Home | History | Annotate | Download | only in message_loop
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      6 #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
      7 
      8 #include <windows.h>
      9 
     10 #include <list>
     11 
     12 #include "base/base_export.h"
     13 #include "base/basictypes.h"
     14 #include "base/memory/scoped_ptr.h"
     15 #include "base/message_loop/message_pump.h"
     16 #include "base/message_loop/message_pump_dispatcher.h"
     17 #include "base/message_loop/message_pump_observer.h"
     18 #include "base/observer_list.h"
     19 #include "base/time/time.h"
     20 #include "base/win/scoped_handle.h"
     21 
     22 namespace base {
     23 
     24 // MessagePumpWin serves as the base for specialized versions of the MessagePump
     25 // for Windows. It provides basic functionality like handling of observers and
     26 // controlling the lifetime of the message pump.
     27 class BASE_EXPORT MessagePumpWin : public MessagePump {
     28  public:
     29   MessagePumpWin() : have_work_(0), state_(NULL) {}
     30   virtual ~MessagePumpWin() {}
     31 
     32   // Add an Observer, which will start receiving notifications immediately.
     33   void AddObserver(MessagePumpObserver* observer);
     34 
     35   // Remove an Observer.  It is safe to call this method while an Observer is
     36   // receiving a notification callback.
     37   void RemoveObserver(MessagePumpObserver* observer);
     38 
     39   // Give a chance to code processing additional messages to notify the
     40   // message loop observers that another message has been processed.
     41   void WillProcessMessage(const MSG& msg);
     42   void DidProcessMessage(const MSG& msg);
     43 
     44   // Like MessagePump::Run, but MSG objects are routed through dispatcher.
     45   void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher);
     46 
     47   // MessagePump methods:
     48   virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
     49   virtual void Quit();
     50 
     51  protected:
     52   struct RunState {
     53     Delegate* delegate;
     54     MessagePumpDispatcher* dispatcher;
     55 
     56     // Used to flag that the current Run() invocation should return ASAP.
     57     bool should_quit;
     58 
     59     // Used to count how many Run() invocations are on the stack.
     60     int run_depth;
     61   };
     62 
     63   virtual void DoRunLoop() = 0;
     64   int GetCurrentDelay() const;
     65 
     66   ObserverList<MessagePumpObserver> observers_;
     67 
     68   // The time at which delayed work should run.
     69   TimeTicks delayed_work_time_;
     70 
     71   // A boolean value used to indicate if there is a kMsgDoWork message pending
     72   // in the Windows Message queue.  There is at most one such message, and it
     73   // can drive execution of tasks when a native message pump is running.
     74   LONG have_work_;
     75 
     76   // State for the current invocation of Run.
     77   RunState* state_;
     78 };
     79 
     80 //-----------------------------------------------------------------------------
     81 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
     82 // MessageLoop instantiated with TYPE_UI.
     83 //
     84 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
     85 // a nearly infinite loop that peeks out messages, and then dispatches them.
     86 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
     87 // DoDelayedWork for pending timers. When there are no events to be serviced,
     88 // this pump goes into a wait state. In most cases, this message pump handles
     89 // all processing.
     90 //
     91 // However, when a task, or windows event, invokes on the stack a native dialog
     92 // box or such, that window typically provides a bare bones (native?) message
     93 // pump.  That bare-bones message pump generally supports little more than a
     94 // peek of the Windows message queue, followed by a dispatch of the peeked
     95 // message.  MessageLoop extends that bare-bones message pump to also service
     96 // Tasks, at the cost of some complexity.
     97 //
     98 // The basic structure of the extension (refered to as a sub-pump) is that a
     99 // special message, kMsgHaveWork, is repeatedly injected into the Windows
    100 // Message queue.  Each time the kMsgHaveWork message is peeked, checks are
    101 // made for an extended set of events, including the availability of Tasks to
    102 // run.
