Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "codegen.h"
     31 #include "compiler.h"
     32 #include "debug.h"
     33 #include "full-codegen.h"
     34 #include "liveedit.h"
     35 #include "macro-assembler.h"
     36 #include "prettyprinter.h"
     37 #include "scopes.h"
     38 #include "scopeinfo.h"
     39 #include "snapshot.h"
     40 #include "stub-cache.h"
     41 
     42 namespace v8 {
     43 namespace internal {
     44 
     45 void BreakableStatementChecker::Check(Statement* stmt) {
     46   Visit(stmt);
     47 }
     48 
     49 
     50 void BreakableStatementChecker::Check(Expression* expr) {
     51   Visit(expr);
     52 }
     53 
     54 
     55 void BreakableStatementChecker::VisitVariableDeclaration(
     56     VariableDeclaration* decl) {
     57 }
     58 
     59 void BreakableStatementChecker::VisitFunctionDeclaration(
     60     FunctionDeclaration* decl) {
     61 }
     62 
     63 void BreakableStatementChecker::VisitModuleDeclaration(
     64     ModuleDeclaration* decl) {
     65 }
     66 
     67 void BreakableStatementChecker::VisitImportDeclaration(
     68     ImportDeclaration* decl) {
     69 }
     70 
     71 void BreakableStatementChecker::VisitExportDeclaration(
     72     ExportDeclaration* decl) {
     73 }
     74 
     75 
     76 void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
     77 }
     78 
     79 
     80 void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
     81 }
     82 
     83 
     84 void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
     85 }
     86 
     87 
     88 void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
     89 }
     90 
     91 
     92 void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
     93 }
     94 
     95 
     96 void BreakableStatementChecker::VisitBlock(Block* stmt) {
     97 }
     98 
     99 
    100 void BreakableStatementChecker::VisitExpressionStatement(
    101     ExpressionStatement* stmt) {
    102   // Check if expression is breakable.
    103   Visit(stmt->expression());
    104 }
    105 
    106 
    107 void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
    108 }
    109 
    110 
    111 void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
    112   // If the condition is breakable the if statement is breakable.
    113   Visit(stmt->condition());
    114 }
    115 
    116 
    117 void BreakableStatementChecker::VisitContinueStatement(
    118     ContinueStatement* stmt) {
    119 }
    120 
    121 
    122 void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
    123 }
    124 
    125 
    126 void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
    127   // Return is breakable if the expression is.
    128   Visit(stmt->expression());
    129 }
    130 
    131 
    132 void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
    133   Visit(stmt->expression());
    134 }
    135 
    136 
    137 void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
    138   // Switch statements breakable if the tag expression is.
    139   Visit(stmt->tag());
    140 }
    141 
    142 
    143 void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
    144   // Mark do while as breakable to avoid adding a break slot in front of it.
    145   is_breakable_ = true;
    146 }
    147 
    148 
    149 void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
    150   // Mark while statements breakable if the condition expression is.
    151   Visit(stmt->cond());
    152 }
    153 
    154 
    155 void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
    156   // Mark for statements breakable if the condition expression is.
    157   if (stmt->cond() != NULL) {
    158     Visit(stmt->cond());
    159   }
    160 }
    161 
    162 
    163 void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
    164   // Mark for in statements breakable if the enumerable expression is.
    165   Visit(stmt->enumerable());
    166 }
    167 
    168 
    169 void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
    170   // For-of is breakable because of the next() call.
    171   is_breakable_ = true;
    172 }
    173 
    174 
    175 void BreakableStatementChecker::VisitTryCatchStatement(
    176     TryCatchStatement* stmt) {
    177   // Mark try catch as breakable to avoid adding a break slot in front of it.
    178   is_breakable_ = true;
    179 }
    180 
    181 
    182 void BreakableStatementChecker::VisitTryFinallyStatement(
    183     TryFinallyStatement* stmt) {
    184   // Mark try finally as breakable to avoid adding a break slot in front of it.
    185   is_breakable_ = true;
    186 }
    187 
    188 
    189 void BreakableStatementChecker::VisitDebuggerStatement(
    190     DebuggerStatement* stmt) {
    191   // The debugger statement is breakable.
    192   is_breakable_ = true;
    193 }
    194 
    195 
    196 void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
    197 }
    198 
    199 
    200 void BreakableStatementChecker::VisitSharedFunctionInfoLiteral(
    201     SharedFunctionInfoLiteral* expr) {
    202 }
    203 
    204 
    205 void BreakableStatementChecker::VisitConditional(Conditional* expr) {
    206 }
    207 
    208 
    209 void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
    210 }
    211 
    212 
    213 void BreakableStatementChecker::VisitLiteral(Literal* expr) {
    214 }
    215 
    216 
    217 void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
    218 }
    219 
    220 
    221 void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
    222 }
    223 
    224 
    225 void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
    226 }
    227 
    228 
    229 void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
    230   // If assigning to a property (including a global property) the assignment is
    231   // breakable.
