flash plugin. They usually use the
     55 // following pattern (recommended by the GTK docs):
     56 // while (gtk_events_pending()) {
     57 //   gtk_main_iteration();
     58 // }
     59 //
     60 // gtk_events_pending just calls g_main_context_pending, which does the
     61 // following:
     62 // - Call prepare on all the sources.
     63 // - Do the poll with a timeout of 0 (not blocking).
     64 // - Call check on all the sources.
     65 // - *Does not* call dispatch on the sources.
     66 // - Return true if any of prepare() or check() returned true.
     67 //
     68 // gtk_main_iteration just calls g_main_context_iteration, which does the whole
     69 // thing, respecting the timeout for the poll (and block, although it is
     70 // expected not to if gtk_events_pending returned true), and call dispatch.
     71 //
     72 // Thus it is important to only return true from prepare or check if we
     73 // actually have events or work to do. We also need to make sure we keep
     74 // internal state consistent so that if prepare/check return true when called
     75 // from gtk_events_pending, they will still return true when called right
     76 // after, from gtk_main_iteration.
     77 //
     78 // For the GLib pump we try to follow the Windows UI pump model:
     79 // - Whenever we receive a wakeup event or the timer for delayed work expires,
     80 // we run DoWork and/or DoDelayedWork. That part will also run in the other
     81 // event pumps.
     82 // - We also run DoWork, DoDelayedWork, and possibly DoIdleWork in the main
     83 // loop, around event handling.
     84 
     85 struct WorkSource : public GSource {
     86   MessagePumpGlib* pump;
     87 };
     88 
     89 gboolean WorkSourcePrepare(GSource* source,
     90                            gint* timeout_ms) {
     91   *timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
     92   // We always return FALSE, so that our timeout is honored.  If we were
     93   // to return TRUE, the timeout would be considered to be 0 and the poll
     94   // would never block.  Once the poll is finished, Check will be called.
     95   return FALSE;
     96 }
     97 
     98 gboolean WorkSourceCheck(GSource* source) {
     99   // Only return TRUE if Dispatch should be called.
    100   return static_cast<WorkSource*>(source)->pump->HandleCheck();
    101 }
    102 
    103 gboolean WorkSourceDispatch(GSource* source,
    104                             GSourceFunc unused_func,
    105                             gpointer unused_data) {
    106 
    107   static_cast<WorkSource*>(source)->pump->HandleDispatch();
    108   // Always return TRUE so our source stays registered.
    109   return TRUE;
    110 }
    111 
    112 // I wish these could be const, but g_source_new wants non-const.
    113 GSourceFuncs WorkSourceFuncs = {
    114   WorkSourcePrepare,
    115   WorkSourceCheck,
    116   WorkSourceDispatch,
    117   NULL
    118 };
    119 
    120 }  // namespace
    121 
    122 struct MessagePumpGlib::RunState {
    123   Delegate* delegate;
    124   MessagePumpDispatcher* dispatcher;
    125 
    126   // Used to flag that the current Run() invocation should return ASAP.
    127   bool should_quit;
    128 
    129   // Used to count how many Run() invocations are on the stack.
    130   int run_depth;
    131 
    132   // This keeps the state of whether the pump got signaled that there was new
    133   // work to be done. Since we eat the message on the wake up pipe as soon as
    134   // we get it, we keep that state here to stay consistent.
    135   bool has_work;
    136 };
    137 
    138 MessagePumpGlib::MessagePumpGlib()
    139     : state_(NULL),
    140       context_(g_main_context_default()),
    141       wakeup_gpollfd_(new GPollFD) {
    142   // Create our wakeup pipe, which is used to flag when work was scheduled.
    143   int fds[2];
    144   int ret = pipe(fds);
    145   DCHECK_EQ(ret, 0);
    146   (void)ret;  // Prevent warning in release mode.
    147 
    148   wakeup_pipe_read_  = fds[0];
    149   wakeup_pipe_write_ = fds[1];
    150   wakeup_gpollfd_->fd = wakeup_pipe_read_;
    151   wakeup_gpollfd_->events = G_IO_IN;
    152 
    153   work_source_ = g_source_new(&WorkSourceFuncs, sizeof(WorkSource));
    154   static_cast<WorkSource*>(work_source_)->pump = this;
    155   g_source_add_poll(work_source_, wakeup_gpollfd_.get());
    156   // Use a low priority so that we let other events in the queue go first.
    157   g_source_set_priority(work_source_, G_PRIORITY_DEFAULT_IDLE);
    158   // This is needed to allow Run calls inside Dispatch.
    159   g_source_set_can_recurse(work_source_, TRUE);
    160   g_source_attach(work_source_, context_);
    161 }
    162 
    163 MessagePumpGlib::~MessagePumpGlib() {
    164   g_source_destroy(work_source_);
    165   g_source_unref(work_source_);
    166   close(wakeup_pipe_read_);
    167   close(wakeup_pipe_write_);
    168 }
    169 
    170 void MessagePumpGlib::RunWithDispatcher(Delegate* delegate,
    171                                         MessagePumpDispatcher* dispatcher) {
    172 #ifndef NDEBUG
    173   // Make sure we only run this on one thread. X/GTK only has one message pump
    174   // so we can only have one UI loop per process.