    103 //
    104 // After running a task, the special message kMsgHaveWork is again posted to
    105 // the Windows Message queue, ensuring a future time slice for processing a
    106 // future event.  To prevent flooding the Windows Message queue, care is taken
    107 // to be sure that at most one kMsgHaveWork message is EVER pending in the
    108 // Window's Message queue.
    109 //
    110 // There are a few additional complexities in this system where, when there are
    111 // no Tasks to run, this otherwise infinite stream of messages which drives the
    112 // sub-pump is halted.  The pump is automatically re-started when Tasks are
    113 // queued.
    114 //
    115 // A second complexity is that the presence of this stream of posted tasks may
    116 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
    117 // Such paint and timer events always give priority to a posted message, such as
    118 // kMsgHaveWork messages.  As a result, care is taken to do some peeking in
    119 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
    120 // is peeked, and before a replacement kMsgHaveWork is posted).
    121 //
    122 // NOTE: Although it may seem odd that messages are used to start and stop this
    123 // flow (as opposed to signaling objects, etc.), it should be understood that
    124 // the native message pump will *only* respond to messages.  As a result, it is
    125 // an excellent choice.  It is also helpful that the starter messages that are
    126 // placed in the queue when new task arrive also awakens DoRunLoop.
    127 //
    128 class BASE_EXPORT MessagePumpForUI : public MessagePumpWin {
    129  public:
    130   // A MessageFilter implements the common Peek/Translate/Dispatch code to deal
    131   // with windows messages.
    132   // This abstraction is used to inject TSF message peeking. See
    133   // TextServicesMessageFilter.
    134   class BASE_EXPORT MessageFilter {
    135    public:
    136     virtual ~MessageFilter() {}
    137     // Implements the functionality exposed by the OS through PeekMessage.
    138     virtual BOOL DoPeekMessage(MSG* msg,
    139                                HWND window_handle,
    140                                UINT msg_filter_min,
    141                                UINT msg_filter_max,
    142                                UINT remove_msg) {
    143       return PeekMessage(msg, window_handle, msg_filter_min, msg_filter_max,
    144                          remove_msg);
    145     }
    146     // Returns true if |message| was consumed by the filter and no extra
    147     // processing is required. If this method returns false, it is the
    148     // responsibility of the caller to ensure that normal processing takes
    149     // place.
    150     // The priority to consume messages is the following:
    151     // - Native Windows' message filter (CallMsgFilter).
    152     // - MessageFilter::ProcessMessage.
    153     // - MessagePumpDispatcher.
    154     // - TranslateMessage / DispatchMessage.
    155     virtual bool ProcessMessage(const MSG& msg) { return false;}
    156   };
    157   // The application-defined code passed to the hook procedure.
    158   static const int kMessageFilterCode = 0x5001;
    159 
    160   MessagePumpForUI();
    161   virtual ~MessagePumpForUI();
    162 
    163   // Sets a new MessageFilter. MessagePumpForUI takes ownership of
    164   // |message_filter|. When SetMessageFilter is called, old MessageFilter is
    165   // deleted.
    166   void SetMessageFilter(scoped_ptr<MessageFilter> message_filter);
    167 
    168   // MessagePump methods:
    169   virtual void ScheduleWork();
    170   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    171 
    172   // Applications can call this to encourage us to process all pending WM_PAINT
    173   // messages.  This method will process all paint messages the Windows Message
    174   // queue can provide, up to some fixed number (to avoid any infinite loops).
    175   void PumpOutPendingPaintMessages();
    176 
    177  private:
    178   static LRESULT CALLBACK WndProcThunk(HWND window_handle,
    179                                        UINT message,
    180                                        WPARAM wparam,
    181                                        LPARAM lparam);
    182   virtual void DoRunLoop();
    183   void InitMessageWnd();
    184   void WaitForWork();
    185   void HandleWorkMessage();
    186   void HandleTimerMessage();
    187   bool ProcessNextWindowsMessage();
    188   bool ProcessMessageHelper(const MSG& msg);
    189   bool ProcessPumpReplacementMessage();
    190 
    191   // Atom representing the registered window class.
