Home | History | Annotate | Download | only in dtoa
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "config.h"
     29 
     30 #include <math.h>
     31 
     32 #include "double.h"
     33 #include "fixed-dtoa.h"
     34 #include "wtf/UnusedParam.h"
     35 
     36 namespace WTF {
     37 
     38 namespace double_conversion {
     39 
     40     // Represents a 128bit type. This class should be replaced by a native type on
     41     // platforms that support 128bit integers.
     42     class UInt128 {
     43     public:
     44         UInt128() : high_bits_(0), low_bits_(0) { }
     45         UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }
     46 
     47         void Multiply(uint32_t multiplicand) {
     48             uint64_t accumulator;
     49 
     50             accumulator = (low_bits_ & kMask32) * multiplicand;
     51             uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
     52             accumulator >>= 32;
     53             accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
     54             low_bits_ = (accumulator << 32) + part;
     55             accumulator >>= 32;
     56             accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
     57             part = static_cast<uint32_t>(accumulator & kMask32);
     58             accumulator >>= 32;
     59             accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
     60             high_bits_ = (accumulator << 32) + part;
     61             ASSERT((accumulator >> 32) == 0);
     62         }
     63 
     64         void Shift(int shift_amount) {
     65             ASSERT(-64 <= shift_amount && shift_amount <= 64);
     66             if (shift_amount == 0) {
     67                 return;
     68             } else if (shift_amount == -64) {
     69                 high_bits_ = low_bits_;
     70                 low_bits_ = 0;
     71             } else if (shift_amount == 64) {
     72                 low_bits_ = high_bits_;
     73                 high_bits_ = 0;
     74             } else if (shift_amount <= 0) {
     75                 high_bits_ <<= -shift_amount;
     76                 high_bits_ += low_bits_ >> (64 + shift_amount);
     77                 low_bits_ <<= -shift_amount;
     78             } else {
     79                 low_bits_ >>= shift_amount;
     80                 low_bits_ += high_bits_ << (64 - shift_amount);
     81                 high_bits_ >>= shift_amount;
     82             }
     83         }
     84 
     85         // Modifies *this to *this MOD (2^power).
     86         // Returns *this DIV (2^power).
     87         int DivModPowerOf2(int power) {
     88             if (power >= 64) {
     89                 int result = static_cast<int>(high_bits_ >> (power - 64));
     90                 high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
     91                 return result;
     92             } else {
     93                 uint64_t part_low = low_bits_ >> power;
     94                 uint64_t part_high = high_bits_ << (64 - power);
     95                 int result = static_cast<int>(part_low + part_high);
     96                 high_bits_ = 0;
     97                 low_bits_ -= part_low << power;
     98                 return result;
     99             }
    100         }
    101 
    102         bool IsZero() const {
    103             return high_bits_ == 0 && low_bits_ == 0;
    104         }
    105 
    106         int BitAt(int position) {
    107             if (position >= 64) {
    108                 return static_cast<int>(high_bits_ >> (position - 64)) & 1;
    109             } else {
    110                 return static_cast<int>(low_bits_ >> position) & 1;
    111             }
    112         }
    113 
    114     private:
    115         static const uint64_t kMask32 = 0xFFFFFFFF;
    116         // Value == (high_bits_ << 64) + low_bits_
    117         uint64_t high_bits_;
    118         uint64_t low_bits_;
    119     };
    120 
    121 
    122     static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.
    123 
    124 
    125     static void FillDigits32FixedLength(uint32_t number, int requested_length,
    126                                         Vector<char> buffer, int* length) {
    127         for (int i = requested_length - 1; i >= 0; --i) {
    128             buffer[(*length) + i] = '0' + number % 10;
    129             number /= 10;
    130         }
    131         *length += requested_length;
    132     }
    133 
    134 
    135     static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
    136         int number_length = 0;
    137         // We fill the digits in reverse order and exchange them afterwards.
    138         while (number != 0) {
    139             int digit = number % 10;
    140             number /= 10;
    141             buffer[(*length) + number_length] = '0' + digit;
    142             number_length++;
    143         }
    144         // Exchange the digits.
    145         int i = *length;
    146         int j = *length + number_length - 1;
    147         while (i < j) {
    148             char tmp = buffer[i];
    149             buffer[i] = buffer[j];
    150             buffer[j] = tmp;
    151             i++;
    152             j--;
    153         }
    154         *length += number_length;
    155     }
    156 
    157 
    158     static void FillDigits64FixedLength(uint64_t number, int requested_length,
    159                                         Vector<char> buffer, int* length) {
    160         UNUSED_PARAM(requested_length);
    161         const uint32_t kTen7 = 10000000;
    162         // For efficiency cut the number into 3 uint32_t parts, and print those.
    163         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    164         number /= kTen7;
    165         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    166         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    167 
    168         FillDigits32FixedLength(part0, 3, buffer, length);
    169         FillDigits32FixedLength(part1, 7, buffer, length);
    170         FillDigits32FixedLength(part2, 7, buffer, length);
    171     }
    172 
    173 
    174     static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
    175         const uint32_t kTen7 = 10000000;
    176         // For efficiency cut the number into 3 uint32_t parts, and print those.