    175   static PlatformThreadId thread_id = PlatformThread::CurrentId();
    176   DCHECK(thread_id == PlatformThread::CurrentId()) <<
    177       "Running MessagePumpGlib on two different threads; "
    178       "this is unsupported by GLib!";
    179 #endif
    180 
    181   RunState state;
    182   state.delegate = delegate;
    183   state.dispatcher = dispatcher;
    184   state.should_quit = false;
    185   state.run_depth = state_ ? state_->run_depth + 1 : 1;
    186   state.has_work = false;
    187 
    188   RunState* previous_state = state_;
    189   state_ = &state;
    190 
    191   // We really only do a single task for each iteration of the loop.  If we
    192   // have done something, assume there is likely something more to do.  This
    193   // will mean that we don't block on the message pump until there was nothing
    194   // more to do.  We also set this to true to make sure not to block on the
    195   // first iteration of the loop, so RunUntilIdle() works correctly.
    196   bool more_work_is_plausible = true;
    197 
    198   // We run our own loop instead of using g_main_loop_quit in one of the
    199   // callbacks.  This is so we only quit our own loops, and we don't quit
    200   // nested loops run by others.  TODO(deanm): Is this what we want?
    201   for (;;) {
    202     // Don't block if we think we have more work to do.
    203     bool block = !more_work_is_plausible;
    204 
    205     more_work_is_plausible = g_main_context_iteration(context_, block);
    206     if (state_->should_quit)
    207       break;
    208 
    209     more_work_is_plausible |= state_->delegate->DoWork();
    210     if (state_->should_quit)
    211       break;
    212 
    213     more_work_is_plausible |=
    214         state_->delegate->DoDelayedWork(&delayed_work_time_);
    215     if (state_->should_quit)
    216       break;
    217 
    218     if (more_work_is_plausible)
    219       continue;
    220 
    221     more_work_is_plausible = state_->delegate->DoIdleWork();
    222     if (state_->should_quit)
    223       break;
    224   }
    225 
    226   state_ = previous_state;
    227 }
    228 
    229 // Return the timeout we want passed to poll.
    230 int MessagePumpGlib::HandlePrepare() {
    231   // We know we have work, but we haven't called HandleDispatch yet. Don't let
    232   // the pump block so that we can do some processing.
    233   if (state_ &&  // state_ may be null during tests.
    234       state_->has_work)
    235     return 0;
    236 
    237   // We don't think we have work to do, but make sure not to block
    238   // longer than the next time we need to run delayed work.
    239   return GetTimeIntervalMilliseconds(delayed_work_time_);
    240 }
    241 
    242 bool MessagePumpGlib::HandleCheck() {
    243   if (!state_)  // state_ may be null during tests.
    244     return false;
    245 
    246   // We usually have a single message on the wakeup pipe, since we are only
    247   // signaled when the queue went from empty to non-empty, but there can be
    248   // two messages if a task posted a task, hence we read at most two bytes.
    249   // The glib poll will tell us whether there was data, so this read
    250   // shouldn't block.
    251   if (wakeup_gpollfd_->revents & G_IO_IN) {
    252     char msg[2];
    253     const int num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
    254     if (num_bytes < 1) {
    255       NOTREACHED() << "Error reading from the wakeup pipe.";
    256     }
    257     DCHECK((num_bytes == 1 && msg[0] == '!') ||
    258            (num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
    259     // Since we ate the message, we need to record that we have more work,
    260     // because HandleCheck() may be called without HandleDispatch being called
    261     // afterwards.
    262     state_->has_work = true;
    263   }
    264 
    265   if (state_->has_work)
    266     return true;
    267 
    268   if (GetTimeIntervalMilliseconds(delayed_work_time_) == 0) {
    269     // The timer has expired. That condition will stay true until we process
    270     // that delayed work, so we don't need to record this differently.
    271     return true;
    272   }
    273 
    274   return false;
    275 }
    276 
    277 void MessagePumpGlib::HandleDispatch() {
    278   state_->has_work = false;
    279   if (state_->delegate->DoWork()) {
    280     // NOTE: on Windows at this point we would call ScheduleWork (see
    281     // MessagePumpGlib::HandleWorkMessage in message_pump_win.cc). But here,
    282     // instead of posting a message on the wakeup pipe, we can avoid the
    283     // syscalls and just signal that we have more work.
    284     state_->has_work = true;
    285   }
    286 
    287   if (state_->should_quit)
    288     return;
    289 
    290   state_->delegate->DoDelayedWork(&delayed_work_time_);
    291 }
    292 
    293 void MessagePumpGlib::AddObserver(MessagePumpObserver* observer) {
    294   observers_.AddObserver(observer);
    295 }
    296 
    297 void MessagePumpGlib::RemoveObserver(MessagePumpObserver* observer) {
    298   observers_.RemoveObserver(observer);
    299 }
    300 
    301 void MessagePumpGlib::Run(Delegate* delegate) {
    302   RunWithDispatcher(delegate, NULL);
    303 }
    304 
    305 void MessagePumpGlib::Quit() {
    306   if (state_) {
    307     state_->should_quit = true;
    308   } else {
    309     NOTREACHED() << "Quit called outside Run!";
    310   }
    311 }
    312 
    313 void MessagePumpGlib::ScheduleWork() {
    314   // This can be called on any thread, so we don't want to touch any state
    315   // variables as we would then need locks all over.  This ensures that if
    316   // we are sleeping in a poll that we will wake up.
    317   char msg = '!';
    318   if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
    319     NOTREACHED() << "Could not write to the UI message loop wakeup pipe!";
    320   }
    321 }
    322 
    323 void MessagePumpGlib::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
    324   // We need to wake up the loop in case the poll timeout needs to be
    325   // adjusted.  This will cause us to try to do work, but that's ok.
    326   delayed_work_time_ = delayed_work_time;
    327   ScheduleWork();
    328 }
    329 
    330 MessagePumpDispatcher* MessagePumpGlib::GetDispatcher() {
    331   return state_ ? state_->dispatcher : NULL;
    332 }
    333 
    334 }  // namespace base
    335