    232   VariableProxy* proxy = expr->target()->AsVariableProxy();
    233   Property* prop = expr->target()->AsProperty();
    234   if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
    235     is_breakable_ = true;
    236     return;
    237   }
    238 
    239   // Otherwise the assignment is breakable if the assigned value is.
    240   Visit(expr->value());
    241 }
    242 
    243 
    244 void BreakableStatementChecker::VisitYield(Yield* expr) {
    245   // Yield is breakable if the expression is.
    246   Visit(expr->expression());
    247 }
    248 
    249 
    250 void BreakableStatementChecker::VisitThrow(Throw* expr) {
    251   // Throw is breakable if the expression is.
    252   Visit(expr->exception());
    253 }
    254 
    255 
    256 void BreakableStatementChecker::VisitProperty(Property* expr) {
    257   // Property load is breakable.
    258   is_breakable_ = true;
    259 }
    260 
    261 
    262 void BreakableStatementChecker::VisitCall(Call* expr) {
    263   // Function calls both through IC and call stub are breakable.
    264   is_breakable_ = true;
    265 }
    266 
    267 
    268 void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
    269   // Function calls through new are breakable.
    270   is_breakable_ = true;
    271 }
    272 
    273 
    274 void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
    275 }
    276 
    277 
    278 void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
    279   Visit(expr->expression());
    280 }
    281 
    282 
    283 void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
    284   Visit(expr->expression());
    285 }
    286 
    287 
    288 void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
    289   Visit(expr->left());
    290   if (expr->op() != Token::AND &&
    291       expr->op() != Token::OR) {
    292     Visit(expr->right());
    293   }
    294 }
    295 
    296 
    297 void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
    298   Visit(expr->left());
    299   Visit(expr->right());
    300 }
    301 
    302 
    303 void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
    304 }
    305 
    306 
    307 #define __ ACCESS_MASM(masm())
    308 
    309 bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
    310   Isolate* isolate = info->isolate();
    311   Handle<Script> script = info->script();
    312   if (!script->IsUndefined() && !script->source()->IsUndefined()) {
    313     int len = String::cast(script->source())->length();
    314     isolate->counters()->total_full_codegen_source_size()->Increment(len);
    315   }
    316   CodeGenerator::MakeCodePrologue(info, "full");
    317   const int kInitialBufferSize = 4 * KB;
    318   MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
    319 #ifdef ENABLE_GDB_JIT_INTERFACE
    320   masm.positions_recorder()->StartGDBJITLineInfoRecording();
    321 #endif
    322   LOG_CODE_EVENT(isolate,
    323                  CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
    324 
    325   FullCodeGenerator cgen(&masm, info);
    326   cgen.Generate();
    327   if (cgen.HasStackOverflow()) {
    328     ASSERT(!isolate->has_pending_exception());
    329     return false;
    330   }
    331   unsigned table_offset = cgen.EmitBackEdgeTable();
    332 
    333   Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
    334   Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
    335   code->set_optimizable(info->IsOptimizable() &&
    336                         !info->function()->flags()->Contains(kDontOptimize) &&
    337                         info->function()->scope()->AllowsLazyCompilation());
    338   cgen.PopulateDeoptimizationData(code);
    339   cgen.PopulateTypeFeedbackInfo(code);
    340   cgen.PopulateTypeFeedbackCells(code);
    341   code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
    342   code->set_handler_table(*cgen.handler_table());
    343 #ifdef ENABLE_DEBUGGER_SUPPORT
    344   code->set_has_debug_break_slots(
    345       info->isolate()->debugger()->IsDebuggerActive());
    346   code->set_compiled_optimizable(info->IsOptimizable());
    347 #endif  // ENABLE_DEBUGGER_SUPPORT
    348   code->set_allow_osr_at_loop_nesting_level(0);
    349   code->set_profiler_ticks(0);
    350   code->set_back_edge_table_offset(table_offset);
    351   code->set_back_edges_patched_for_osr(false);
    352   CodeGenerator::PrintCode(code, info);
    353   info->SetCode(code);  // May be an empty handle.
    354 #ifdef ENABLE_GDB_JIT_INTERFACE
    355   if (FLAG_gdbjit && !code.is_null()) {
    356     GDBJITLineInfo* lineinfo =
    357         masm.positions_recorder()->DetachGDBJITLineInfo();
    358 
    359     GDBJIT(RegisterDetailedLineInfo(*code, lineinfo));
    360   }
    361 #endif
    362   if (!code.is_null()) {
    363     void* line_info =
    364         masm.positions_recorder()->DetachJITHandlerData();
    365     LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
    366   }
    367   return !code.is_null();
    368 }
    369 
    370 
    371 unsigned FullCodeGenerator::EmitBackEdgeTable() {
    372   // The back edge table consists of a length (in number of entries)
    373   // field, and then a sequence of entries.  Each entry is a pair of AST id
    374   // and code-relative pc offset.
