1 /* LzmaEnc.c -- LZMA Encoder 2 2010-04-16 : Igor Pavlov : Public domain */ 3 4 #include <string.h> 5 6 /* #define SHOW_STAT */ 7 /* #define SHOW_STAT2 */ 8 9 #if defined(SHOW_STAT) || defined(SHOW_STAT2) 10 #include <stdio.h> 11 #endif 12 13 #include "LzmaEnc.h" 14 15 #include "LzFind.h" 16 #ifndef _7ZIP_ST 17 #include "LzFindMt.h" 18 #endif 19 20 #ifdef SHOW_STAT 21 static int ttt = 0; 22 #endif 23 24 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1) 25 26 #define kBlockSize (9 << 10) 27 #define kUnpackBlockSize (1 << 18) 28 #define kMatchArraySize (1 << 21) 29 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX) 30 31 #define kNumMaxDirectBits (31) 32 33 #define kNumTopBits 24 34 #define kTopValue ((UInt32)1 << kNumTopBits) 35 36 #define kNumBitModelTotalBits 11 37 #define kBitModelTotal (1 << kNumBitModelTotalBits) 38 #define kNumMoveBits 5 39 #define kProbInitValue (kBitModelTotal >> 1) 40 41 #define kNumMoveReducingBits 4 42 #define kNumBitPriceShiftBits 4 43 #define kBitPrice (1 << kNumBitPriceShiftBits) 44 45 void LzmaEncProps_Init(CLzmaEncProps *p) 46 { 47 p->level = 5; 48 p->dictSize = p->mc = 0; 49 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; 50 p->writeEndMark = 0; 51 } 52 53 void LzmaEncProps_Normalize(CLzmaEncProps *p) 54 { 55 int level = p->level; 56 if (level < 0) level = 5; 57 p->level = level; 58 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26))); 59 if (p->lc < 0) p->lc = 3; 60 if (p->lp < 0) p->lp = 0; 61 if (p->pb < 0) p->pb = 2; 62 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1); 63 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64); 64 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); 65 if (p->numHashBytes < 0) p->numHashBytes = 4; 66 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1); 67 if (p->numThreads < 0) 68 p->numThreads = 69 #ifndef _7ZIP_ST 70 ((p->btMode && p->algo) ? 2 : 1); 71 #else 72 1; 73 #endif 74 } 75 76 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) 77 { 78 CLzmaEncProps props = *props2; 79 LzmaEncProps_Normalize(&props); 80 return props.dictSize; 81 } 82 83 /* #define LZMA_LOG_BSR */ 84 /* Define it for Intel's CPU */ 85 86 87 #ifdef LZMA_LOG_BSR 88 89 #define kDicLogSizeMaxCompress 30 90 91 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); } 92 93 UInt32 GetPosSlot1(UInt32 pos) 94 { 95 UInt32 res; 96 BSR2_RET(pos, res); 97 return res; 98 } 99 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } 100 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); } 101 102 #else 103 104 #define kNumLogBits (9 + (int)sizeof(size_t) / 2) 105 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) 106 107 void LzmaEnc_FastPosInit(Byte *g_FastPos) 108 { 109 int c = 2, slotFast; 110 g_FastPos[0] = 0; 111 g_FastPos[1] = 1; 112 113 for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) 114 { 115 UInt32 k = (1 << ((slotFast >> 1) - 1)); 116 UInt32 j; 117 for (j = 0; j < k; j++, c++) 118 g_FastPos[c] = (Byte)slotFast; 119 } 120 } 121 122 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \ 123 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ 124 res = p->g_FastPos[pos >> i] + (i * 2); } 125 /* 126 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ 127 p->g_FastPos[pos >> 6] + 12 : \ 128 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } 129 */ 130 131 #define GetPosSlot1(pos) p->g_FastPos[pos] 132 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } 133 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } 134 135 #endif 136 137 138 #define LZMA_NUM_REPS 4 139 140 typedef unsigned CState; 141 142 typedef struct 143 { 144 UInt32 price; 145 146 CState state; 147 int prev1IsChar; 148 int prev2; 149 150 UInt32 posPrev2; 151 UInt32 backPrev2; 152 153 UInt32 posPrev; 154 UInt32 backPrev; 155 UInt32 backs[LZMA_NUM_REPS]; 156 } COptimal; 157 158 #define kNumOpts (1 << 12) 159 160 #define kNumLenToPosStates 4 161 #define kNumPosSlotBits 6 162 #define kDicLogSizeMin 0 163 #define kDicLogSizeMax 32 164 #define kDistTableSizeMax (kDicLogSizeMax * 2) 165 166 167 #define kNumAlignBits 4 168 #define kAlignTableSize (1 << kNumAlignBits) 169 #define kAlignMask (kAlignTableSize - 1) 170 171 #define kStartPosModelIndex 4 172 #define kEndPosModelIndex 14 173 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) 174 175 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) 176 177 #ifdef _LZMA_PROB32 178 #define CLzmaProb UInt32 179 #else 180 #define CLzmaProb UInt16 181 #endif 182 183 #define LZMA_PB_MAX 4 184 #define LZMA_LC_MAX 8 185 #define LZMA_LP_MAX 4 186 187 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) 188 189 190 #define kLenNumLowBits 3 191 #define kLenNumLowSymbols (1 << kLenNumLowBits) 192 #define kLenNumMidBits 3 193 #define kLenNumMidSymbols (1 << kLenNumMidBits) 194 #define kLenNumHighBits 8 195 #define kLenNumHighSymbols (1 << kLenNumHighBits) 196 197 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) 198 199 #define LZMA_MATCH_LEN_MIN 2 200 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) 201 202 #define kNumStates 12 203 204 typedef struct 205 { 206 CLzmaProb choice; 207 CLzmaProb choice2; 208 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; 209 CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; 210 CLzmaProb high[kLenNumHighSymbols]; 211 } CLenEnc; 212 213 typedef struct 214 { 215 CLenEnc p; 216 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; 217 UInt32 tableSize; 218 UInt32 counters[LZMA_NUM_PB_STATES_MAX]; 219 } CLenPriceEnc; 220 221 typedef struct 222 { 223 UInt32 range; 224 Byte cache; 225 UInt64 low; 226 UInt64 cacheSize; 227 Byte *buf; 228 Byte *bufLim; 229 Byte *bufBase; 230 ISeqOutStream *outStream; 231 UInt64 processed; 232 SRes res; 233 } CRangeEnc; 234 235 typedef struct 236 { 237 CLzmaProb *litProbs; 238 239 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; 240 CLzmaProb isRep[kNumStates]; 241 CLzmaProb isRepG0[kNumStates]; 242 CLzmaProb isRepG1[kNumStates]; 243 CLzmaProb isRepG2[kNumStates]; 244 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; 245 246 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; 247 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; 248 CLzmaProb posAlignEncoder[1 << kNumAlignBits]; 249 250 CLenPriceEnc lenEnc; 251 CLenPriceEnc repLenEnc; 252 253 UInt32 reps[LZMA_NUM_REPS]; 254 UInt32 state; 255 } CSaveState; 256 257 typedef struct 258 { 259 IMatchFinder matchFinder; 260 void *matchFinderObj; 261 262 #ifndef _7ZIP_ST 263 Bool mtMode; 264 CMatchFinderMt matchFinderMt; 265 #endif 266 267 CMatchFinder matchFinderBase; 268 269 #ifndef _7ZIP_ST 270 Byte pad[128]; 271 #endif 272 273 UInt32 optimumEndIndex; 274 UInt32 optimumCurrentIndex; 275 276 UInt32 longestMatchLength; 277 UInt32 numPairs; 278 UInt32 numAvail; 279 COptimal opt[kNumOpts]; 280 281 #ifndef LZMA_LOG_BSR 282 Byte g_FastPos[1 << kNumLogBits]; 283 #endif 284 285 UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; 286 UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; 287 UInt32 numFastBytes; 288 UInt32 additionalOffset; 289 UInt32 reps[LZMA_NUM_REPS]; 290 UInt32 state; 291 292 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; 293 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; 294 UInt32 alignPrices[kAlignTableSize]; 295 UInt32 alignPriceCount; 296 297 UInt32 distTableSize; 298 299 unsigned lc, lp, pb; 300 unsigned lpMask, pbMask; 301 302 CLzmaProb *litProbs; 303 304 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; 305 CLzmaProb isRep[kNumStates]; 306 CLzmaProb isRepG0[kNumStates]; 307 