Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkIntersections.h"
      9 #include "SkPathOpsCubic.h"
     10 #include "SkPathOpsLine.h"
     11 #include "SkPathOpsPoint.h"
     12 #include "SkPathOpsQuad.h"
     13 #include "SkPathOpsRect.h"
     14 #include "SkReduceOrder.h"
     15 #include "SkTSort.h"
     16 
     17 #if ONE_OFF_DEBUG
     18 static const double tLimits1[2][2] = {{0.388600450, 0.388600452}, {0.245852802, 0.245852804}};
     19 static const double tLimits2[2][2] = {{-0.865211397, -0.865215212}, {-0.865207696, -0.865208078}};
     20 #endif
     21 
     22 #define DEBUG_QUAD_PART ONE_OFF_DEBUG && 1
     23 #define DEBUG_QUAD_PART_SHOW_SIMPLE DEBUG_QUAD_PART && 0
     24 #define SWAP_TOP_DEBUG 0
     25 
     26 static const int kCubicToQuadSubdivisionDepth = 8; // slots reserved for cubic to quads subdivision
     27 
     28 static int quadPart(const SkDCubic& cubic, double tStart, double tEnd, SkReduceOrder* reducer) {
     29     SkDCubic part = cubic.subDivide(tStart, tEnd);
     30     SkDQuad quad = part.toQuad();
     31     // FIXME: should reduceOrder be looser in this use case if quartic is going to blow up on an
     32     // extremely shallow quadratic?
     33     int order = reducer->reduce(quad, SkReduceOrder::kFill_Style);
     34 #if DEBUG_QUAD_PART
     35     SkDebugf("%s cubic=(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
     36             " t=(%1.9g,%1.9g)\n", __FUNCTION__, cubic[0].fX, cubic[0].fY,
     37             cubic[1].fX, cubic[1].fY, cubic[2].fX, cubic[2].fY,
     38             cubic[3].fX, cubic[3].fY, tStart, tEnd);
     39     SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n"
     40              "  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
     41             part[0].fX, part[0].fY, part[1].fX, part[1].fY, part[2].fX, part[2].fY,
     42             part[3].fX, part[3].fY, quad[0].fX, quad[0].fY,
     43             quad[1].fX, quad[1].fY, quad[2].fX, quad[2].fY);
     44 #if DEBUG_QUAD_PART_SHOW_SIMPLE
     45     SkDebugf("%s simple=(%1.9g,%1.9g", __FUNCTION__, reducer->fQuad[0].fX, reducer->fQuad[0].fY);
     46     if (order > 1) {
     47         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[1].fX, reducer->fQuad[1].fY);
     48     }
     49     if (order > 2) {
     50         SkDebugf(" %1.9g,%1.9g", reducer->fQuad[2].fX, reducer->fQuad[2].fY);
     51     }
     52     SkDebugf(")\n");
     53     SkASSERT(order < 4 && order > 0);
     54 #endif
     55 #endif
     56     return order;
     57 }
     58 
     59 static void intersectWithOrder(const SkDQuad& simple1, int order1, const SkDQuad& simple2,
     60         int order2, SkIntersections& i) {
     61     if (order1 == 3 && order2 == 3) {
     62         i.intersect(simple1, simple2);
     63     } else if (order1 <= 2 && order2 <= 2) {
     64         i.intersect((const SkDLine&) simple1, (const SkDLine&) simple2);
     65     } else if (order1 == 3 && order2 <= 2) {
     66         i.intersect(simple1, (const SkDLine&) simple2);
     67     } else {
     68         SkASSERT(order1 <= 2 && order2 == 3);
     69         i.intersect(simple2, (const SkDLine&) simple1);
     70         i.swapPts();
     71     }
     72 }
     73 
     74 // this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
     75 // chase intersections near quadratic ends, requiring odd hacks to find them.