    192   ATOM atom_;
    193 
    194   // A hidden message-only window.
    195   HWND message_hwnd_;
    196 
    197   scoped_ptr<MessageFilter> message_filter_;
    198 };
    199 
    200 //-----------------------------------------------------------------------------
    201 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
    202 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
    203 // deal with Windows mesagges, and instead has a Run loop based on Completion
    204 // Ports so it is better suited for IO operations.
    205 //
    206 class BASE_EXPORT MessagePumpForIO : public MessagePumpWin {
    207  public:
    208   struct IOContext;
    209 
    210   // Clients interested in receiving OS notifications when asynchronous IO
    211   // operations complete should implement this interface and register themselves
    212   // with the message pump.
    213   //
    214   // Typical use #1:
    215   //   // Use only when there are no user's buffers involved on the actual IO,
    216   //   // so that all the cleanup can be done by the message pump.
    217   //   class MyFile : public IOHandler {
    218   //     MyFile() {
    219   //       ...
    220   //       context_ = new IOContext;
    221   //       context_->handler = this;
    222   //       message_pump->RegisterIOHandler(file_, this);
    223   //     }
    224   //     ~MyFile() {
    225   //       if (pending_) {
    226   //         // By setting the handler to NULL, we're asking for this context
    227   //         // to be deleted when received, without calling back to us.
    228   //         context_->handler = NULL;
    229   //       } else {
    230   //         delete context_;
    231   //      }
    232   //     }
    233   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    234   //                                DWORD error) {
    235   //         pending_ = false;
    236   //     }
    237   //     void DoSomeIo() {
    238   //       ...
    239   //       // The only buffer required for this operation is the overlapped
    240   //       // structure.
    241   //       ConnectNamedPipe(file_, &context_->overlapped);
    242   //       pending_ = true;
    243   //     }
    244   //     bool pending_;
    245   //     IOContext* context_;
    246   //     HANDLE file_;
    247   //   };
    248   //
    249   // Typical use #2:
    250   //   class MyFile : public IOHandler {
    251   //     MyFile() {
    252   //       ...
    253   //       message_pump->RegisterIOHandler(file_, this);
    254   //     }
    255   //     // Plus some code to make sure that this destructor is not called
    256   //     // while there are pending IO operations.
    257   //     ~MyFile() {
    258   //     }
    259   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    260   //                                DWORD error) {
    261   //       ...
    262   //       delete context;
    263   //     }
    264   //     void DoSomeIo() {
    265   //       ...
    266   //       IOContext* context = new IOContext;
    267   //       // This is not used for anything. It just prevents the context from
    268   //       // being considered "abandoned".
    269   //       context->handler = this;
    270   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
    271   //     }
    272   //     HANDLE file_;
    273   //   };
    274   //
    275   // Typical use #3:
    276   // Same as the previous example, except that in order to deal with the
    277   // requirement stated for the destructor, the class calls WaitForIOCompletion
    278   // from the destructor to block until all IO finishes.
    279   //     ~MyFile() {
    280   //       while(pending_)
    281   //         message_pump->WaitForIOCompletion(INFINITE, this);
    282   //     }
    283   //
    284   class IOHandler {
    285    public:
    286     virtual ~IOHandler() {}
    287     // This will be called once the pending IO operation associated with
    288     // |context| completes. |error| is the Win32 error code of the IO operation
    289     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
    290     // on error.
    291     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
    292                                DWORD error) = 0;
    293   };
    294 
    295   // An IOObserver is an object that receives IO notifications from the
    296   // MessagePump.
    297   //
    298   // NOTE: An IOObserver implementation should be extremely fast!