CLzmaProb isRepG1[kNumStates]; 308 CLzmaProb isRepG2[kNumStates]; 309 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; 310 311 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; 312 CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; 313 CLzmaProb posAlignEncoder[1 << kNumAlignBits]; 314 315 CLenPriceEnc lenEnc; 316 CLenPriceEnc repLenEnc; 317 318 unsigned lclp; 319 320 Bool fastMode; 321 322 CRangeEnc rc; 323 324 Bool writeEndMark; 325 UInt64 nowPos64; 326 UInt32 matchPriceCount; 327 Bool finished; 328 Bool multiThread; 329 330 SRes result; 331 UInt32 dictSize; 332 UInt32 matchFinderCycles; 333 334 int needInit; 335 336 CSaveState saveState; 337 } CLzmaEnc; 338 339 void LzmaEnc_SaveState(CLzmaEncHandle pp) 340 { 341 CLzmaEnc *p = (CLzmaEnc *)pp; 342 CSaveState *dest = &p->saveState; 343 int i; 344 dest->lenEnc = p->lenEnc; 345 dest->repLenEnc = p->repLenEnc; 346 dest->state = p->state; 347 348 for (i = 0; i < kNumStates; i++) 349 { 350 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); 351 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); 352 } 353 for (i = 0; i < kNumLenToPosStates; i++) 354 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); 355 memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); 356 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); 357 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); 358 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); 359 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); 360 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); 361 memcpy(dest->reps, p->reps, sizeof(p->reps)); 362 memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb)); 363 } 364 365 void LzmaEnc_RestoreState(CLzmaEncHandle pp) 366 { 367 CLzmaEnc *dest = (CLzmaEnc *)pp; 368 const CSaveState *p = &dest->saveState; 369 int i; 370 dest->lenEnc = p->lenEnc; 371 dest->repLenEnc = p->repLenEnc; 372 dest->state = p->state; 373 374 for (i = 0; i < kNumStates; i++) 375 { 376 memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); 377 memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); 378 } 379 for (i = 0; i < kNumLenToPosStates; i++) 380 memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); 381 memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); 382 memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); 383 memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); 384 memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); 385 memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); 386 memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); 387 memcpy(dest->reps, p->reps, sizeof(p->reps)); 388 memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb)); 389 } 390 391 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2) 392 { 393 CLzmaEnc *p = (CLzmaEnc *)pp; 394 CLzmaEncProps props = *props2; 395 LzmaEncProps_Normalize(&props); 396 397 if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX || 398 props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30)) 399 return SZ_ERROR_PARAM; 400 p->dictSize = props.dictSize; 401 p->matchFinderCycles = props.mc; 402 { 403 unsigned fb = props.fb; 404 if (fb < 5) 405 fb = 5; 406 if (fb > LZMA_MATCH_LEN_MAX) 407 fb = LZMA_MATCH_LEN_MAX; 408 p->numFastBytes = fb; 409 } 410 p->lc = props.lc; 411 p->lp = props.lp; 412 p->pb = props.pb; 413 p->fastMode = (props.algo == 0); 414 p->matchFinderBase.btMode = props.btMode; 415 { 416 UInt32 numHashBytes = 4; 417 if (props.btMode) 418 { 419 if (props.numHashBytes < 2) 420 numHashBytes = 2; 421 else if (props.numHashBytes < 4) 422 numHashBytes = props.numHashBytes; 423 } 424 p->matchFinderBase.numHashBytes = numHashBytes; 425 } 426 427 p->matchFinderBase.cutValue = props.mc; 428 429 p->writeEndMark = props.writeEndMark; 430 431 #ifndef _7ZIP_ST 432 /* 433 if (newMultiThread != _multiThread) 434 { 435 ReleaseMatchFinder(); 436 _multiThread = newMultiThread; 437 } 438 */ 439 p->multiThread = (props.numThreads > 1); 440 #endif 441 442 return SZ_OK; 443 } 444 445 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; 446 static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; 447 static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; 448 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; 449 450 #define IsCharState(s) ((s) < 7) 451 452 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) 453 454 #define kInfinityPrice (1 << 30) 455 456 static void RangeEnc_Construct(CRangeEnc *p) 457 { 458 p->outStream = 0; 459 p->bufBase = 0; 460 } 461 462 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize) 463 464 #define RC_BUF_SIZE (1 << 16) 465 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc) 466 { 467 if (p->bufBase == 0) 468 { 469 p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE); 470 if (p->bufBase == 0) 471 return 0; 472 p->bufLim = p->bufBase + RC_BUF_SIZE; 473 } 474 return 1; 475 } 476 477 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc) 478 { 479 alloc->Free(alloc, p->bufBase); 480 p->bufBase = 0; 481 } 482 483 static void RangeEnc_Init(CRangeEnc *p) 484 { 485 /* Stream.Init(); */ 486 p->low = 0; 487 p->range = 0xFFFFFFFF; 488 p->cacheSize = 1; 489 p->cache = 0; 490 491 p->buf = p->bufBase; 492 493 p->processed = 0; 494 p->res = SZ_OK; 495 } 496 497 static void RangeEnc_FlushStream(CRangeEnc *p) 498 { 499 size_t num; 500 if (p->res != SZ_OK) 501 return; 502 num = p->buf - p->bufBase; 503 if (num != p->outStream->Write(p->outStream, p->bufBase, num)) 504 p->res = SZ_ERROR_WRITE; 505 p->processed += num; 506 p->buf = p->bufBase; 507 } 508 509 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p) 510 { 511 if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0) 512 { 513 Byte temp = p->cache; 514 do 515 { 516 Byte *buf = p->buf; 517 *buf++ = (Byte)(temp + (Byte)(p->low >> 32)); 518 p->buf = buf; 519 if (buf == p->bufLim) 520 RangeEnc_FlushStream(p); 521 temp = 0xFF; 522 } 523 while (--p->cacheSize != 0); 524 p->cache = (Byte)((UInt32)p->low >> 24); 525 } 526 p->cacheSize++; 527 p->low = (UInt32)p->low << 8; 528 } 529 530 static void RangeEnc_FlushData(CRangeEnc *p) 531 { 532 int i; 533 for (i = 0; i < 5; i++) 534 RangeEnc_ShiftLow(p); 535 } 536 537 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits) 538 { 539 do 540 { 541 p->range >>= 1; 542 p->low += p->range & (0 - ((value >> --numBits) & 1)); 543 if (p->range < kTopValue) 544 { 545 p->range <<= 8; 546 RangeEnc_ShiftLow(p); 547 } 548 } 549 while (numBits != 0); 550 } 551 552 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol) 553 { 554 UInt32 ttt = *prob; 555 UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt; 556 if (symbol == 0) 557 { 558 p->range = newBound; 559 ttt += (kBitModelTotal - ttt) >> kNumMoveBits; 560 } 561 else 562 { 563 p->low += newBound; 564 p->range -= newBound; 565 ttt -= ttt >> kNumMoveBits; 566 } 567 *prob = (CLzmaProb)ttt; 568 if (p->range < kTopValue) 569 { 570 p->range <<= 8; 571 RangeEnc_ShiftLow(p); 572 } 573 } 574 575 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol) 576 { 577 symbol |= 0x100; 578 do 579 { 580 RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); 581 symbol <<= 1; 582 } 583 while (symbol < 0x10000); 584 } 585 586 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte) 587 { 588 UInt32 offs = 0x100; 589 symbol |= 0x100; 590 do 591 { 592 matchByte <<= 1; 593 RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); 594 symbol <<= 1; 595 offs &= ~(matchByte ^ symbol); 596 } 597 while (symbol < 0x10000); 598 } 599 600 