    375   masm()->Align(kIntSize);
    376   unsigned offset = masm()->pc_offset();
    377   unsigned length = back_edges_.length();
    378   __ dd(length);
    379   for (unsigned i = 0; i < length; ++i) {
    380     __ dd(back_edges_[i].id.ToInt());
    381     __ dd(back_edges_[i].pc);
    382     __ dd(back_edges_[i].loop_depth);
    383   }
    384   return offset;
    385 }
    386 
    387 
    388 void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
    389   // Fill in the deoptimization information.
    390   ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
    391   if (!info_->HasDeoptimizationSupport()) return;
    392   int length = bailout_entries_.length();
    393   Handle<DeoptimizationOutputData> data = isolate()->factory()->
    394       NewDeoptimizationOutputData(length, TENURED);
    395   for (int i = 0; i < length; i++) {
    396     data->SetAstId(i, bailout_entries_[i].id);
    397     data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
    398   }
    399   code->set_deoptimization_data(*data);
    400 }
    401 
    402 
    403 void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
    404   Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
    405   info->set_ic_total_count(ic_total_count_);
    406   ASSERT(!isolate()->heap()->InNewSpace(*info));
    407   code->set_type_feedback_info(*info);
    408 }
    409 
    410 
    411 void FullCodeGenerator::Initialize() {
    412   // The generation of debug code must match between the snapshot code and the
    413   // code that is generated later.  This is assumed by the debugger when it is
    414   // calculating PC offsets after generating a debug version of code.  Therefore
    415   // we disable the production of debug code in the full compiler if we are
    416   // either generating a snapshot or we booted from a snapshot.
    417   generate_debug_code_ = FLAG_debug_code &&
    418                          !Serializer::enabled() &&
    419                          !Snapshot::HaveASnapshotToStartFrom();
    420   masm_->set_emit_debug_code(generate_debug_code_);
    421   masm_->set_predictable_code_size(true);
    422   InitializeAstVisitor();
    423 }
    424 
    425 
    426 void FullCodeGenerator::PopulateTypeFeedbackCells(Handle<Code> code) {
    427   if (type_feedback_cells_.is_empty()) return;
    428   int length = type_feedback_cells_.length();
    429   int array_size = TypeFeedbackCells::LengthOfFixedArray(length);
    430   Handle<TypeFeedbackCells> cache = Handle<TypeFeedbackCells>::cast(
    431       isolate()->factory()->NewFixedArray(array_size, TENURED));
    432   for (int i = 0; i < length; i++) {
    433     cache->SetAstId(i, type_feedback_cells_[i].ast_id);
    434     cache->SetCell(i, *type_feedback_cells_[i].cell);
    435   }
    436   TypeFeedbackInfo::cast(code->type_feedback_info())->set_type_feedback_cells(
    437       *cache);
    438 }
    439 
    440 
    441 
    442 void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
    443   PrepareForBailoutForId(node->id(), state);
    444 }
    445 
    446 
    447 void FullCodeGenerator::RecordJSReturnSite(Call* call) {
    448   // We record the offset of the function return so we can rebuild the frame
    449   // if the function was inlined, i.e., this is the return address in the
    450   // inlined function's frame.
    451   //
    452   // The state is ignored.  We defensively set it to TOS_REG, which is the
    453   // real state of the unoptimized code at the return site.
    454   PrepareForBailoutForId(call->ReturnId(), TOS_REG);
    455 #ifdef DEBUG
    456   // In debug builds, mark the return so we can verify that this function
    457   // was called.
    458   ASSERT(!call->return_is_recorded_);
    459   call->return_is_recorded_ = true;
    460 #endif
    461 }
    462 
    463 
    464 void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
    465   // There's no need to prepare this code for bailouts from already optimized
    466   // code or code that can't be optimized.
    467   if (!info_->HasDeoptimizationSupport()) return;
    468   unsigned pc_and_state =
    469       StateField::encode(state) | PcField::encode(masm_->pc_offset());
    470   ASSERT(Smi::IsValid(pc_and_state));
    471   BailoutEntry entry = { id, pc_and_state };
    472   ASSERT(!prepared_bailout_ids_.Contains(id.ToInt()));
    473   prepared_bailout_ids_.Add(id.ToInt(), zone());
    474   bailout_entries_.Add(entry, zone());
    475 }
    476 
    477 
    478 void FullCodeGenerator::RecordTypeFeedbackCell(
    479     TypeFeedbackId id, Handle<Cell> cell) {
    480   TypeFeedbackCellEntry entry = { id, cell };
    481   type_feedback_cells_.Add(entry, zone());
    482 }
    483 
    484 
    485 void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
    486   // The pc offset does not need to be encoded and packed together with a state.
    487   ASSERT(masm_->pc_offset() > 0);
    488   ASSERT(loop_depth() > 0);
    489   uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
    490   BackEdgeEntry entry =
    491       { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
    492   back_edges_.Add(entry, zone());
    493 }
    494 
    495 
    496 bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
    497   // Inline smi case inside loops, but not division and modulo which
    498   // are too complicated and take up too much space.