     76 static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
     77         double t2s, double t2e, double precisionScale, SkIntersections& i) {
     78     i.upDepth();
     79     SkDCubic c1 = cubic1.subDivide(t1s, t1e);
     80     SkDCubic c2 = cubic2.subDivide(t2s, t2e);
     81     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
     82     // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
     83     c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
     84     SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
     85     c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
     86     double t1Start = t1s;
     87     int ts1Count = ts1.count();
     88     for (int i1 = 0; i1 <= ts1Count; ++i1) {
     89         const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
     90         const double t1 = t1s + (t1e - t1s) * tEnd1;
     91         SkReduceOrder s1;
     92         int o1 = quadPart(cubic1, t1Start, t1, &s1);
     93         double t2Start = t2s;
     94         int ts2Count = ts2.count();
     95         for (int i2 = 0; i2 <= ts2Count; ++i2) {
     96             const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
     97             const double t2 = t2s + (t2e - t2s) * tEnd2;
     98             if (&cubic1 == &cubic2 && t1Start >= t2Start) {
     99                 t2Start = t2;
    100                 continue;
    101             }
    102             SkReduceOrder s2;
    103             int o2 = quadPart(cubic2, t2Start, t2, &s2);
    104         #if ONE_OFF_DEBUG
    105             char tab[] = "                  ";
    106             if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
    107                     && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
    108                 SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
    109                         __FUNCTION__, t1Start, t1, t2Start, t2);
    110                 SkIntersections xlocals;
    111                 intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
    112                 SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
    113             }
    114         #endif
    115             SkIntersections locals;
    116             intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
    117             int tCount = locals.used();
    118             for (int tIdx = 0; tIdx < tCount; ++tIdx) {
    119                 double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
    120                 double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
    121     // if the computed t is not sufficiently precise, iterate
    122                 SkDPoint p1 = cubic1.ptAtT(to1);
    123                 SkDPoint p2 = cubic2.ptAtT(to2);
    124                 if (p1.approximatelyEqual(p2)) {
    125                     SkASSERT(!locals.isCoincident(tIdx));
    126                     if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
    127                         if (i.swapped()) {  //  FIXME: insert should respect swap
    128                             i.insert(to2, to1, p1);
    129                         } else {
    130                             i.insert(to1, to2, p1);
    131                         }
    132                     }
    133                 } else {
    134                     double offset = precisionScale / 16;  // FIME: const is arbitrary: test, refine
    135                     double c1Bottom = tIdx == 0 ? 0 :
    136                             (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
    137                     double c1Min = SkTMax(c1Bottom, to1 - offset);
    138                     double c1Top = tIdx == tCount - 1 ? 1 :
    139                             (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
    140                     double c1Max = SkTMin(c1Top, to1 + offset);
    141                     double c2Min = SkTMax(0., to2 - offset);
    142                     double c2Max = SkTMin(1., to2 + offset);
    143                 #if ONE_OFF_DEBUG
    144                     SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    145                             __FUNCTION__,
    146                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    147                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    148                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    149                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    150                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    151                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    152                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    153                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    154                     SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    155                             " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    156                             i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
    157                             to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    158                     SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    159                             " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    160                             c1Max, c2Min, c2Max);
    161                 #endif
    162                     intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    163                 #if ONE_OFF_DEBUG
    164                     SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    165                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    166                 #endif
    167                     if (tCount > 1) {
    168                         c1Min = SkTMax(0., to1 - offset);
    169                         c1Max = SkTMin(1., to1 + offset);
    170                         double c2Bottom = tIdx == 0 ? to2 :
    171                                 (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
    172                         double c2Top = tIdx == tCount - 1 ? to2 :
    173                                 (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
    174                         if (c2Bottom > c2Top) {
    175                             SkTSwap(c2Bottom, c2Top);
    176                         }
    177                         if (c2Bottom == to2) {
    178                             c2Bottom = 0;
    179                         }
    180                         if (c2Top == to2) {
    181                             c2Top = 1;
    182                         }
    183                         c2Min = SkTMax(c2Bottom, to2 - offset);
    184                         c2Max = SkTMin(c2Top, to2 + offset);
    185                     #if ONE_OFF_DEBUG
    186                         SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    187                             __FUNCTION__,
    188                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    189                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    190                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    191                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    192                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    193                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    194                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    195                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    196                         SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    197                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    198                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    199                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    200                         SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    201                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    202                                 c1Max, c2Min, c2Max);
    203                     #endif
    204                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    205                 #if ONE_OFF_DEBUG
    206                     SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    207                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    208                 #endif
    209                         c1Min = SkTMax(c1Bottom, to1 - offset);
    210                         c1Max = SkTMin(c1Top, to1 + offset);
    211                     #if ONE_OFF_DEBUG
    212                         SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
    213                         __FUNCTION__,
    214                             c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
    215                          && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
    216                             to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
    217                          && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
    218                             c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
    219                          && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
    220                             to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
    221                          && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
    222                         SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
    223                                 " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
    224                                 i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
    225                                 to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
    226                         SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
    227                                 " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
    228                                 c1Max, c2Min, c2Max);
    229                     #endif
    230                         intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    231                 #if ONE_OFF_DEBUG
    232                     SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
    233                             i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
    234                 #endif
    235                     }
    236           //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
    237                     // FIXME: if no intersection is found, either quadratics intersected where
    238                     // cubics did not, or the intersection was missed. In the former case, expect
    239                     // the quadratics to be nearly parallel at the point of intersection, and check
    240                     // for that.