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices) 601 { 602 UInt32 i; 603 for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) 604 { 605 const int kCyclesBits = kNumBitPriceShiftBits; 606 UInt32 w = i; 607 UInt32 bitCount = 0; 608 int j; 609 for (j = 0; j < kCyclesBits; j++) 610 { 611 w = w * w; 612 bitCount <<= 1; 613 while (w >= ((UInt32)1 << 16)) 614 { 615 w >>= 1; 616 bitCount++; 617 } 618 } 619 ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); 620 } 621 } 622 623 624 #define GET_PRICE(prob, symbol) \ 625 p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; 626 627 #define GET_PRICEa(prob, symbol) \ 628 ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; 629 630 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] 631 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] 632 633 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] 634 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] 635 636 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices) 637 { 638 UInt32 price = 0; 639 symbol |= 0x100; 640 do 641 { 642 price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); 643 symbol <<= 1; 644 } 645 while (symbol < 0x10000); 646 return price; 647 } 648 649 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices) 650 { 651 UInt32 price = 0; 652 UInt32 offs = 0x100; 653 symbol |= 0x100; 654 do 655 { 656 matchByte <<= 1; 657 price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); 658 symbol <<= 1; 659 offs &= ~(matchByte ^ symbol); 660 } 661 while (symbol < 0x10000); 662 return price; 663 } 664 665 666 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) 667 { 668 UInt32 m = 1; 669 int i; 670 for (i = numBitLevels; i != 0;) 671 { 672 UInt32 bit; 673 i--; 674 bit = (symbol >> i) & 1; 675 RangeEnc_EncodeBit(rc, probs + m, bit); 676 m = (m << 1) | bit; 677 } 678 } 679 680 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) 681 { 682 UInt32 m = 1; 683 int i; 684 for (i = 0; i < numBitLevels; i++) 685 { 686 UInt32 bit = symbol & 1; 687 RangeEnc_EncodeBit(rc, probs + m, bit); 688 m = (m << 1) | bit; 689 symbol >>= 1; 690 } 691 } 692 693 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) 694 { 695 UInt32 price = 0; 696 symbol |= (1 << numBitLevels); 697 while (symbol != 1) 698 { 699 price += GET_PRICEa(probs[symbol >> 1], symbol & 1); 700 symbol >>= 1; 701 } 702 return price; 703 } 704 705 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) 706 { 707 UInt32 price = 0; 708 UInt32 m = 1; 709 int i; 710 for (i = numBitLevels; i != 0; i--) 711 { 712 UInt32 bit = symbol & 1; 713 symbol >>= 1; 714 price += GET_PRICEa(probs[m], bit); 715 m = (m << 1) | bit; 716 } 717 return price; 718 } 719 720 721 static void LenEnc_Init(CLenEnc *p) 722 { 723 unsigned i; 724 p->choice = p->choice2 = kProbInitValue; 725 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) 726 p->low[i] = kProbInitValue; 727 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) 728 p->mid[i] = kProbInitValue; 729 for (i = 0; i < kLenNumHighSymbols; i++) 730 p->high[i] = kProbInitValue; 731 } 732 733 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState) 734 { 735 if (symbol < kLenNumLowSymbols) 736 { 737 RangeEnc_EncodeBit(rc, &p->choice, 0); 738 RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); 739 } 740 else 741 { 742 RangeEnc_EncodeBit(rc, &p->choice, 1); 743 if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) 744 { 745 RangeEnc_EncodeBit(rc, &p->choice2, 0); 746 RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); 747 } 748 else 749 { 750 RangeEnc_EncodeBit(rc, &p->choice2, 1); 751 RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); 752 } 753 } 754 } 755 756 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices) 757 { 758 UInt32 a0 = GET_PRICE_0a(p->choice); 759 UInt32 a1 = GET_PRICE_1a(p->choice); 760 UInt32 b0 = a1 + GET_PRICE_0a(p->choice2); 761 UInt32 b1 = a1 + GET_PRICE_1a(p->choice2); 762 UInt32 i = 0; 763 for (i = 0; i < kLenNumLowSymbols; i++) 764 { 765 if (i >= numSymbols) 766 return; 767 prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); 768 } 769 for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) 770 { 771 if (i >= numSymbols) 772 return; 773 prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); 774 } 775 for (; i < numSymbols; i++) 776 prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); 777 } 778 779 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices) 780 { 781 LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); 782 p->counters[posState] = p->tableSize; 783 } 784 785 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices) 786 { 787 UInt32 posState; 788 for (posState = 0; posState < numPosStates; posState++) 789 LenPriceEnc_UpdateTable(p, posState, ProbPrices); 790 } 791 792 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices) 793 { 794 LenEnc_Encode(&p->p, rc, symbol, posState); 795 if (updatePrice) 796 if (--p->counters[posState] == 0) 797 LenPriceEnc_UpdateTable(p, posState, ProbPrices); 798 } 799 800 801 802 803 static void MovePos(CLzmaEnc *p, UInt32 num) 804 { 805 #ifdef SHOW_STAT 806 ttt += num; 807 printf("\n MovePos %d", num); 808 #endif 809 if (num != 0) 810 { 811 p->additionalOffset += num; 812 p->matchFinder.Skip(p->matchFinderObj, num); 813 } 814 } 815 816 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes) 817 { 818 UInt32 lenRes = 0, numPairs; 819 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); 820 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches); 821 #ifdef SHOW_STAT 822 printf("\n i = %d numPairs = %d ", ttt, numPairs / 2); 823 ttt++; 824 { 825 UInt32 i; 826 for (i = 0; i < numPairs; i += 2) 827 printf("%2d %6d | ", p->matches[i], p->matches[i + 1]); 828 } 829 #endif 830 if (numPairs > 0) 831 { 832 lenRes = p->matches[numPairs - 2]; 833 if (lenRes == p->numFastBytes) 834 { 835 const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; 836 UInt32 distance = p->matches[numPairs - 1] + 1; 837 UInt32 numAvail = p->numAvail; 838 if (numAvail > LZMA_MATCH_LEN_MAX) 839 numAvail = LZMA_MATCH_LEN_MAX; 840 { 841 const Byte *pby2 = pby - distance; 842 for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++); 843 } 844 } 845 } 846 p->additionalOffset++; 847 *numDistancePairsRes = numPairs; 848 return lenRes; 849 } 850 851 852 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False; 853 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False; 854 #define IsShortRep(p) ((p)->backPrev == 0) 855 856 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState) 857 { 858 return 859 GET_PRICE_0(p->isRepG0[state]) + 860 GET_PRICE_0(p->isRep0Long[state][posState]); 861 } 862 863 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState) 864 { 865 UInt32 price; 866 if (repIndex == 0) 867 { 868 price = GET_PRICE_0(p->isRepG0[state]); 869 price += GET_PRICE_1(p->isRep0Long[state][posState]); 870 } 871 else 872 { 873 price = GET_PRICE_1(p->isRepG0[state]); 874 if (repIndex == 1) 875 price += GET_PRICE_0(p->isRepG1[state]); 876 else 877 { 878 price += GET_PRICE_1(p->isRepG1[state]); 879 price += GET_PRICE(p->isRepG2[state], repIndex - 2); 880 } 881 } 882 return price; 883 } 884 885 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState) 886 { 887 return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + 888 GetPureRepPrice(p, repIndex, state, posState); 889 } 890 891 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur) 892 { 893 UInt32 posMem = p->opt[cur].posPrev; 894 UInt32 backMem = p->opt[cur].backPrev; 895 p->optimumEndIndex = cur; 896 do 897 { 898 