Home | History | Annotate | Download | only in src
      1 // Copyright (c) 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 
     30 // ---
     31 // Author: Sanjay Ghemawat
     32 //
     33 // Produce stack trace
     34 
     35 #ifndef BASE_STACKTRACE_X86_INL_H_
     36 #define BASE_STACKTRACE_X86_INL_H_
     37 // Note: this file is included into stacktrace.cc more than once.
     38 // Anything that should only be defined once should be here:
     39 
     40 #include "config.h"
     41 #include <stdlib.h>   // for NULL
     42 #include <assert.h>
     43 #if defined(HAVE_SYS_UCONTEXT_H)
     44 #include <sys/ucontext.h>
     45 #elif defined(HAVE_UCONTEXT_H)
     46 #include <ucontext.h>  // for ucontext_t
     47 #elif defined(HAVE_CYGWIN_SIGNAL_H)
     48 // cygwin/signal.h has a buglet where it uses pthread_attr_t without
     49 // #including <pthread.h> itself.  So we have to do it.
     50 # ifdef HAVE_PTHREAD
     51 # include <pthread.h>
     52 # endif
     53 #include <cygwin/signal.h>
     54 typedef ucontext ucontext_t;
     55 #endif
     56 #ifdef HAVE_STDINT_H
     57 #include <stdint.h>   // for uintptr_t
     58 #endif
     59 #ifdef HAVE_UNISTD_H
     60 #include <unistd.h>
     61 #endif
     62 #ifdef HAVE_MMAP
     63 #include <sys/mman.h> // for msync
     64 #include "base/vdso_support.h"
     65 #endif
     66 
     67 #include "gperftools/stacktrace.h"
     68 
     69 #if defined(__linux__) && defined(__i386__) && defined(__ELF__) && defined(HAVE_MMAP)
     70 // Count "push %reg" instructions in VDSO __kernel_vsyscall(),
     71 // preceeding "syscall" or "sysenter".
     72 // If __kernel_vsyscall uses frame pointer, answer 0.
     73 //
     74 // kMaxBytes tells how many instruction bytes of __kernel_vsyscall
     75 // to analyze before giving up. Up to kMaxBytes+1 bytes of
     76 // instructions could be accessed.
     77 //
     78 // Here are known __kernel_vsyscall instruction sequences:
     79 //
     80 // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
     81 // Used on Intel.
     82 //  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx
     83 //  0xffffe401 <__kernel_vsyscall+1>:       push   %edx
     84 //  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp
     85 //  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp
     86 //  0xffffe405 <__kernel_vsyscall+5>:       sysenter
     87 //
     88 // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
     89 // Used on AMD.
     90 //  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp
     91 //  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp
     92 //  0xffffe403 <__kernel_vsyscall+3>:       syscall
     93 //
     94 // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
     95 //  0xffffe400 <__kernel_vsyscall+0>:       int $0x80
     96 //  0xffffe401 <__kernel_vsyscall+1>:       ret
     97 //
     98 static const int kMaxBytes = 10;
     99 
    100 // We use assert()s instead of DCHECK()s -- this is too low level
    101 // for DCHECK().
    102 
    103 static int CountPushInstructions(const unsigned char *const addr) {
    104   int result = 0;
    105   for (int i = 0; i < kMaxBytes; ++i) {
    106     if (addr[i] == 0x89) {
    107       // "mov reg,reg"
    108       if (addr[i + 1] == 0xE5) {
    109         // Found "mov %esp,%ebp".
    110         return 0;
    111       }
    112       ++i;  // Skip register encoding byte.
    113     } else if (addr[i] == 0x0F &&
    114                (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
    115       // Found "sysenter" or "syscall".
    116       return result;
    117     } else if ((addr[i] & 0xF0) == 0x50) {
    118       // Found "push %reg".
    119       ++result;
    120     } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
    121       // Found "int $0x80"
    122       assert(result == 0);
    123       return 0;
    124     } else {
    125       // Unexpected instruction.
    126       assert(0 == "unexpected instruction in __kernel_vsyscall");
    127       return 0;
    128     }
    129   }
    130   // Unexpected: didn't find SYSENTER or SYSCALL in
    131   // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
    132   assert(0 == "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
    133   return 0;
    134 }
    135 #endif
    136 
    137 // Given a pointer to a stack frame, locate and return the calling
    138 // stackframe, or return NULL if no stackframe can be found. Perform sanity
    139 // checks (the strictness of which is controlled by the boolean parameter
    140 // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
    141 template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
    142 static void **NextStackFrame(void **old_sp, const void *uc) {
    143   void **new_sp = (void **) *old_sp;
    144 
    145 #if defined(__linux__) && defined(__i386__) && defined(HAVE_VDSO_SUPPORT)
    146   if (WITH_CONTEXT && uc != NULL) {
    147     // How many "push %reg" instructions are there at __kernel_vsyscall?