    241                 }
    242             }
    243             t2Start = t2;
    244         }
    245         t1Start = t1;
    246     }
    247     i.downDepth();
    248 }
    249 
    250 #define LINE_FRACTION 0.1
    251 
    252 // intersect the end of the cubic with the other. Try lines from the end to control and opposite
    253 // end to determine range of t on opposite cubic.
    254 static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
    255                          const SkDRect& bounds2, bool selfIntersect, SkIntersections& i) {
    256     SkDLine line;
    257     int t1Index = start ? 0 : 3;
    258     bool swap = i.swapped();
    259     double testT = (double) !start;
    260     // quad/quad at this point checks to see if exact matches have already been found
    261     // cubic/cubic can't reject so easily since cubics can intersect same point more than once
    262     if (!selfIntersect) {
    263         SkDLine tmpLine;
    264         tmpLine[0] = tmpLine[1] = cubic2[t1Index];
    265         tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
    266         tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
    267         SkIntersections impTs;
    268         impTs.intersectRay(cubic1, tmpLine);
    269         for (int index = 0; index < impTs.used(); ++index) {
    270             SkDPoint realPt = impTs.pt(index);
    271             if (!tmpLine[0].approximatelyEqualHalf(realPt)) {
    272                 continue;
    273             }
    274             if (swap) {
    275                 i.insert(testT, impTs[0][index], tmpLine[0]);
    276             } else {
    277                 i.insert(impTs[0][index], testT, tmpLine[0]);
    278             }
    279             return;
    280         }
    281     }
    282     // don't bother if the two cubics are connnected
    283     static const int kPointsInCubic = 4; // FIXME: move to DCubic, replace '4' with this
    284     static const int kMaxLineCubicIntersections = 3;
    285     SkSTArray<(kMaxLineCubicIntersections - 1) * kMaxLineCubicIntersections, double, true> tVals;
    286     line[0] = cubic1[t1Index];
    287     // this variant looks for intersections with the end point and lines parallel to other points
    288     for (int index = 0; index < kPointsInCubic; ++index) {
    289         if (index == t1Index) {
    290             continue;
    291         }
    292         SkDVector dxy1 = cubic1[index] - line[0];
    293         dxy1 /= SkDCubic::gPrecisionUnit;
    294         line[1] = line[0] + dxy1;
    295         SkDRect lineBounds;
    296         lineBounds.setBounds(line);
    297         if (!bounds2.intersects(&lineBounds)) {
    298             continue;
    299         }
    300         SkIntersections local;
    301         if (!local.intersect(cubic2, line)) {
    302             continue;
    303         }
    304         for (int idx2 = 0; idx2 < local.used(); ++idx2) {
    305             double foundT = local[0][idx2];
    306             if (approximately_less_than_zero(foundT)
    307                     || approximately_greater_than_one(foundT)) {
    308                 continue;
    309             }
    310             if (local.pt(idx2).approximatelyEqual(line[0])) {
    311                 if (i.swapped()) {  // FIXME: insert should respect swap
    312                     i.insert(foundT, testT, line[0]);
    313                 } else {
    314                     i.insert(testT, foundT, line[0]);
    315                 }
    316             } else {
    317                 tVals.push_back(foundT);
    318             }
    319         }
    320     }
    321     if (tVals.count() == 0) {
    322         return;
    323     }
    324     SkTQSort<double>(tVals.begin(), tVals.end() - 1);
    325     double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    326     double tMax1 = start ? LINE_FRACTION : 1;
    327     int tIdx = 0;
    328     do {
    329         int tLast = tIdx;
    330         while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
    331             ++tLast;
    332         }
    333         double tMin2 = SkTMax(tVals[tIdx] - LINE_FRACTION, 0.0);
    334         double tMax2 = SkTMin(tVals[tLast] + LINE_FRACTION, 1.0);