    299   class IOObserver {
    300    public:
    301     IOObserver() {}
    302 
    303     virtual void WillProcessIOEvent() = 0;
    304     virtual void DidProcessIOEvent() = 0;
    305 
    306    protected:
    307     virtual ~IOObserver() {}
    308   };
    309 
    310   // The extended context that should be used as the base structure on every
    311   // overlapped IO operation. |handler| must be set to the registered IOHandler
    312   // for the given file when the operation is started, and it can be set to NULL
    313   // before the operation completes to indicate that the handler should not be
    314   // called anymore, and instead, the IOContext should be deleted when the OS
    315   // notifies the completion of this operation. Please remember that any buffers
    316   // involved with an IO operation should be around until the callback is
    317   // received, so this technique can only be used for IO that do not involve
    318   // additional buffers (other than the overlapped structure itself).
    319   struct IOContext {
    320     OVERLAPPED overlapped;
    321     IOHandler* handler;
    322   };
    323 
    324   MessagePumpForIO();
    325   virtual ~MessagePumpForIO() {}
    326 
    327   // MessagePump methods:
    328   virtual void ScheduleWork();
    329   virtual void ScheduleDelayedWork(const TimeTicks& delayed_work_time);
    330 
    331   // Register the handler to be used when asynchronous IO for the given file
    332   // completes. The registration persists as long as |file_handle| is valid, so
    333   // |handler| must be valid as long as there is pending IO for the given file.
    334   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
    335 
    336   // Register the handler to be used to process job events. The registration
    337   // persists as long as the job object is live, so |handler| must be valid
    338   // until the job object is destroyed. Returns true if the registration
    339   // succeeded, and false otherwise.
    340   bool RegisterJobObject(HANDLE job_handle, IOHandler* handler);
    341 
    342   // Waits for the next IO completion that should be processed by |filter|, for
    343   // up to |timeout| milliseconds. Return true if any IO operation completed,
    344   // regardless of the involved handler, and false if the timeout expired. If
    345   // the completion port received any message and the involved IO handler
    346   // matches |filter|, the callback is called before returning from this code;
    347   // if the handler is not the one that we are looking for, the callback will
    348   // be postponed for another time, so reentrancy problems can be avoided.
    349   // External use of this method should be reserved for the rare case when the
    350   // caller is willing to allow pausing regular task dispatching on this thread.
    351   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
    352 
    353   void AddIOObserver(IOObserver* obs);
    354   void RemoveIOObserver(IOObserver* obs);
    355 
    356  private:
    357   struct IOItem {
    358     IOHandler* handler;
    359     IOContext* context;
    360     DWORD bytes_transfered;
    361     DWORD error;
    362 
    363     // In some cases |context| can be a non-pointer value casted to a pointer.
    364     // |has_valid_io_context| is true if |context| is a valid IOContext
    365     // pointer, and false otherwise.
    366     bool has_valid_io_context;
    367   };
    368 
    369   virtual void DoRunLoop();
    370   void WaitForWork();
    371   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
    372   bool GetIOItem(DWORD timeout, IOItem* item);
    373   bool ProcessInternalIOItem(const IOItem& item);
    374   void WillProcessIOEvent();
    375   void DidProcessIOEvent();
    376 
    377   // Converts an IOHandler pointer to a completion port key.
    378   // |has_valid_io_context| specifies whether completion packets posted to
    379   // |handler| will have valid OVERLAPPED pointers.
    380   static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context);
    381 
    382   // Converts a completion port key to an IOHandler pointer.
    383   static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context);
    384 
    385   // The completion port associated with this thread.
    386   win::ScopedHandle port_;
    387   // This list will be empty almost always. It stores IO completions that have
    388   // not been delivered yet because somebody was doing cleanup.
    389   std::list<IOItem> completed_io_;
    390 
    391   ObserverList<IOObserver> io_observers_;
    392 };
    393 
    394 }  // namespace base
    395 
    396 #endif  // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_
    397