    499   if (op == Token::DIV ||op == Token::MOD) return false;
    500   if (FLAG_always_inline_smi_code) return true;
    501   return loop_depth_ > 0;
    502 }
    503 
    504 
    505 void FullCodeGenerator::EffectContext::Plug(Register reg) const {
    506 }
    507 
    508 
    509 void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
    510   __ Move(result_register(), reg);
    511 }
    512 
    513 
    514 void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
    515   __ Push(reg);
    516 }
    517 
    518 
    519 void FullCodeGenerator::TestContext::Plug(Register reg) const {
    520   // For simplicity we always test the accumulator register.
    521   __ Move(result_register(), reg);
    522   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    523   codegen()->DoTest(this);
    524 }
    525 
    526 
    527 void FullCodeGenerator::EffectContext::PlugTOS() const {
    528   __ Drop(1);
    529 }
    530 
    531 
    532 void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
    533   __ Pop(result_register());
    534 }
    535 
    536 
    537 void FullCodeGenerator::StackValueContext::PlugTOS() const {
    538 }
    539 
    540 
    541 void FullCodeGenerator::TestContext::PlugTOS() const {
    542   // For simplicity we always test the accumulator register.
    543   __ Pop(result_register());
    544   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
    545   codegen()->DoTest(this);
    546 }
    547 
    548 
    549 void FullCodeGenerator::EffectContext::PrepareTest(
    550     Label* materialize_true,
    551     Label* materialize_false,
    552     Label** if_true,
    553     Label** if_false,
    554     Label** fall_through) const {
    555   // In an effect context, the true and the false case branch to the
    556   // same label.
    557   *if_true = *if_false = *fall_through = materialize_true;
    558 }
    559 
    560 
    561 void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
    562     Label* materialize_true,
    563     Label* materialize_false,
    564     Label** if_true,
    565     Label** if_false,
    566     Label** fall_through) const {
    567   *if_true = *fall_through = materialize_true;
    568   *if_false = materialize_false;
    569 }
    570 
    571 
    572 void FullCodeGenerator::StackValueContext::PrepareTest(
    573     Label* materialize_true,
    574     Label* materialize_false,
    575     Label** if_true,
    576     Label** if_false,
    577     Label** fall_through) const {
    578   *if_true = *fall_through = materialize_true;
    579   *if_false = materialize_false;
    580 }
    581 
    582 
    583 void FullCodeGenerator::TestContext::PrepareTest(
    584     Label* materialize_true,
    585     Label* materialize_false,
    586     Label** if_true,
    587     Label** if_false,
    588     Label** fall_through) const {
    589   *if_true = true_label_;
    590   *if_false = false_label_;
    591   *fall_through = fall_through_;
    592 }
    593 
    594 
    595 void FullCodeGenerator::DoTest(const TestContext* context) {
    596   DoTest(context->condition(),
    597          context->true_label(),
    598          context->false_label(),
    599          context->fall_through());
    600 }
    601 
    602 
    603 void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
    604   ASSERT(scope_->is_global_scope());
    605 
    606   for (int i = 0; i < declarations->length(); i++) {
    607     ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
    608     if (declaration != NULL) {
    609       ModuleLiteral* module = declaration->module()->AsModuleLiteral();
    610       if (module != NULL) {
    611         Comment cmnt(masm_, "[ Link nested modules");
    612         Scope* scope = module->body()->scope();
    613         Interface* interface = scope->interface();
    614         ASSERT(interface->IsModule() && interface->IsFrozen());
    615 
    616         interface->Allocate(scope->module_var()->index());
    617 
    618         // Set up module context.
    619         ASSERT(scope->interface()->Index() >= 0);
    620         __ Push(Smi::FromInt(scope->interface()->Index()));
    621         __ Push(scope->GetScopeInfo());
    622         __ CallRuntime(Runtime::kPushModuleContext, 2);
    623         StoreToFrameField(StandardFrameConstants::kContextOffset,
    624                           context_register());
    625 
    626         AllocateModules(scope->declarations());
    627 
    628         // Pop module context.
    629         LoadContextField(context_register(), Context::PREVIOUS_INDEX);
    630         // Update local stack frame context field.
    631         StoreToFrameField(StandardFrameConstants::kContextOffset,
    632                           context_register());
    633       }
    634     }
    635   }
    636 }
    637 
    638 
    639 // Modules have their own local scope, represented by their own context.
    640 // Module instance objects have an accessor for every export that forwards
    641 // access to the respective slot from the module's context. (Exports that are
    642 // modules themselves, however, are simple data properties.)
    643 //
    644 // All modules have a _hosting_ scope/context, which (currently) is the
    645 // (innermost) enclosing global scope. To deal with recursion, nested modules
    646 // are hosted by the same scope as global ones.