    335         int lastUsed = i.used();
    336         intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
    337         if (lastUsed == i.used()) {
    338             tMin2 = SkTMax(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
    339             tMax2 = SkTMin(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
    340             intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
    341         }
    342         tIdx = tLast + 1;
    343     } while (tIdx < tVals.count());
    344     return;
    345 }
    346 
    347 const double CLOSE_ENOUGH = 0.001;
    348 
    349 static bool closeStart(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    350     if (i[cubicIndex][0] != 0 || i[cubicIndex][1] > CLOSE_ENOUGH) {
    351         return false;
    352     }
    353     pt = cubic.ptAtT((i[cubicIndex][0] + i[cubicIndex][1]) / 2);
    354     return true;
    355 }
    356 
    357 static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    358     int last = i.used() - 1;
    359     if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
    360         return false;
    361     }
    362     pt = cubic.ptAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
    363     return true;
    364 }
    365 
    366 static bool only_end_pts_in_common(const SkDCubic& c1, const SkDCubic& c2) {
    367 // the idea here is to see at minimum do a quick reject by rotating all points
    368 // to either side of the line formed by connecting the endpoints
    369 // if the opposite curves points are on the line or on the other side, the
    370 // curves at most intersect at the endpoints
    371     for (int oddMan = 0; oddMan < 4; ++oddMan) {
    372         const SkDPoint* endPt[3];
    373         for (int opp = 1; opp < 4; ++opp) {
    374             int end = oddMan ^ opp;  // choose a value not equal to oddMan
    375             endPt[opp - 1] = &c1[end];
    376         }
    377         for (int triTest = 0; triTest < 3; ++triTest) {
    378             double origX = endPt[triTest]->fX;
    379             double origY = endPt[triTest]->fY;
    380             int oppTest = triTest + 1;
    381             if (3 == oppTest) {
    382                 oppTest = 0;
    383             }
    384             double adj = endPt[oppTest]->fX - origX;
    385             double opp = endPt[oppTest]->fY - origY;
    386             double sign = (c1[oddMan].fY - origY) * adj - (c1[oddMan].fX - origX) * opp;
    387             if (approximately_zero(sign)) {
    388                 goto tryNextHalfPlane;
    389             }
    390             for (int n = 0; n < 4; ++n) {
    391                 double test = (c2[n].fY - origY) * adj - (c2[n].fX - origX) * opp;
    392                 if (test * sign > 0 && !precisely_zero(test)) {
    393                     goto tryNextHalfPlane;
    394                 }
    395             }
    396         }
    397         return true;
    398 tryNextHalfPlane:
    399         ;
    400     }
    401     return false;
    402 }
    403 
    404 int SkIntersections::intersect(const SkDCubic& c1, const SkDCubic& c2) {
    405     bool selfIntersect = &c1 == &c2;
    406     if (selfIntersect) {
    407         if (c1[0].approximatelyEqualHalf(c1[3])) {
    408             insert(0, 1, c1[0]);
    409         }
    410     } else {
    411         for (int i1 = 0; i1 < 4; i1 += 3) {
    412             for (int i2 = 0; i2 < 4; i2 += 3) {
    413                 if (c1[i1].approximatelyEqualHalf(c2[i2])) {
    414                     insert(i1 >> 1, i2 >> 1, c1[i1]);
    415                 }
    416             }
    417         }
    418     }
    419     SkASSERT(fUsed < 4);
    420     if (!selfIntersect) {
    421         if (only_end_pts_in_common(c1, c2)) {
    422             return fUsed;
    423         }
    424         if (only_end_pts_in_common(c2, c1)) {
    425             return fUsed;
    426         }
    427     }
    428     // quad/quad does linear test here -- cubic does not
    429     // cubics which are really lines should have been detected in reduce step earlier
    430     SkDRect c1Bounds, c2Bounds;
    431     // FIXME: pass in cached bounds from caller
    432     c1Bounds.setBounds(c1);  // OPTIMIZE use setRawBounds ?