    177         uint32_t part2 = static_cast<uint32_t>(number % kTen7);
    178         number /= kTen7;
    179         uint32_t part1 = static_cast<uint32_t>(number % kTen7);
    180         uint32_t part0 = static_cast<uint32_t>(number / kTen7);
    181 
    182         if (part0 != 0) {
    183             FillDigits32(part0, buffer, length);
    184             FillDigits32FixedLength(part1, 7, buffer, length);
    185             FillDigits32FixedLength(part2, 7, buffer, length);
    186         } else if (part1 != 0) {
    187             FillDigits32(part1, buffer, length);
    188             FillDigits32FixedLength(part2, 7, buffer, length);
    189         } else {
    190             FillDigits32(part2, buffer, length);
    191         }
    192     }
    193 
    194 
    195     static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
    196         // An empty buffer represents 0.
    197         if (*length == 0) {
    198             buffer[0] = '1';
    199             *decimal_point = 1;
    200             *length = 1;
    201             return;
    202         }
    203         // Round the last digit until we either have a digit that was not '9' or until
    204         // we reached the first digit.
    205         buffer[(*length) - 1]++;
    206         for (int i = (*length) - 1; i > 0; --i) {
    207             if (buffer[i] != '0' + 10) {
    208                 return;
    209             }
    210             buffer[i] = '0';
    211             buffer[i - 1]++;
    212         }
    213         // If the first digit is now '0' + 10, we would need to set it to '0' and add
    214         // a '1' in front. However we reach the first digit only if all following
    215         // digits had been '9' before rounding up. Now all trailing digits are '0' and
    216         // we simply switch the first digit to '1' and update the decimal-point
    217         // (indicating that the point is now one digit to the right).
    218         if (buffer[0] == '0' + 10) {
    219             buffer[0] = '1';
    220             (*decimal_point)++;
    221         }
    222     }
    223 
    224 
    225     // The given fractionals number represents a fixed-point number with binary
    226     // point at bit (-exponent).
    227     // Preconditions:
    228     //   -128 <= exponent <= 0.
    229     //   0 <= fractionals * 2^exponent < 1
    230     //   The buffer holds the result.
    231     // The function will round its result. During the rounding-process digits not
    232     // generated by this function might be updated, and the decimal-point variable
    233     // might be updated. If this function generates the digits 99 and the buffer
    234     // already contained "199" (thus yielding a buffer of "19999") then a
    235     // rounding-up will change the contents of the buffer to "20000".
    236     static void FillFractionals(uint64_t fractionals, int exponent,
    237                                 int fractional_count, Vector<char> buffer,
    238                                 int* length, int* decimal_point) {
    239         ASSERT(-128 <= exponent && exponent <= 0);
    240         // 'fractionals' is a fixed-point number, with binary point at bit
    241         // (-exponent). Inside the function the non-converted remainder of fractionals
    242         // is a fixed-point number, with binary point at bit 'point'.
    243         if (-exponent <= 64) {
    244             // One 64 bit number is sufficient.
    245             ASSERT(fractionals >> 56 == 0);
    246             int point = -exponent;
    247             for (int i = 0; i < fractional_count; ++i) {
    248                 if (fractionals == 0) break;
    249                 // Instead of multiplying by 10 we multiply by 5 and adjust the point
    250                 // location. This way the fractionals variable will not overflow.
    251                 // Invariant at the beginning of the loop: fractionals < 2^point.
    252                 // Initially we have: point <= 64 and fractionals < 2^56
    253                 // After each iteration the point is decremented by one.
    254                 // Note that 5^3 = 125 < 128 = 2^7.
    255                 // Therefore three iterations of this loop will not overflow fractionals
    256                 // (even without the subtraction at the end of the loop body). At this
    257                 // time point will satisfy point <= 61 and therefore fractionals < 2^point
    258                 // and any further multiplication of fractionals by 5 will not overflow.
    259                 fractionals *= 5;
    260                 point--;
    261                 int digit = static_cast<int>(fractionals >> point);
    262                 buffer[*length] = '0' + digit;
    263                 (*length)++;
    264                 fractionals -= static_cast<uint64_t>(digit) << point;
    265             }
    266             // If the first bit after the point is set we have to round up.
    267             if (((fractionals >> (point - 1)) & 1) == 1) {
    268                 RoundUp(buffer, length, decimal_point);
    269             }
    270         } else {  // We need 128 bits.
    271             ASSERT(64 < -exponent && -exponent <= 128);
    272             UInt128 fractionals128 = UInt128(fractionals, 0);
    273             fractionals128.Shift(-exponent - 64);
    274             int point = 128;
    275             for (int i = 0; i < fractional_count; ++i) {
    276                 if (fractionals128.IsZero()) break;
    277                 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
    278                 // point location.
    279                 // This multiplication will not overflow for the same reasons as before.