    647 //
    648 // For every (global or nested) module literal, the hosting context has an
    649 // internal slot that points directly to the respective module context. This
    650 // enables quick access to (statically resolved) module members by 2-dimensional
    651 // access through the hosting context. For example,
    652 //
    653 //   module A {
    654 //     let x;
    655 //     module B { let y; }
    656 //   }
    657 //   module C { let z; }
    658 //
    659 // allocates contexts as follows:
    660 //
    661 // [header| .A | .B | .C | A | C ]  (global)
    662 //           |    |    |
    663 //           |    |    +-- [header| z ]  (module)
    664 //           |    |
    665 //           |    +------- [header| y ]  (module)
    666 //           |
    667 //           +------------ [header| x | B ]  (module)
    668 //
    669 // Here, .A, .B, .C are the internal slots pointing to the hosted module
    670 // contexts, whereas A, B, C hold the actual instance objects (note that every
    671 // module context also points to the respective instance object through its
    672 // extension slot in the header).
    673 //
    674 // To deal with arbitrary recursion and aliases between modules,
    675 // they are created and initialized in several stages. Each stage applies to
    676 // all modules in the hosting global scope, including nested ones.
    677 //
    678 // 1. Allocate: for each module _literal_, allocate the module contexts and
    679 //    respective instance object and wire them up. This happens in the
    680 //    PushModuleContext runtime function, as generated by AllocateModules
    681 //    (invoked by VisitDeclarations in the hosting scope).
    682 //
    683 // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
    684 //    assign the respective instance object to respective local variables. This
    685 //    happens in VisitModuleDeclaration, and uses the instance objects created
    686 //    in the previous stage.
    687 //    For each module _literal_, this phase also constructs a module descriptor
    688 //    for the next stage. This happens in VisitModuleLiteral.
    689 //
    690 // 3. Populate: invoke the DeclareModules runtime function to populate each
    691 //    _instance_ object with accessors for it exports. This is generated by
    692 //    DeclareModules (invoked by VisitDeclarations in the hosting scope again),
    693 //    and uses the descriptors generated in the previous stage.
    694 //
    695 // 4. Initialize: execute the module bodies (and other code) in sequence. This
    696 //    happens by the separate statements generated for module bodies. To reenter
    697 //    the module scopes properly, the parser inserted ModuleStatements.
    698 
    699 void FullCodeGenerator::VisitDeclarations(
    700     ZoneList<Declaration*>* declarations) {
    701   Handle<FixedArray> saved_modules = modules_;
    702   int saved_module_index = module_index_;
    703   ZoneList<Handle<Object> >* saved_globals = globals_;
    704   ZoneList<Handle<Object> > inner_globals(10, zone());
    705   globals_ = &inner_globals;
    706 
    707   if (scope_->num_modules() != 0) {
    708     // This is a scope hosting modules. Allocate a descriptor array to pass
    709     // to the runtime for initialization.
    710     Comment cmnt(masm_, "[ Allocate modules");
    711     ASSERT(scope_->is_global_scope());
    712     modules_ =
    713         isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
    714     module_index_ = 0;
    715 
    716     // Generate code for allocating all modules, including nested ones.
    717     // The allocated contexts are stored in internal variables in this scope.
    718     AllocateModules(declarations);
    719   }
    720 
    721   AstVisitor::VisitDeclarations(declarations);
    722 
    723   if (scope_->num_modules() != 0) {
    724     // Initialize modules from descriptor array.
    725     ASSERT(module_index_ == modules_->length());
    726     DeclareModules(modules_);
    727     modules_ = saved_modules;
    728     module_index_ = saved_module_index;
    729   }
    730 
    731   if (!globals_->is_empty()) {
    732     // Invoke the platform-dependent code generator to do the actual
    733     // declaration of the global functions and variables.
    734     Handle<FixedArray> array =
    735        isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
    736     for (int i = 0; i < globals_->length(); ++i)
    737       array->set(i, *globals_->at(i));
    738     DeclareGlobals(array);
    739   }
    740 
    741   globals_ = saved_globals;
    742 }
    743 
    744 
    745 void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
    746   Block* block = module->body();
    747   Scope* saved_scope = scope();
    748   scope_ = block->scope();
    749   Interface* interface = scope_->interface();
    750 
    751   Comment cmnt(masm_, "[ ModuleLiteral");
    752   SetStatementPosition(block);
    753 
    754   ASSERT(!modules_.is_null());
    755   ASSERT(module_index_ < modules_->length());
    756   int index = module_index_++;
    757 
    758   // Set up module context.
    759   ASSERT(interface->Index() >= 0);
    760   __ Push(Smi::FromInt(interface->Index()));
    761   __ Push(Smi::FromInt(0));
    762   __ CallRuntime(Runtime::kPushModuleContext, 2);
    763   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
    764 
    765   {
    766     Comment cmnt(masm_, "[ Declarations");
    767     VisitDeclarations(scope_->declarations());
    768   }
    769 
    770   // Populate the module description.
    771   Handle<ModuleInfo> description =
    772       ModuleInfo::Create(isolate(), interface, scope_);
    773   modules_->set(index, *description);
    774 
    775   scope_ = saved_scope;
    776   // Pop module context.
    777   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
    778   // Update local stack frame context field.
    779   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
    780 }
    781 
    782 
    783 void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
    784   // Nothing to do.
    785   // The instance object is resolved statically through the module's interface.