if (p->opt[cur].prev1IsChar) 899 { 900 MakeAsChar(&p->opt[posMem]) 901 p->opt[posMem].posPrev = posMem - 1; 902 if (p->opt[cur].prev2) 903 { 904 p->opt[posMem - 1].prev1IsChar = False; 905 p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; 906 p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; 907 } 908 } 909 { 910 UInt32 posPrev = posMem; 911 UInt32 backCur = backMem; 912 913 backMem = p->opt[posPrev].backPrev; 914 posMem = p->opt[posPrev].posPrev; 915 916 p->opt[posPrev].backPrev = backCur; 917 p->opt[posPrev].posPrev = cur; 918 cur = posPrev; 919 } 920 } 921 while (cur != 0); 922 *backRes = p->opt[0].backPrev; 923 p->optimumCurrentIndex = p->opt[0].posPrev; 924 return p->optimumCurrentIndex; 925 } 926 927 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) 928 929 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes) 930 { 931 UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur; 932 UInt32 matchPrice, repMatchPrice, normalMatchPrice; 933 UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS]; 934 UInt32 *matches; 935 const Byte *data; 936 Byte curByte, matchByte; 937 if (p->optimumEndIndex != p->optimumCurrentIndex) 938 { 939 const COptimal *opt = &p->opt[p->optimumCurrentIndex]; 940 UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex; 941 *backRes = opt->backPrev; 942 p->optimumCurrentIndex = opt->posPrev; 943 return lenRes; 944 } 945 p->optimumCurrentIndex = p->optimumEndIndex = 0; 946 947 if (p->additionalOffset == 0) 948 mainLen = ReadMatchDistances(p, &numPairs); 949 else 950 { 951 mainLen = p->longestMatchLength; 952 numPairs = p->numPairs; 953 } 954 955 numAvail = p->numAvail; 956 if (numAvail < 2) 957 { 958 *backRes = (UInt32)(-1); 959 return 1; 960 } 961 if (numAvail > LZMA_MATCH_LEN_MAX) 962 numAvail = LZMA_MATCH_LEN_MAX; 963 964 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; 965 repMaxIndex = 0; 966 for (i = 0; i < LZMA_NUM_REPS; i++) 967 { 968 UInt32 lenTest; 969 const Byte *data2; 970 reps[i] = p->reps[i]; 971 data2 = data - (reps[i] + 1); 972 if (data[0] != data2[0] || data[1] != data2[1]) 973 { 974 repLens[i] = 0; 975 continue; 976 } 977 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); 978 repLens[i] = lenTest; 979 if (lenTest > repLens[repMaxIndex]) 980 repMaxIndex = i; 981 } 982 if (repLens[repMaxIndex] >= p->numFastBytes) 983 { 984 UInt32 lenRes; 985 *backRes = repMaxIndex; 986 lenRes = repLens[repMaxIndex]; 987 MovePos(p, lenRes - 1); 988 return lenRes; 989 } 990 991 matches = p->matches; 992 if (mainLen >= p->numFastBytes) 993 { 994 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; 995 MovePos(p, mainLen - 1); 996 return mainLen; 997 } 998 curByte = *data; 999 matchByte = *(data - (reps[0] + 1)); 1000 1001 if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2) 1002 { 1003 *backRes = (UInt32)-1; 1004 return 1; 1005 } 1006 1007 p->opt[0].state = (CState)p->state; 1008 1009 posState = (position & p->pbMask); 1010 1011 { 1012 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); 1013 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + 1014 (!IsCharState(p->state) ? 1015 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : 1016 LitEnc_GetPrice(probs, curByte, p->ProbPrices)); 1017 } 1018 1019 MakeAsChar(&p->opt[1]); 1020 1021 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); 1022 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); 1023 1024 if (matchByte == curByte) 1025 { 1026 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); 1027 if (shortRepPrice < p->opt[1].price) 1028 { 1029 p->opt[1].price = shortRepPrice; 1030 MakeAsShortRep(&p->opt[1]); 1031 } 1032 } 1033 lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]); 1034 1035 if (lenEnd < 2) 1036 { 1037 *backRes = p->opt[1].backPrev; 1038 return 1; 1039 } 1040 1041 p->opt[1].posPrev = 0; 1042 for (i = 0; i < LZMA_NUM_REPS; i++) 1043 p->opt[0].backs[i] = reps[i]; 1044 1045 len = lenEnd; 1046 do 1047 p->opt[len--].price = kInfinityPrice; 1048 while (len >= 2); 1049 1050 for (i = 0; i < LZMA_NUM_REPS; i++) 1051 { 1052 UInt32 repLen = repLens[i]; 1053 UInt32 price; 1054 if (repLen < 2) 1055 continue; 1056 price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); 1057 do 1058 { 1059 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; 1060 COptimal *opt = &p->opt[repLen]; 1061 if (curAndLenPrice < opt->price) 1062 { 1063 opt->price = curAndLenPrice; 1064 opt->posPrev = 0; 1065 opt->backPrev = i; 1066 opt->prev1IsChar = False; 1067 } 1068 } 1069 while (--repLen >= 2); 1070 } 1071 1072 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); 1073 1074 len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); 1075 if (len <= mainLen) 1076 { 1077 UInt32 offs = 0; 1078 while (len > matches[offs]) 1079 offs += 2; 1080 for (; ; len++) 1081 { 1082 COptimal *opt; 1083 UInt32 distance = matches[offs + 1]; 1084 1085 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; 1086 UInt32 lenToPosState = GetLenToPosState(len); 1087 if (distance < kNumFullDistances) 1088 curAndLenPrice += p->distancesPrices[lenToPosState][distance]; 1089 else 1090 { 1091 UInt32 slot; 1092 GetPosSlot2(distance, slot); 1093 curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; 1094 } 1095 opt = &p->opt[len]; 1096 if (curAndLenPrice < opt->price) 1097 { 1098 opt->price = curAndLenPrice; 1099 opt->posPrev = 0; 1100 opt->backPrev = distance + LZMA_NUM_REPS; 1101 opt->prev1IsChar = False; 1102 } 1103 if (len == matches[offs]) 1104 { 1105 offs += 2; 1106 if (offs == numPairs) 1107 break; 1108 } 1109 } 1110 } 1111 1112 cur = 0; 1113 1114 #ifdef SHOW_STAT2 1115 if (position >= 0) 1116 { 1117 unsigned i; 1118 printf("\n pos = %4X", position); 1119 for (i = cur; i <= lenEnd; i++) 1120 printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); 1121 } 1122 #endif 1123 1124 for (;;) 1125 { 1126 UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen; 1127 UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice; 1128 Bool nextIsChar; 1129 Byte curByte, matchByte; 1130 const Byte *data; 1131 COptimal *curOpt; 1132 COptimal *nextOpt; 1133 1134 cur++; 1135 if (cur == lenEnd) 1136 return Backward(p, backRes, cur); 1137 1138 newLen = ReadMatchDistances(p, &numPairs); 1139 if (newLen >= p->numFastBytes) 1140 { 1141 p->numPairs = numPairs; 1142 p->longestMatchLength = newLen; 1143 return Backward(p, backRes, cur); 1144 } 1145 position++; 1146 curOpt = &p->opt[cur]; 1147 posPrev = curOpt->posPrev; 1148 if (curOpt->prev1IsChar) 1149 { 1150 posPrev--; 1151 if (curOpt->prev2) 1152 { 1153 state = p->opt[curOpt->posPrev2].state; 1154 if (curOpt->backPrev2 < LZMA_NUM_REPS) 1155 state = kRepNextStates[state]; 1156 else 1157 state = kMatchNextStates[state]; 1158 } 1159 else 1160 state = p->opt[posPrev].state; 1161 state = kLiteralNextStates[state]; 1162 } 1163 else 1164 state = p->opt[posPrev].state; 1165 if (posPrev == cur - 1) 1166 { 1167 if (IsShortRep(curOpt)) 1168 state = kShortRepNextStates[state]; 1169 else 1170 state = kLiteralNextStates[state]; 1171 } 1172 else 1173 { 1174 UInt32 pos; 1175 const COptimal *prevOpt; 1176 if (curOpt->prev1IsChar && curOpt->prev2) 1177 { 1178 posPrev = curOpt->posPrev2; 1179 pos = curOpt->backPrev2; 1180 state = kRepNextStates[state]; 1181 } 1182 else 1183 { 1184 pos = curOpt->backPrev; 1185 if (pos < LZMA_NUM_REPS) 1186 state = kRepNextStates[state]; 1187 else 1188 state = kMatchNextStates[state]; 1189 } 1190 prevOpt = &p->opt[posPrev]; 1191 if (pos < LZMA_NUM_REPS) 1192 { 1193 UInt32 i; 1194 reps[0] = prevOpt->backs[pos]; 1195 for (i = 1; i <= pos; i++) 1196 reps[i] = prevOpt->backs[i - 1]; 1197 for (; i < LZMA_NUM_REPS; i++) 1198 reps[i] = prevOpt->backs[i]; 1199 } 1200 else 1201 { 1202 UInt32 i; 1203 reps[0] = (pos - LZMA_NUM_REPS); 1204 for (i = 1; i < LZMA_NUM_REPS; i++) 1205 reps[i] = prevOpt->backs[i - 1]; 1206 } 1207 } 1208 curOpt->state = (CState)state; 1209 1210 curOpt->backs[0] = reps[0]; 1211 curOpt->backs[1] = reps[1]; 1212 curOpt->backs[2] = reps[2]; 1213 curOpt->backs[3] = reps[3]; 1214 1215 curPrice = curOpt->price; 1216 nextIsChar = False; 1217 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; 1218 curByte = *data; 1219 matchByte = *(data - (reps[0] + 1)); 1220 1221 posState = (position & p->pbMask); 1222 1223 curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); 1224 { 1225 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); 1226 curAnd1Price += 1227 (!IsCharState(state) ? 