    148     // This is constant for a given kernel and processor, so compute
    149     // it only once.
    150     static int num_push_instructions = -1;  // Sentinel: not computed yet.
    151     // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
    152     // be there.
    153     static const unsigned char *kernel_rt_sigreturn_address = NULL;
    154     static const unsigned char *kernel_vsyscall_address = NULL;
    155     if (num_push_instructions == -1) {
    156       base::VDSOSupport vdso;
    157       if (vdso.IsPresent()) {
    158         base::VDSOSupport::SymbolInfo rt_sigreturn_symbol_info;
    159         base::VDSOSupport::SymbolInfo vsyscall_symbol_info;
    160         if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5",
    161                                STT_FUNC, &rt_sigreturn_symbol_info) ||
    162             !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5",
    163                                STT_FUNC, &vsyscall_symbol_info) ||
    164             rt_sigreturn_symbol_info.address == NULL ||
    165             vsyscall_symbol_info.address == NULL) {
    166           // Unexpected: 32-bit VDSO is present, yet one of the expected
    167           // symbols is missing or NULL.
    168           assert(0 == "VDSO is present, but doesn't have expected symbols");
    169           num_push_instructions = 0;
    170         } else {
    171           kernel_rt_sigreturn_address =
    172               reinterpret_cast<const unsigned char *>(
    173                   rt_sigreturn_symbol_info.address);
    174           kernel_vsyscall_address =
    175               reinterpret_cast<const unsigned char *>(
    176                   vsyscall_symbol_info.address);
    177           num_push_instructions =
    178               CountPushInstructions(kernel_vsyscall_address);
    179         }
    180       } else {
    181         num_push_instructions = 0;
    182       }
    183     }
    184     if (num_push_instructions != 0 && kernel_rt_sigreturn_address != NULL &&
    185         old_sp[1] == kernel_rt_sigreturn_address) {
    186       const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
    187       // This kernel does not use frame pointer in its VDSO code,
    188       // and so %ebp is not suitable for unwinding.
    189       void **const reg_ebp =
    190           reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
    191       const unsigned char *const reg_eip =
    192           reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
    193       if (new_sp == reg_ebp &&
    194           kernel_vsyscall_address <= reg_eip &&
    195           reg_eip - kernel_vsyscall_address < kMaxBytes) {
    196         // We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
    197         // Restore from 'ucv' instead.
    198         void **const reg_esp =
    199             reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
    200         // Check that alleged %esp is not NULL and is reasonably aligned.
    201         if (reg_esp &&
    202             ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
    203           // Check that alleged %esp is actually readable. This is to prevent
    204           // "double fault" in case we hit the first fault due to e.g. stack
    205           // corruption.
    206           //
    207           // page_size is linker-initalized to avoid async-unsafe locking
    208           // that GCC would otherwise insert (__cxa_guard_acquire etc).
    209           static int page_size;
    210           if (page_size == 0) {
    211             // First time through.
    212             page_size = getpagesize();
    213           }
    214           void *const reg_esp_aligned =
    215               reinterpret_cast<void *>(
    216                   (uintptr_t)(reg_esp + num_push_instructions - 1) &
    217                   ~(page_size - 1));
    218           if (msync(reg_esp_aligned, page_size, MS_ASYNC) == 0) {
    219             // Alleged %esp is readable, use it for further unwinding.
    220             new_sp = reinterpret_cast<void **>(
    221                 reg_esp[num_push_instructions - 1]);
    222           }
    223         }
    224       }
    225     }
    226   }
    227 #endif
    228 
    229   // Check that the transition from frame pointer old_sp to frame
    230   // pointer new_sp isn't clearly bogus
    231   if (STRICT_UNWINDING) {
    232     // With the stack growing downwards, older stack frame must be
    233     // at a greater address that the current one.
    234     if (new_sp <= old_sp) return NULL;
    235     // Assume stack frames larger than 100,000 bytes are bogus.
    236     if ((uintptr_t)new_sp - (uintptr_t)old_sp > 100000) return NULL;
    237   } else {
    238     // In the non-strict mode, allow discontiguous stack frames.
    239     // (alternate-signal-stacks for example).
    240     if (new_sp == old_sp) return NULL;
    241     if (new_sp > old_sp) {
    242       // And allow frames upto about 1MB.