    786 }
    787 
    788 
    789 void FullCodeGenerator::VisitModulePath(ModulePath* module) {
    790   // Nothing to do.
    791   // The instance object is resolved statically through the module's interface.
    792 }
    793 
    794 
    795 void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
    796   // TODO(rossberg): dummy allocation for now.
    797   Scope* scope = module->body()->scope();
    798   Interface* interface = scope_->interface();
    799 
    800   ASSERT(interface->IsModule() && interface->IsFrozen());
    801   ASSERT(!modules_.is_null());
    802   ASSERT(module_index_ < modules_->length());
    803   interface->Allocate(scope->module_var()->index());
    804   int index = module_index_++;
    805 
    806   Handle<ModuleInfo> description =
    807       ModuleInfo::Create(isolate(), interface, scope_);
    808   modules_->set(index, *description);
    809 }
    810 
    811 
    812 int FullCodeGenerator::DeclareGlobalsFlags() {
    813   ASSERT(DeclareGlobalsLanguageMode::is_valid(language_mode()));
    814   return DeclareGlobalsEvalFlag::encode(is_eval()) |
    815       DeclareGlobalsNativeFlag::encode(is_native()) |
    816       DeclareGlobalsLanguageMode::encode(language_mode());
    817 }
    818 
    819 
    820 void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
    821   CodeGenerator::RecordPositions(masm_, fun->start_position());
    822 }
    823 
    824 
    825 void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
    826   CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
    827 }
    828 
    829 
    830 void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
    831 #ifdef ENABLE_DEBUGGER_SUPPORT
    832   if (!isolate()->debugger()->IsDebuggerActive()) {
    833     CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
    834   } else {
    835     // Check if the statement will be breakable without adding a debug break
    836     // slot.
    837     BreakableStatementChecker checker;
    838     checker.Check(stmt);
    839     // Record the statement position right here if the statement is not
    840     // breakable. For breakable statements the actual recording of the
    841     // position will be postponed to the breakable code (typically an IC).
    842     bool position_recorded = CodeGenerator::RecordPositions(
    843         masm_, stmt->statement_pos(), !checker.is_breakable());
    844     // If the position recording did record a new position generate a debug
    845     // break slot to make the statement breakable.
    846     if (position_recorded) {
    847       Debug::GenerateSlot(masm_);
    848     }
    849   }
    850 #else
    851   CodeGenerator::RecordPositions(masm_, stmt->statement_pos());
    852 #endif
    853 }
    854 
    855 
    856 void FullCodeGenerator::SetExpressionPosition(Expression* expr, int pos) {
    857 #ifdef ENABLE_DEBUGGER_SUPPORT
    858   if (!isolate()->debugger()->IsDebuggerActive()) {
    859     CodeGenerator::RecordPositions(masm_, pos);
    860   } else {
    861     // Check if the expression will be breakable without adding a debug break
    862     // slot.
    863     BreakableStatementChecker checker;
    864     checker.Check(expr);
    865     // Record a statement position right here if the expression is not
    866     // breakable. For breakable expressions the actual recording of the
    867     // position will be postponed to the breakable code (typically an IC).
    868     // NOTE this will record a statement position for something which might
    869     // not be a statement. As stepping in the debugger will only stop at
    870     // statement positions this is used for e.g. the condition expression of
    871     // a do while loop.
    872     bool position_recorded = CodeGenerator::RecordPositions(
    873         masm_, pos, !checker.is_breakable());
    874     // If the position recording did record a new position generate a debug
    875     // break slot to make the statement breakable.
    876     if (position_recorded) {
    877       Debug::GenerateSlot(masm_);
    878     }
    879   }
    880 #else
    881   CodeGenerator::RecordPositions(masm_, pos);
    882 #endif
    883 }
    884 
    885 
    886 void FullCodeGenerator::SetStatementPosition(int pos) {
    887   CodeGenerator::RecordPositions(masm_, pos);
    888 }
    889 
    890 
    891 void FullCodeGenerator::SetSourcePosition(int pos) {
    892   if (pos != RelocInfo::kNoPosition) {
    893     masm_->positions_recorder()->RecordPosition(pos);
    894   }
    895 }
    896 
    897 
    898 // Lookup table for code generators for  special runtime calls which are
    899 // generated inline.