    433     c2Bounds.setBounds(c2);
    434     intersectEnd(c1, false, c2, c2Bounds, selfIntersect, *this);
    435     intersectEnd(c1, true, c2, c2Bounds, selfIntersect, *this);
    436     if (selfIntersect) {
    437         if (fUsed) {
    438             return fUsed;
    439         }
    440     } else {
    441         swap();
    442         intersectEnd(c2, false, c1, c1Bounds, false, *this);
    443         intersectEnd(c2, true, c1, c1Bounds, false, *this);
    444         swap();
    445     }
    446     // if two ends intersect, check middle for coincidence
    447     if (fUsed >= 2) {
    448         SkASSERT(!selfIntersect);
    449         int last = fUsed - 1;
    450         double tRange1 = fT[0][last] - fT[0][0];
    451         double tRange2 = fT[1][last] - fT[1][0];
    452         for (int index = 1; index < 5; ++index) {
    453             double testT1 = fT[0][0] + tRange1 * index / 5;
    454             double testT2 = fT[1][0] + tRange2 * index / 5;
    455             SkDPoint testPt1 = c1.ptAtT(testT1);
    456             SkDPoint testPt2 = c2.ptAtT(testT2);
    457             if (!testPt1.approximatelyEqual(testPt2)) {
    458                 goto skipCoincidence;
    459             }
    460         }
    461         if (fUsed > 2) {
    462             fPt[1] = fPt[last];
    463             fT[0][1] = fT[0][last];
    464             fT[1][1] = fT[1][last];
    465             fUsed = 2;
    466         }
    467         fIsCoincident[0] = fIsCoincident[1] = 0x03;
    468         return fUsed;
    469     }
    470 skipCoincidence:
    471     ::intersect(c1, 0, 1, c2, 0, 1, 1, *this);
    472     // If an end point and a second point very close to the end is returned, the second
    473     // point may have been detected because the approximate quads
    474     // intersected at the end and close to it. Verify that the second point is valid.
    475     if (fUsed <= 1) {
    476         return fUsed;
    477     }
    478     SkDPoint pt[2];
    479     if (closeStart(c1, 0, *this, pt[0]) && closeStart(c2, 1, *this, pt[1])
    480             && pt[0].approximatelyEqual(pt[1])) {
    481         removeOne(1);
    482     }
    483     if (closeEnd(c1, 0, *this, pt[0]) && closeEnd(c2, 1, *this, pt[1])
    484             && pt[0].approximatelyEqual(pt[1])) {
    485         removeOne(used() - 2);
    486     }
    487     // vet the pairs of t values to see if the mid value is also on the curve. If so, mark
    488     // the span as coincident
    489     if (fUsed >= 2 && !coincidentUsed()) {
    490         int last = fUsed - 1;
    491         int match = 0;
    492         for (int index = 0; index < last; ++index) {
    493             double mid1 = (fT[0][index] + fT[0][index + 1]) / 2;
    494             double mid2 = (fT[1][index] + fT[1][index + 1]) / 2;
    495             pt[0] = c1.ptAtT(mid1);
    496             pt[1] = c2.ptAtT(mid2);
    497             if (pt[0].approximatelyEqual(pt[1])) {
    498                 match |= 1 << index;
    499             }
    500         }
    501         if (match) {
    502             if (((match + 1) & match) != 0) {
    503                 SkDebugf("%s coincident hole\n", __FUNCTION__);
    504             }
    505             // for now, assume that everything from start to finish is coincident
    506             if (fUsed > 2) {
    507                   fPt[1] = fPt[last];
    508                   fT[0][1] = fT[0][last];
    509                   fT[1][1] = fT[1][last];
    510                   fIsCoincident[0] = 0x03;
    511                   fIsCoincident[1] = 0x03;
    512                   fUsed = 2;
    513             }
    514         }
    515     }
    516     return fUsed;
    517 }
    518 
    519 // Up promote the quad to a cubic.
    520 // OPTIMIZATION If this is a common use case, optimize by duplicating
    521 // the intersect 3 loop to avoid the promotion  / demotion code
    522 int SkIntersections::intersect(const SkDCubic& cubic, const SkDQuad& quad) {
    523     SkDCubic up = quad.toCubic();
    524     (void) intersect(cubic, up);
    525     return used();
    526 }
    527 
    528 /* http://www.ag.jku.at/compass/compasssample.pdf
    529 ( Self-Intersection Problems and Approximate Implicitization by Jan B. Thomassen
    530 Centre of Mathematics for Applications, University of Oslo http://www.cma.uio.no janbth (at) math.uio.no
    531 SINTEF Applied Mathematics http://www.sintef.no )
    532 describes a method to find the self intersection of a cubic by taking the gradient of the implicit
    533 form dotted with the normal, and solving for the roots. My math foo is too poor to implement this.*/
    534 
    535 int SkIntersections::intersect(const SkDCubic& c) {
    536     // check to see if x or y end points are the extrema. Are other quick rejects possible?
    537     if (c.endsAreExtremaInXOrY()) {
    538         return false;
    539     }
    540     (void) intersect(c, c);
    541     if (used() > 0) {
    542         SkASSERT(used() == 1);
    543         if (fT[0][0] > fT[1][0]) {
    544             swapPts();
    545         }
    546     }
    547     return used();
    548 }
    549