1228 LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) : 1229 LitEnc_GetPrice(probs, curByte, p->ProbPrices)); 1230 } 1231 1232 nextOpt = &p->opt[cur + 1]; 1233 1234 if (curAnd1Price < nextOpt->price) 1235 { 1236 nextOpt->price = curAnd1Price; 1237 nextOpt->posPrev = cur; 1238 MakeAsChar(nextOpt); 1239 nextIsChar = True; 1240 } 1241 1242 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); 1243 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); 1244 1245 if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) 1246 { 1247 UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); 1248 if (shortRepPrice <= nextOpt->price) 1249 { 1250 nextOpt->price = shortRepPrice; 1251 nextOpt->posPrev = cur; 1252 MakeAsShortRep(nextOpt); 1253 nextIsChar = True; 1254 } 1255 } 1256 numAvailFull = p->numAvail; 1257 { 1258 UInt32 temp = kNumOpts - 1 - cur; 1259 if (temp < numAvailFull) 1260 numAvailFull = temp; 1261 } 1262 1263 if (numAvailFull < 2) 1264 continue; 1265 numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes); 1266 1267 if (!nextIsChar && matchByte != curByte) /* speed optimization */ 1268 { 1269 /* try Literal + rep0 */ 1270 UInt32 temp; 1271 UInt32 lenTest2; 1272 const Byte *data2 = data - (reps[0] + 1); 1273 UInt32 limit = p->numFastBytes + 1; 1274 if (limit > numAvailFull) 1275 limit = numAvailFull; 1276 1277 for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++); 1278 lenTest2 = temp - 1; 1279 if (lenTest2 >= 2) 1280 { 1281 UInt32 state2 = kLiteralNextStates[state]; 1282 UInt32 posStateNext = (position + 1) & p->pbMask; 1283 UInt32 nextRepMatchPrice = curAnd1Price + 1284 GET_PRICE_1(p->isMatch[state2][posStateNext]) + 1285 GET_PRICE_1(p->isRep[state2]); 1286 /* for (; lenTest2 >= 2; lenTest2--) */ 1287 { 1288 UInt32 curAndLenPrice; 1289 COptimal *opt; 1290 UInt32 offset = cur + 1 + lenTest2; 1291 while (lenEnd < offset) 1292 p->opt[++lenEnd].price = kInfinityPrice; 1293 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); 1294 opt = &p->opt[offset]; 1295 if (curAndLenPrice < opt->price) 1296 { 1297 opt->price = curAndLenPrice; 1298 opt->posPrev = cur + 1; 1299 opt->backPrev = 0; 1300 opt->prev1IsChar = True; 1301 opt->prev2 = False; 1302 } 1303 } 1304 } 1305 } 1306 1307 startLen = 2; /* speed optimization */ 1308 { 1309 UInt32 repIndex; 1310 for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) 1311 { 1312 UInt32 lenTest; 1313 UInt32 lenTestTemp; 1314 UInt32 price; 1315 const Byte *data2 = data - (reps[repIndex] + 1); 1316 if (data[0] != data2[0] || data[1] != data2[1]) 1317 continue; 1318 for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++); 1319 while (lenEnd < cur + lenTest) 1320 p->opt[++lenEnd].price = kInfinityPrice; 1321 lenTestTemp = lenTest; 1322 price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); 1323 do 1324 { 1325 UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; 1326 COptimal *opt = &p->opt[cur + lenTest]; 1327 if (curAndLenPrice < opt->price) 1328 { 1329 opt->price = curAndLenPrice; 1330 opt->posPrev = cur; 1331 opt->backPrev = repIndex; 1332 opt->prev1IsChar = False; 1333 } 1334 } 1335 while (--lenTest >= 2); 1336 lenTest = lenTestTemp; 1337 1338 if (repIndex == 0) 1339 startLen = lenTest + 1; 1340 1341 /* if (_maxMode) */ 1342 { 1343 UInt32 lenTest2 = lenTest + 1; 1344 UInt32 limit = lenTest2 + p->numFastBytes; 1345 UInt32 nextRepMatchPrice; 1346 if (limit > numAvailFull) 1347 limit = numAvailFull; 1348 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); 1349 lenTest2 -= lenTest + 1; 1350 if (lenTest2 >= 2) 1351 { 1352 UInt32 state2 = kRepNextStates[state]; 1353 UInt32 posStateNext = (position + lenTest) & p->pbMask; 1354 UInt32 curAndLenCharPrice = 1355 price + p->repLenEnc.prices[posState][lenTest - 2] + 1356 GET_PRICE_0(p->isMatch[state2][posStateNext]) + 1357 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), 1358 data[lenTest], data2[lenTest], p->ProbPrices); 1359 state2 = kLiteralNextStates[state2]; 1360 posStateNext = (position + lenTest + 1) & p->pbMask; 1361 nextRepMatchPrice = curAndLenCharPrice + 1362 GET_PRICE_1(p->isMatch[state2][posStateNext]) + 1363 GET_PRICE_1(p->isRep[state2]); 1364 1365 /* for (; lenTest2 >= 2; lenTest2--) */ 1366 { 1367 UInt32 curAndLenPrice; 1368 COptimal *opt; 1369 UInt32 offset = cur + lenTest + 1 + lenTest2; 1370 while (lenEnd < offset) 1371 p->opt[++lenEnd].price = kInfinityPrice; 1372 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); 1373 opt = &p->opt[offset]; 1374 if (curAndLenPrice < opt->price) 1375 { 1376 opt->price = curAndLenPrice; 1377 opt->posPrev = cur + lenTest + 1; 1378 opt->backPrev = 0; 1379 opt->prev1IsChar = True; 1380 opt->prev2 = True; 1381 opt->posPrev2 = cur; 1382 opt->backPrev2 = repIndex; 1383 } 1384 } 1385 } 1386 } 1387 } 1388 } 1389 /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */ 1390 if (newLen > numAvail) 1391 { 1392 newLen = numAvail; 1393 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2); 1394 matches[numPairs] = newLen; 1395 numPairs += 2; 1396 } 1397 if (newLen >= startLen) 1398 { 1399 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); 1400 UInt32 offs, curBack, posSlot; 1401 UInt32 lenTest; 1402 while (lenEnd < cur + newLen) 1403 p->opt[++lenEnd].price = kInfinityPrice; 1404 1405 offs = 0; 1406 while (startLen > matches[offs]) 1407 offs += 2; 1408 curBack = matches[offs + 1]; 1409 GetPosSlot2(curBack, posSlot); 1410 for (lenTest = /*2*/ startLen; ; lenTest++) 1411 { 1412 UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; 1413 UInt32 lenToPosState = GetLenToPosState(lenTest); 1414 COptimal *opt; 1415 if (curBack < kNumFullDistances) 1416 curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; 1417 else 1418 curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; 1419 1420 opt = &p->opt[cur + lenTest]; 1421 if (curAndLenPrice < opt->price) 1422 { 1423 opt->price = curAndLenPrice; 1424 opt->posPrev = cur; 1425 opt->backPrev = curBack + LZMA_NUM_REPS; 1426 opt->prev1IsChar = False; 1427 } 1428 1429 if (/*_maxMode && */lenTest == matches[offs]) 1430 { 1431 /* Try Match + Literal + Rep0 */ 1432 const Byte *data2 = data - (curBack + 1); 1433 UInt32 lenTest2 = lenTest + 1; 1434 UInt32 limit = lenTest2 + p->numFastBytes; 1435 UInt32 nextRepMatchPrice; 1436 if (limit > numAvailFull) 1437 limit = numAvailFull; 1438 for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); 1439 lenTest2 -= lenTest + 1; 1440 if (lenTest2 >= 2) 1441 { 1442 UInt32 state2 = kMatchNextStates[state]; 1443 UInt32 posStateNext = (position + lenTest) & p->pbMask; 1444 UInt32 curAndLenCharPrice = curAndLenPrice + 1445 GET_PRICE_0(p->isMatch[state2][posStateNext]) + 1446 