    900 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize)          \
    901     &FullCodeGenerator::Emit##Name,
    902 
    903 const FullCodeGenerator::InlineFunctionGenerator
    904   FullCodeGenerator::kInlineFunctionGenerators[] = {
    905     INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
    906     INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
    907   };
    908 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
    909 
    910 
    911 FullCodeGenerator::InlineFunctionGenerator
    912   FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
    913     int lookup_index =
    914         static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
    915     ASSERT(lookup_index >= 0);
    916     ASSERT(static_cast<size_t>(lookup_index) <
    917            ARRAY_SIZE(kInlineFunctionGenerators));
    918     return kInlineFunctionGenerators[lookup_index];
    919 }
    920 
    921 
    922 void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
    923   const Runtime::Function* function = expr->function();
    924   ASSERT(function != NULL);
    925   ASSERT(function->intrinsic_type == Runtime::INLINE);
    926   InlineFunctionGenerator generator =
    927       FindInlineFunctionGenerator(function->function_id);
    928   ((*this).*(generator))(expr);
    929 }
    930 
    931 
    932 void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
    933   ZoneList<Expression*>* args = expr->arguments();
    934   ASSERT(args->length() == 2);
    935   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
    936 }
    937 
    938 
    939 void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
    940   ZoneList<Expression*>* args = expr->arguments();
    941   ASSERT(args->length() == 2);
    942   EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
    943 }
    944 
    945 
    946 void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
    947   context()->Plug(handle(Smi::FromInt(0), isolate()));
    948 }
    949 
    950 
    951 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
    952   switch (expr->op()) {
    953     case Token::COMMA:
    954       return VisitComma(expr);
    955     case Token::OR:
    956     case Token::AND:
    957       return VisitLogicalExpression(expr);
    958     default:
    959       return VisitArithmeticExpression(expr);
    960   }
    961 }
    962 
    963 
    964 void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
    965   if (context()->IsEffect()) {
    966     VisitForEffect(expr);
    967   } else if (context()->IsAccumulatorValue()) {
    968     VisitForAccumulatorValue(expr);
    969   } else if (context()->IsStackValue()) {
    970     VisitForStackValue(expr);
    971   } else if (context()->IsTest()) {
    972     const TestContext* test = TestContext::cast(context());
    973     VisitForControl(expr, test->true_label(), test->false_label(),
    974                     test->fall_through());
    975   }
    976 }
    977 
    978 
    979 void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
    980   Comment cmnt(masm_, "[ Comma");
    981   VisitForEffect(expr->left());
    982   VisitInDuplicateContext(expr->right());
    983 }
    984 
    985 
    986 void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
    987   bool is_logical_and = expr->op() == Token::AND;
    988   Comment cmnt(masm_, is_logical_and ? "[ Logical AND" :  "[ Logical OR");
    989   Expression* left = expr->left();
    990   Expression* right = expr->right();
    991   BailoutId right_id = expr->RightId();
    992   Label done;
    993 
    994   if (context()->IsTest()) {
    995     Label eval_right;
    996     const TestContext* test = TestContext::cast(context());
    997     if (is_logical_and) {
    998       VisitForControl(left, &eval_right, test->false_label(), &eval_right);
    999     } else {
   1000       VisitForControl(left, test->true_label(), &eval_right, &eval_right);
   1001     }
   1002     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1003     __ bind(&eval_right);
   1004 
   1005   } else if (context()->IsAccumulatorValue()) {
   1006     VisitForAccumulatorValue(left);
   1007     // We want the value in the accumulator for the test, and on the stack in
   1008     // case we need it.
   1009     __ Push(result_register());
   1010     Label discard, restore;
   1011     if (is_logical_and) {
   1012       DoTest(left, &discard, &restore, &restore);
   1013     } else {
   1014       DoTest(left, &restore, &discard, &restore);
   1015     }
   1016     __ bind(&restore);
   1017     __ Pop(result_register());
   1018     __ jmp(&done);
   1019     __ bind(&discard);
   1020     __ Drop(1);
   1021     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1022 
   1023   } else if (context()->IsStackValue()) {
   1024     VisitForAccumulatorValue(left);
   1025     // We want the value in the accumulator for the test, and on the stack in
   1026     // case we need it.
   1027     __ Push(result_register());
   1028     Label discard;
   1029     if (is_logical_and) {
   1030       DoTest(left, &discard, &done, &discard);
   1031     } else {
   1032       DoTest(left, &done, &discard, &discard);
   1033     }
   1034     __ bind(&discard);
   1035     __ Drop(1);
   1036     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1037 
   1038   } else {
   1039     ASSERT(context()->IsEffect());
   1040     Label eval_right;
   1041     if (is_logical_and) {
   1042       VisitForControl(left, &eval_right, &done, &eval_right);
   1043     } else {
   1044       VisitForControl(left, &done, &eval_right, &eval_right);
   1045     }
   1046     PrepareForBailoutForId(right_id, NO_REGISTERS);
   1047     __ bind(&eval_right);
   1048   }
   1049 
   1050   VisitInDuplicateContext(right);
   1051   __ bind(&done);
   1052 }
   1053 
   1054 
   1055 void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
   1056   Token::Value op = expr->op();
   1057   Comment cmnt(masm_, "[ ArithmeticExpression");
   1058   Expression* left = expr->left();
   1059   Expression* right = expr->right();
   1060   OverwriteMode mode =
   1061       left->ResultOverwriteAllowed()
   1062       ? OVERWRITE_LEFT
   1063       : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
   1064 
   1065   VisitForStackValue(left);
   1066   VisitForAccumulatorValue(right);
   1067 
   1068   SetSourcePosition(expr->position());
   1069   if (ShouldInlineSmiCase(op)) {
   1070     EmitInlineSmiBinaryOp(expr, op, mode, left, right);
   1071   } else {
   1072     EmitBinaryOp(expr, op, mode);
   1073   }
   1074 }
   1075 
   1076 
   1077 void FullCodeGenerator::VisitBlock(Block* stmt) {
   1078   Comment cmnt(masm_, "[ Block");
   1079   NestedBlock nested_block(this, stmt);
   1080   SetStatementPosition(stmt);
   1081 
   1082   Scope* saved_scope = scope();
   1083   // Push a block context when entering a block with block scoped variables.