    243       const uintptr_t delta = (uintptr_t)new_sp - (uintptr_t)old_sp;
    244       const uintptr_t acceptable_delta = 1000000;
    245       if (delta > acceptable_delta) {
    246         return NULL;
    247       }
    248     }
    249   }
    250   if ((uintptr_t)new_sp & (sizeof(void *) - 1)) return NULL;
    251 #ifdef __i386__
    252   // On 64-bit machines, the stack pointer can be very close to
    253   // 0xffffffff, so we explicitly check for a pointer into the
    254   // last two pages in the address space
    255   if ((uintptr_t)new_sp >= 0xffffe000) return NULL;
    256 #endif
    257 #ifdef HAVE_MMAP
    258   if (!STRICT_UNWINDING) {
    259     // Lax sanity checks cause a crash on AMD-based machines with
    260     // VDSO-enabled kernels.
    261     // Make an extra sanity check to insure new_sp is readable.
    262     // Note: NextStackFrame<false>() is only called while the program
    263     //       is already on its last leg, so it's ok to be slow here.
    264     static int page_size = getpagesize();
    265     void *new_sp_aligned = (void *)((uintptr_t)new_sp & ~(page_size - 1));
    266     if (msync(new_sp_aligned, page_size, MS_ASYNC) == -1)
    267       return NULL;
    268   }
    269 #endif
    270   return new_sp;
    271 }
    272 
    273 #endif  // BASE_STACKTRACE_X86_INL_H_
    274 
    275 // Note: this part of the file is included several times.
    276 // Do not put globals below.
    277 
    278 // The following 4 functions are generated from the code below:
    279 //   GetStack{Trace,Frames}()
    280 //   GetStack{Trace,Frames}WithContext()
    281 //
    282 // These functions take the following args:
    283 //   void** result: the stack-trace, as an array
    284 //   int* sizes: the size of each stack frame, as an array
    285 //               (GetStackFrames* only)
    286 //   int max_depth: the size of the result (and sizes) array(s)
    287 //   int skip_count: how many stack pointers to skip before storing in result
    288 //   void* ucp: a ucontext_t* (GetStack{Trace,Frames}WithContext only)
    289 
    290 int GET_STACK_TRACE_OR_FRAMES {
    291   void **sp;
    292 #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __llvm__
    293   // __builtin_frame_address(0) can return the wrong address on gcc-4.1.0-k8.
    294   // It's always correct on llvm, and the techniques below aren't (in
    295   // particular, llvm-gcc will make a copy of pcs, so it's not in sp[2]),
    296   // so we also prefer __builtin_frame_address when running under llvm.
    297   sp = reinterpret_cast<void**>(__builtin_frame_address(0));
    298 #elif defined(__i386__)
    299   // Stack frame format:
    300   //    sp[0]   pointer to previous frame
    301   //    sp[1]   caller address
    302   //    sp[2]   first argument
    303   //    ...
    304   // NOTE: This will break under llvm, since result is a copy and not in sp[2]
    305   sp = (void **)&result - 2;
    306 #elif defined(__x86_64__)
    307   unsigned long rbp;
    308   // Move the value of the register %rbp into the local variable rbp.
    309   // We need 'volatile' to prevent this instruction from getting moved
    310   // around during optimization to before function prologue is done.
    311   // An alternative way to achieve this
    312   // would be (before this __asm__ instruction) to call Noop() defined as
    313   //   static void Noop() __attribute__ ((noinline));  // prevent inlining
    314   //   static void Noop() { asm(""); }  // prevent optimizing-away
    315   __asm__ volatile ("mov %%rbp, %0" : "=r" (rbp));
    316   // Arguments are passed in registers on x86-64, so we can't just
    317   // offset from &result
    318   sp = (void **) rbp;
    319 #else
    320 # error Using stacktrace_x86-inl.h on a non x86 architecture!
    321 #endif
    322 
    323   int n = 0;
    324   while (sp && n < max_depth) {
    325     if (*(sp+1) == reinterpret_cast<void *>(0)) {
    326       // In 64-bit code, we often see a frame that
    327       // points to itself and has a return address of 0.
    328       break;
    329     }
    330 #if !IS_WITH_CONTEXT
    331     const void *const ucp = NULL;
    332 #endif
    333     void **next_sp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(sp, ucp);
    334     if (skip_count > 0) {
    335       skip_count--;
    336     } else {
    337       result[n] = *(sp+1);
    338 #if IS_STACK_FRAMES
    339       if (next_sp > sp) {
    340         sizes[n] = (uintptr_t)next_sp - (uintptr_t)sp;
    341       } else {
    342         // A frame-size of 0 is used to indicate unknown frame size.
    343         sizes[n] = 0;
    344       }
    345 #endif
    346       n++;
    347     }
    348     sp = next_sp;
    349   }
    350   return n;
    351 }
    352