    280                 fractionals128.Multiply(5);
    281                 point--;
    282                 int digit = fractionals128.DivModPowerOf2(point);
    283                 buffer[*length] = '0' + digit;
    284                 (*length)++;
    285             }
    286             if (fractionals128.BitAt(point - 1) == 1) {
    287                 RoundUp(buffer, length, decimal_point);
    288             }
    289         }
    290     }
    291 
    292 
    293     // Removes leading and trailing zeros.
    294     // If leading zeros are removed then the decimal point position is adjusted.
    295     static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
    296         while (*length > 0 && buffer[(*length) - 1] == '0') {
    297             (*length)--;
    298         }
    299         int first_non_zero = 0;
    300         while (first_non_zero < *length && buffer[first_non_zero] == '0') {
    301             first_non_zero++;
    302         }
    303         if (first_non_zero != 0) {
    304             for (int i = first_non_zero; i < *length; ++i) {
    305                 buffer[i - first_non_zero] = buffer[i];
    306             }
    307             *length -= first_non_zero;
    308             *decimal_point -= first_non_zero;
    309         }
    310     }
    311 
    312 
    313     bool FastFixedDtoa(double v,
    314                        int fractional_count,
    315                        Vector<char> buffer,
    316                        int* length,
    317                        int* decimal_point) {
    318         const uint32_t kMaxUInt32 = 0xFFFFFFFF;
    319         uint64_t significand = Double(v).Significand();
    320         int exponent = Double(v).Exponent();
    321         // v = significand * 2^exponent (with significand a 53bit integer).
    322         // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
    323         // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
    324         // If necessary this limit could probably be increased, but we don't need
    325         // more.
    326         if (exponent > 20) return false;
    327         if (fractional_count > 20) return false;
    328         *length = 0;
    329         // At most kDoubleSignificandSize bits of the significand are non-zero.
    330         // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
    331         // bits:  0..11*..0xxx..53*..xx
    332         if (exponent + kDoubleSignificandSize > 64) {
    333             // The exponent must be > 11.
    334             //
    335             // We know that v = significand * 2^exponent.
    336             // And the exponent > 11.
    337             // We simplify the task by dividing v by 10^17.
    338             // The quotient delivers the first digits, and the remainder fits into a 64
    339             // bit number.
    340             // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
    341             const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
    342             uint64_t divisor = kFive17;
    343             int divisor_power = 17;
    344             uint64_t dividend = significand;
    345             uint32_t quotient;
    346             uint64_t remainder;
    347             // Let v = f * 2^e with f == significand and e == exponent.
    348             // Then need q (quotient) and r (remainder) as follows:
    349             //   v            = q * 10^17       + r
    350             //   f * 2^e      = q * 10^17       + r
    351             //   f * 2^e      = q * 5^17 * 2^17 + r
    352             // If e > 17 then
    353             //   f * 2^(e-17) = q * 5^17        + r/2^17
    354             // else
    355             //   f  = q * 5^17 * 2^(17-e) + r/2^e
    356             if (exponent > divisor_power) {
    357                 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
    358                 dividend <<= exponent - divisor_power;
    359                 quotient = static_cast<uint32_t>(dividend / divisor);
    360                 remainder = (dividend % divisor) << divisor_power;
    361             } else {
    362                 divisor <<= divisor_power - exponent;
    363                 quotient = static_cast<uint32_t>(dividend / divisor);
    364                 remainder = (dividend % divisor) << exponent;
    365             }
    366             FillDigits32(quotient, buffer, length);
    367             FillDigits64FixedLength(remainder, divisor_power, buffer, length);
    368             *decimal_point = *length;
    369         } else if (exponent >= 0) {
    370             // 0 <= exponent <= 11
    371             significand <<= exponent;
    372             FillDigits64(significand, buffer, length);
    373             *decimal_point = *length;
    374         } else if (exponent > -kDoubleSignificandSize) {
    375             // We have to cut the number.
    376             uint64_t integrals = significand >> -exponent;
    377             uint64_t fractionals = significand - (integrals << -exponent);
    378             if (integrals > kMaxUInt32) {
    379                 FillDigits64(integrals, buffer, length);
    380             } else {
    381                 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
    382             }
    383             *decimal_point = *length;
    384             FillFractionals(fractionals, exponent, fractional_count,
    385                             buffer, length, decimal_point);
    386         } else if (exponent < -128) {
    387             // This configuration (with at most 20 digits) means that all digits must be
    388             // 0.
    389             ASSERT(fractional_count <= 20);
    390             buffer[0] = '\0';
    391             *length = 0;
    392             *decimal_point = -fractional_count;
    393         } else {
    394             *decimal_point = 0;
    395             FillFractionals(significand, exponent, fractional_count,
    396                             buffer, length, decimal_point);
    397         }
    398         TrimZeros(buffer, length, decimal_point);
    399         buffer[*length] = '\0';
    400         if ((*length) == 0) {
    401             // The string is empty and the decimal_point thus has no importance. Mimick
    402             // Gay's dtoa and and set it to -fractional_count.
    403             *decimal_point = -fractional_count;
    404         }
    405         return true;
    406     }
    407 
    408 }  // namespace double_conversion
    409 
    410 } // namespace WTF
    411