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), 1447 data[lenTest], data2[lenTest], p->ProbPrices); 1448 state2 = kLiteralNextStates[state2]; 1449 posStateNext = (posStateNext + 1) & p->pbMask; 1450 nextRepMatchPrice = curAndLenCharPrice + 1451 GET_PRICE_1(p->isMatch[state2][posStateNext]) + 1452 GET_PRICE_1(p->isRep[state2]); 1453 1454 /* for (; lenTest2 >= 2; lenTest2--) */ 1455 { 1456 UInt32 offset = cur + lenTest + 1 + lenTest2; 1457 UInt32 curAndLenPrice; 1458 COptimal *opt; 1459 while (lenEnd < offset) 1460 p->opt[++lenEnd].price = kInfinityPrice; 1461 curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); 1462 opt = &p->opt[offset]; 1463 if (curAndLenPrice < opt->price) 1464 { 1465 opt->price = curAndLenPrice; 1466 opt->posPrev = cur + lenTest + 1; 1467 opt->backPrev = 0; 1468 opt->prev1IsChar = True; 1469 opt->prev2 = True; 1470 opt->posPrev2 = cur; 1471 opt->backPrev2 = curBack + LZMA_NUM_REPS; 1472 } 1473 } 1474 } 1475 offs += 2; 1476 if (offs == numPairs) 1477 break; 1478 curBack = matches[offs + 1]; 1479 if (curBack >= kNumFullDistances) 1480 GetPosSlot2(curBack, posSlot); 1481 } 1482 } 1483 } 1484 } 1485 } 1486 1487 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) 1488 1489 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes) 1490 { 1491 UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i; 1492 const Byte *data; 1493 const UInt32 *matches; 1494 1495 if (p->additionalOffset == 0) 1496 mainLen = ReadMatchDistances(p, &numPairs); 1497 else 1498 { 1499 mainLen = p->longestMatchLength; 1500 numPairs = p->numPairs; 1501 } 1502 1503 numAvail = p->numAvail; 1504 *backRes = (UInt32)-1; 1505 if (numAvail < 2) 1506 return 1; 1507 if (numAvail > LZMA_MATCH_LEN_MAX) 1508 numAvail = LZMA_MATCH_LEN_MAX; 1509 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; 1510 1511 repLen = repIndex = 0; 1512 for (i = 0; i < LZMA_NUM_REPS; i++) 1513 { 1514 UInt32 len; 1515 const Byte *data2 = data - (p->reps[i] + 1); 1516 if (data[0] != data2[0] || data[1] != data2[1]) 1517 continue; 1518 for (len = 2; len < numAvail && data[len] == data2[len]; len++); 1519 if (len >= p->numFastBytes) 1520 { 1521 *backRes = i; 1522 MovePos(p, len - 1); 1523 return len; 1524 } 1525 if (len > repLen) 1526 { 1527 repIndex = i; 1528 repLen = len; 1529 } 1530 } 1531 1532 matches = p->matches; 1533 if (mainLen >= p->numFastBytes) 1534 { 1535 *backRes = matches[numPairs - 1] + LZMA_NUM_REPS; 1536 MovePos(p, mainLen - 1); 1537 return mainLen; 1538 } 1539 1540 mainDist = 0; /* for GCC */ 1541 if (mainLen >= 2) 1542 { 1543 mainDist = matches[numPairs - 1]; 1544 while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1) 1545 { 1546 if (!ChangePair(matches[numPairs - 3], mainDist)) 1547 break; 1548 numPairs -= 2; 1549 mainLen = matches[numPairs - 2]; 1550 mainDist = matches[numPairs - 1]; 1551 } 1552 if (mainLen == 2 && mainDist >= 0x80) 1553 mainLen = 1; 1554 } 1555 1556 if (repLen >= 2 && ( 1557 (repLen + 1 >= mainLen) || 1558 (repLen + 2 >= mainLen && mainDist >= (1 << 9)) || 1559 (repLen + 3 >= mainLen && mainDist >= (1 << 15)))) 1560 { 1561 *backRes = repIndex; 1562 MovePos(p, repLen - 1); 1563 return repLen; 1564 } 1565 1566 if (mainLen < 2 || numAvail <= 2) 1567 return 1; 1568 1569 p->longestMatchLength = ReadMatchDistances(p, &p->numPairs); 1570 if (p->longestMatchLength >= 2) 1571 { 1572 UInt32 newDistance = matches[p->numPairs - 1]; 1573 if ((p->longestMatchLength >= mainLen && newDistance < mainDist) || 1574 (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) || 1575 (p->longestMatchLength > mainLen + 1) || 1576 (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist))) 1577 return 1; 1578 } 1579 1580 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; 1581 for (i = 0; i < LZMA_NUM_REPS; i++) 1582 { 1583 UInt32 len, limit; 1584 const Byte *data2 = data - (p->reps[i] + 1); 1585 if (data[0] != data2[0] || data[1] != data2[1]) 1586 continue; 1587 limit = mainLen - 1; 1588 for (len = 2; len < limit && data[len] == data2[len]; len++); 1589 if (len >= limit) 1590 return 1; 1591 } 1592 *backRes = mainDist + LZMA_NUM_REPS; 1593 MovePos(p, mainLen - 2); 1594 return mainLen; 1595 } 1596 1597 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState) 1598 { 1599 UInt32 len; 1600 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); 1601 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); 1602 p->state = kMatchNextStates[p->state]; 1603 len = LZMA_MATCH_LEN_MIN; 1604 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); 1605 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); 1606 RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); 1607 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); 1608 } 1609 1610 static SRes CheckErrors(CLzmaEnc *p) 1611 { 1612 if (p->result != SZ_OK) 1613 return p->result; 1614 if (p->rc.res != SZ_OK) 1615 p->result = SZ_ERROR_WRITE; 1616 if (p->matchFinderBase.result != SZ_OK) 1617 p->result = SZ_ERROR_READ; 1618 if (p->result != SZ_OK) 1619 p->finished = True; 1620 return p->result; 1621 } 1622 1623 static SRes Flush(CLzmaEnc *p, UInt32 nowPos) 1624 { 1625 /* ReleaseMFStream(); */ 1626 p->finished = True; 1627 if (p->writeEndMark) 1628 WriteEndMarker(p, nowPos & p->pbMask); 1629 RangeEnc_FlushData(&p->rc); 1630 RangeEnc_FlushStream(&p->rc); 1631 return CheckErrors(p); 1632 } 1633 1634 static void FillAlignPrices(CLzmaEnc *p) 1635 { 1636 UInt32 i; 1637 for (i = 0; i < kAlignTableSize; i++) 1638 p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); 1639 p->alignPriceCount = 0; 1640 } 1641 1642 static void FillDistancesPrices(CLzmaEnc *p) 1643 { 1644 UInt32 tempPrices[kNumFullDistances]; 1645 UInt32 i, lenToPosState; 1646 for (i = kStartPosModelIndex; i < kNumFullDistances; i++) 1647 { 1648 UInt32 posSlot = GetPosSlot1(i); 1649 UInt32 footerBits = ((posSlot >> 1) - 1); 1650 UInt32 base = ((2 | (posSlot & 1)) << footerBits); 1651 tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); 1652 } 1653 1654 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) 1655 { 1656 UInt32 posSlot; 1657 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState]; 1658 UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState]; 1659 for (posSlot = 0; posSlot < p->distTableSize; posSlot++) 1660 posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); 1661 for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) 1662 posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); 1663 1664 { 1665 UInt32 *distancesPrices = p->distancesPrices[lenToPosState]; 1666 UInt32 i; 1667 for (i = 0; i < kStartPosModelIndex; i++) 1668 distancesPrices[i] = posSlotPrices[i]; 1669 for (; i < kNumFullDistances; i++) 1670 distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; 1671 } 1672 } 1673 p->matchPriceCount = 0; 1674 } 1675 1676 void LzmaEnc_Construct(CLzmaEnc *p) 1677 { 1678 RangeEnc_Construct(&p->rc); 1679 MatchFinder_Construct(&p->matchFinderBase); 1680 #ifndef _7ZIP_ST 1681 MatchFinderMt_Construct(&p->matchFinderMt); 1682 p->matchFinderMt.MatchFinder = &p->matchFinderBase; 1683 #endif 1684 1685 { 1686 CLzmaEncProps props; 1687 LzmaEncProps_Init(&props); 1688 LzmaEnc_SetProps(p, &props); 1689 } 1690 1691 #ifndef LZMA_LOG_BSR 1692 LzmaEnc_FastPosInit(p->g_FastPos); 1693 #endif 1694 1695 LzmaEnc_InitPriceTables(p->ProbPrices); 1696 p->litProbs = 0; 1697 p->saveState.litProbs = 0; 1698 } 1699 1700 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc) 1701 { 1702 void *p; 1703 p = alloc->Alloc(alloc, sizeof(CLzmaEnc)); 1704 if (p != 0) 1705 LzmaEnc_Construct((CLzmaEnc *)p); 1706 return p; 1707 } 1708 1709 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc) 1710 { 1711 alloc->Free(alloc, p->litProbs); 1712 alloc->Free(alloc, p->saveState.litProbs); 1713 p->litProbs = 0; 1714 p->saveState.litProbs = 0; 1715 } 1716 1717 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig) 1718 { 1719 #ifndef _7ZIP_ST 1720 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); 1721 #endif 1722 MatchFinder_Free(&p->matchFinderBase, allocBig); 1723 LzmaEnc_FreeLits(p, alloc); 1724 RangeEnc_Free(&p->rc, alloc); 1725 } 1726 1727 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig) 1728 { 1729 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig); 1730 alloc->Free(alloc, p); 1731 } 1732 1733 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize) 1734 { 1735 UInt32 nowPos32, startPos32; 1736 if (p->needInit) 1737 { 1738 p->matchFinder.Init(p->matchFinderObj); 1739 p->needInit = 0; 1740 } 1741 1742 if (p->finished) 1743 return p->result; 1744 RINOK(CheckErrors(p)); 1745 1746 nowPos32 = (UInt32)p->nowPos64; 1747 startPos32 = nowPos32; 1748 1749 if (p->nowPos64 == 0) 1750 { 1751 UInt32 numPairs; 1752 Byte curByte; 1753 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) 1754 return Flush(p, nowPos32); 1755 ReadMatchDistances(p, &numPairs); 1756 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); 1757 p->state = kLiteralNextStates[p->state]; 1758 curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset); 1759 LitEnc_Encode(&p->rc, p->litProbs, curByte); 1760 p->additionalOffset--; 1761 nowPos32++; 1762 } 1763 1764 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) 1765 for (;;) 1766 { 1767 UInt32 pos, len, posState; 1768 1769 if (p->fastMode) 1770 len = GetOptimumFast(p, &pos); 1771 else 1772 len = GetOptimum(p, nowPos32, &pos); 1773 1774 #ifdef SHOW_STAT2 1775 printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); 1776 #endif 1777 1778 posState = nowPos32 & p->pbMask; 1779 if (len == 1 && pos == (UInt32)-1) 1780 { 1781 Byte curByte; 1782 CLzmaProb *probs; 1783 const Byte *data; 1784 1785 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); 1786 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; 1787 curByte = *data; 1788 probs = LIT_PROBS(nowPos32, *(data - 1)); 1789 if (IsCharState(p->state)) 1790 LitEnc_Encode(&p->rc, probs, curByte); 1791 else 1792 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); 1793 p->state = kLiteralNextStates[p->state]; 1794 } 1795 else 1796 { 1797 RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); 1798 if (pos < LZMA_NUM_REPS) 1799 { 1800 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); 1801 if (pos == 0) 1802 { 1803 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); 1804 RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); 1805 } 1806 else 1807 { 1808 UInt32 distance = p->reps[pos]; 1809 RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); 1810 if (pos == 1) 1811 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); 1812 else 1813 { 1814 RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); 1815 RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); 1816 if (pos == 3) 1817 p->reps[3] = p->reps[2]; 1818 p->reps[2] = p->reps[1]; 1819 } 1820 p->reps[1] = p->reps[0]; 1821 p->reps[0] = distance; 1822 } 1823 if (len == 1) 1824 p->state = kShortRepNextStates[p->state]; 1825 else 1826 { 1827 LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); 1828 p->state = kRepNextStates[p->state]; 1829 } 1830 } 1831 else 1832 { 1833 UInt32 posSlot; 1834 RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); 1835 p->state = kMatchNextStates[p->state]; 1836 LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); 1837 pos -= LZMA_NUM_REPS; 1838 GetPosSlot(pos, posSlot); 1839 RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); 1840 1841 if (posSlot >= kStartPosModelIndex) 1842 { 1843 UInt32 footerBits = ((posSlot >> 1) - 1); 1844 UInt32 base = ((2 | (posSlot & 1)) << footerBits); 1845 UInt32 posReduced = pos - base; 1846 1847 if (posSlot < kEndPosModelIndex) 1848 RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); 1849 else 1850 { 1851 RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); 1852 RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); 1853 p->alignPriceCount++; 1854 } 1855 } 1856 p->reps[3] = p->reps[2]; 1857 p->reps[2] = p->reps[1]; 1858 p->reps[1] = p->reps[0]; 1859 p->reps[0] = pos; 1860 p->matchPriceCount++; 1861 } 1862 } 1863 p->additionalOffset -= len; 1864 nowPos32 += len; 1865 if (p->additionalOffset == 0) 1866 { 1867 UInt32 processed; 1868 if (!p->fastMode) 1869 { 1870 if (p->matchPriceCount >= (1 << 7)) 1871 FillDistancesPrices(p); 1872 if (p->alignPriceCount >= kAlignTableSize) 1873 FillAlignPrices(p); 1874 } 1875 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) 1876 break; 1877 processed = nowPos32 - startPos32; 1878 if (useLimits) 1879 { 1880 if (processed + kNumOpts + 300 >= maxUnpackSize || 1881 RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize) 1882 break; 1883 } 1884 else if (processed >= (1 << 15)) 1885 { 1886 p->nowPos64 += nowPos32 - startPos32; 1887 return CheckErrors(p); 1888 } 1889 } 1890 } 1891 p->nowPos64 += nowPos32 - startPos32; 1892 return Flush(p, nowPos32); 1893 } 1894 1895 #define kBigHashDicLimit ((UInt32)1 << 24) 1896 1897 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) 1898 { 1899 UInt32 beforeSize = kNumOpts; 1900 Bool btMode; 1901 if (!RangeEnc_Alloc(&p->rc, alloc)) 1902 return SZ_ERROR_MEM; 1903 btMode = (p->matchFinderBase.btMode != 0); 1904 #ifndef _7ZIP_ST 1905 p->mtMode = (p->multiThread && !p->fastMode && btMode); 1906 #endif 1907 1908 { 1909 unsigned lclp = p->lc + p->lp; 1910 if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp) 1911 { 1912 LzmaEnc_FreeLits(p, alloc); 1913 p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); 1914 p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); 1915 if (p->litProbs == 0 || p->saveState.litProbs == 0) 1916 { 1917 LzmaEnc_FreeLits(p, alloc); 1918 return SZ_ERROR_MEM; 1919 } 1920 p->lclp = lclp; 1921 } 1922 } 1923 1924 p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit); 1925 1926 if (beforeSize + p->dictSize < keepWindowSize) 1927 beforeSize = keepWindowSize - p->dictSize; 1928 1929 #ifndef _7ZIP_ST 1930 if (p->mtMode) 1931 { 1932 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)); 1933 p->matchFinderObj = &p->matchFinderMt; 1934 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); 1935 } 1936 else 1937 #endif 1938 { 1939 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)) 1940 return SZ_ERROR_MEM; 1941 p->matchFinderObj = &p->matchFinderBase; 1942 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder); 1943 } 1944 return SZ_OK; 1945 } 1946 1947 void LzmaEnc_Init(CLzmaEnc *p) 1948 { 1949 UInt32 i; 1950 p->state = 0; 1951 for (i = 0 ; i < LZMA_NUM_REPS; i++) 1952 p->reps[i] = 0; 1953 1954 RangeEnc_Init(&p->rc); 1955 1956 1957 for (i = 0; i < kNumStates; i++) 1958 { 1959 UInt32 j; 1960 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) 1961 { 1962 p->isMatch[i][j] = kProbInitValue; 1963 p->isRep0Long[i][j] = kProbInitValue; 1964 } 1965 p->isRep[i] = kProbInitValue; 1966 p->isRepG0[i] = kProbInitValue; 1967 p->isRepG1[i] = kProbInitValue; 1968 p->isRepG2[i] = kProbInitValue; 1969 } 1970 1971 { 1972 UInt32 num = 0x300 << (p->lp + p->lc); 1973 for (i = 0; i < num; i++) 1974 p->litProbs[i] = kProbInitValue; 1975 } 1976 1977 { 1978 for (i = 0; i < kNumLenToPosStates; i++) 1979 { 1980 CLzmaProb *probs = p->posSlotEncoder[i]; 1981 UInt32 j; 1982 for (j = 0; j < (1 << kNumPosSlotBits); j++) 1983 probs[j] = kProbInitValue; 1984 } 1985 } 1986 { 1987 for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) 1988 p->posEncoders[i] = kProbInitValue; 1989 } 1990 1991 LenEnc_Init(&p->lenEnc.p); 1992 LenEnc_Init(&p->repLenEnc.p); 1993 1994 for (i = 0; i < (1 << kNumAlignBits); i++) 1995 p->posAlignEncoder[i] = kProbInitValue; 1996 1997 p->optimumEndIndex = 0; 1998 p->optimumCurrentIndex = 0; 1999 p->additionalOffset = 0; 2000 2001 p->pbMask = (1 << p->pb) - 1; 2002 p->lpMask = (1 << p->lp) - 1; 2003 } 2004 2005 void LzmaEnc_InitPrices(CLzmaEnc *p) 2006 { 2007 if (!p->fastMode) 2008 { 2009 FillDistancesPrices(p); 2010 FillAlignPrices(p); 2011 } 2012 2013 p->lenEnc.tableSize = 2014 p->repLenEnc.tableSize = 2015 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; 2016 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); 2017 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); 2018 } 2019 2020 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) 2021 { 2022 UInt32 i; 2023 for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++) 2024 if (p->dictSize <= ((UInt32)1 << i)) 2025 break; 2026 p->distTableSize = i * 2; 2027 2028 p->finished = False; 2029 p->result = SZ_OK; 2030 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)); 2031 LzmaEnc_Init(p); 2032 LzmaEnc_InitPrices(p); 2033 p->nowPos64 = 0; 2034 return SZ_OK; 2035 } 2036 2037 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, 2038 ISzAlloc *alloc, ISzAlloc *allocBig) 2039 { 2040 CLzmaEnc *p = (CLzmaEnc *)pp; 2041 p->matchFinderBase.stream = inStream; 2042 p->needInit = 1; 2043 p->rc.outStream = outStream; 2044 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); 2045 } 2046 2047 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, 2048 ISeqInStream *inStream, UInt32 keepWindowSize, 2049 ISzAlloc *alloc, ISzAlloc *allocBig) 2050 { 2051 CLzmaEnc *p = (CLzmaEnc *)pp; 2052 p->matchFinderBase.stream = inStream; 2053 p->needInit = 1; 2054 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); 2055 } 2056 2057 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen) 2058 { 2059 p->matchFinderBase.directInput = 1; 2060 p->matchFinderBase.bufferBase = (Byte *)src; 2061 p->matchFinderBase.directInputRem = srcLen; 2062 } 2063 2064 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen, 2065 UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) 2066 { 2067 CLzmaEnc *p = (CLzmaEnc *)pp; 2068 LzmaEnc_SetInputBuf(p, src, srcLen); 2069 p->needInit = 1; 2070 2071 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); 2072 } 2073 2074 void LzmaEnc_Finish(CLzmaEncHandle pp) 2075 { 2076 #ifndef _7ZIP_ST 2077 CLzmaEnc *p = (CLzmaEnc *)pp; 2078 if (p->mtMode) 2079 MatchFinderMt_ReleaseStream(&p->matchFinderMt); 2080 #else 2081 pp = pp; 2082 #endif 2083 } 2084 2085 typedef struct 2086 { 2087 ISeqOutStream funcTable; 2088 Byte *data; 2089 SizeT rem; 2090 Bool overflow; 2091 } CSeqOutStreamBuf; 2092 2093 static size_t MyWrite(void *pp, const void *data, size_t size) 2094 { 2095 CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp; 2096 if (p->rem < size) 2097 { 2098 size = p->rem; 2099 p->overflow = True; 2100 } 2101 memcpy(p->data, data, size); 2102 p->rem -= size; 2103 p->data += size; 2104 return size; 2105 } 2106 2107 2108 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp) 2109 { 2110 const CLzmaEnc *p = (CLzmaEnc *)pp; 2111 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); 2112 } 2113 2114 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp) 2115 { 2116 const CLzmaEnc *p = (CLzmaEnc *)pp; 2117 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; 2118 } 2119 2120 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit, 2121 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize) 2122 { 2123 CLzmaEnc *p = (CLzmaEnc *)pp; 2124 UInt64 nowPos64; 2125 SRes res; 2126 CSeqOutStreamBuf outStream; 2127 2128 outStream.funcTable.Write = MyWrite; 2129 outStream.data = dest; 2130 outStream.rem = *destLen; 2131 outStream.overflow = False; 2132 2133 p->writeEndMark = False; 2134 p->finished = False; 2135 p->result = SZ_OK; 2136 2137 if (reInit) 2138 LzmaEnc_Init(p); 2139 LzmaEnc_InitPrices(p); 2140 nowPos64 = p->nowPos64; 2141 RangeEnc_Init(&p->rc); 2142 p->rc.outStream = &outStream.funcTable; 2143 2144 res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize); 2145 2146 *unpackSize = (UInt32)(p->nowPos64 - nowPos64); 2147 *destLen -= outStream.rem; 2148 if (outStream.overflow) 2149 return SZ_ERROR_OUTPUT_EOF; 2150 2151 return res; 2152 } 2153 2154 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress) 2155 { 2156 SRes res = SZ_OK; 2157 2158 #ifndef _7ZIP_ST 2159 Byte allocaDummy[0x300]; 2160 int i = 0; 2161 for (i = 0; i < 16; i++) 2162 allocaDummy[i] = (Byte)i; 2163 #endif 2164 2165 for (;;) 2166 { 2167 res = LzmaEnc_CodeOneBlock(p, False, 0, 0); 2168 if (res != SZ_OK || p->finished != 0) 2169 break; 2170 if (progress != 0) 2171 { 2172 res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); 2173 if (res != SZ_OK) 2174 { 2175 res = SZ_ERROR_PROGRESS; 2176 break; 2177 } 2178 } 2179 } 2180 LzmaEnc_Finish(p); 2181 return res; 2182 } 2183 2184 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress, 2185 ISzAlloc *alloc, ISzAlloc *allocBig) 2186 { 2187 RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig)); 2188 return LzmaEnc_Encode2((CLzmaEnc *)pp, progress); 2189 } 2190 2191 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size) 2192 { 2193 CLzmaEnc *p = (CLzmaEnc *)pp; 2194 int i; 2195 UInt32 dictSize = p->dictSize; 2196 if (*size < LZMA_PROPS_SIZE) 2197 return SZ_ERROR_PARAM; 2198 *size = LZMA_PROPS_SIZE; 2199 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); 2200 2201 for (i = 11; i <= 30; i++) 2202 { 2203 if (dictSize <= ((UInt32)2 << i)) 2204 { 2205 dictSize = (2 << i); 2206 break; 2207 } 2208 if (dictSize <= ((UInt32)3 << i)) 2209 { 2210 dictSize = (3 << i); 2211 break; 2212 } 2213 } 2214 2215 for (i = 0; i < 4; i++) 2216 props[1 + i] = (Byte)(dictSize >> (8 * i)); 2217 return SZ_OK; 2218 } 2219 2220 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, 2221 int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) 2222 { 2223 SRes res; 2224 CLzmaEnc *p = (CLzmaEnc *)pp; 2225 2226 CSeqOutStreamBuf outStream; 2227 2228 LzmaEnc_SetInputBuf(p, src, srcLen); 2229 2230 outStream.funcTable.Write = MyWrite; 2231 outStream.data = dest; 2232 outStream.rem = *destLen; 2233 outStream.overflow = False; 2234 2235 p->writeEndMark = writeEndMark; 2236 2237 p->rc.outStream = &outStream.funcTable; 2238 res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig); 2239 if (res == SZ_OK) 2240 res = LzmaEnc_Encode2(p, progress); 2241 2242 *destLen -= outStream.rem; 2243 if (outStream.overflow) 2244 return SZ_ERROR_OUTPUT_EOF; 2245 return res; 2246 } 2247 2248 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, 2249 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, 2250 ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) 2251 { 2252 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc); 2253 SRes res; 2254 if (p == 0) 2255 return SZ_ERROR_MEM; 2256 2257 res = LzmaEnc_SetProps(p, props); 2258 if (res == SZ_OK) 2259 { 2260 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); 2261 if (res == SZ_OK) 2262 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, 2263 writeEndMark, progress, alloc, allocBig); 2264 } 2265 2266 LzmaEnc_Destroy(p, alloc, allocBig); 2267 return res; 2268 } 2269