   1084   if (stmt->scope() != NULL) {
   1085     scope_ = stmt->scope();
   1086     ASSERT(!scope_->is_module_scope());
   1087     { Comment cmnt(masm_, "[ Extend block context");
   1088       Handle<ScopeInfo> scope_info = scope_->GetScopeInfo();
   1089       int heap_slots = scope_info->ContextLength() - Context::MIN_CONTEXT_SLOTS;
   1090       __ Push(scope_info);
   1091       PushFunctionArgumentForContextAllocation();
   1092       if (heap_slots <= FastNewBlockContextStub::kMaximumSlots) {
   1093         FastNewBlockContextStub stub(heap_slots);
   1094         __ CallStub(&stub);
   1095       } else {
   1096         __ CallRuntime(Runtime::kPushBlockContext, 2);
   1097       }
   1098 
   1099       // Replace the context stored in the frame.
   1100       StoreToFrameField(StandardFrameConstants::kContextOffset,
   1101                         context_register());
   1102     }
   1103     { Comment cmnt(masm_, "[ Declarations");
   1104       VisitDeclarations(scope_->declarations());
   1105     }
   1106   }
   1107 
   1108   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
   1109   VisitStatements(stmt->statements());
   1110   scope_ = saved_scope;
   1111   __ bind(nested_block.break_label());
   1112   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1113 
   1114   // Pop block context if necessary.
   1115   if (stmt->scope() != NULL) {
   1116     LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1117     // Update local stack frame context field.
   1118     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1119                       context_register());
   1120   }
   1121 }
   1122 
   1123 
   1124 void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
   1125   Comment cmnt(masm_, "[ Module context");
   1126 
   1127   __ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
   1128   __ Push(Smi::FromInt(0));
   1129   __ CallRuntime(Runtime::kPushModuleContext, 2);
   1130   StoreToFrameField(
   1131       StandardFrameConstants::kContextOffset, context_register());
   1132 
   1133   Scope* saved_scope = scope_;
   1134   scope_ = stmt->body()->scope();
   1135   VisitStatements(stmt->body()->statements());
   1136   scope_ = saved_scope;
   1137   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1138   // Update local stack frame context field.
   1139   StoreToFrameField(StandardFrameConstants::kContextOffset,
   1140                     context_register());
   1141 }
   1142 
   1143 
   1144 void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
   1145   Comment cmnt(masm_, "[ ExpressionStatement");
   1146   SetStatementPosition(stmt);
   1147   VisitForEffect(stmt->expression());
   1148 }
   1149 
   1150 
   1151 void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
   1152   Comment cmnt(masm_, "[ EmptyStatement");
   1153   SetStatementPosition(stmt);
   1154 }
   1155 
   1156 
   1157 void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
   1158   Comment cmnt(masm_, "[ IfStatement");
   1159   SetStatementPosition(stmt);
   1160   Label then_part, else_part, done;
   1161 
   1162   if (stmt->HasElseStatement()) {
   1163     VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
   1164     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
   1165     __ bind(&then_part);
   1166     Visit(stmt->then_statement());
   1167     __ jmp(&done);
   1168 
   1169     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
   1170     __ bind(&else_part);
   1171     Visit(stmt->else_statement());
   1172   } else {
   1173     VisitForControl(stmt->condition(), &then_part, &done, &then_part);
   1174     PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
   1175     __ bind(&then_part);
   1176     Visit(stmt->then_statement());
   1177 
   1178     PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
   1179   }
   1180   __ bind(&done);
   1181   PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
   1182 }
   1183 
   1184 
   1185 void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
   1186   Comment cmnt(masm_,  "[ ContinueStatement");
   1187   SetStatementPosition(stmt);
   1188   NestedStatement* current = nesting_stack_;
   1189   int stack_depth = 0;
   1190   int context_length = 0;
   1191   // When continuing, we clobber the unpredictable value in the accumulator
   1192   // with one that's safe for GC.  If we hit an exit from the try block of
   1193   // try...finally on our way out, we will unconditionally preserve the
   1194   // accumulator on the stack.
   1195   ClearAccumulator();
   1196   while (!current->IsContinueTarget(stmt->target())) {
   1197     current = current->Exit(&stack_depth, &context_length);
   1198   }
   1199   __ Drop(stack_depth);
   1200   if (context_length > 0) {
   1201     while (context_length > 0) {
   1202       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1203       --context_length;
   1204     }
   1205     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1206                       context_register());
   1207   }
   1208 
   1209   __ jmp(current->AsIteration()->continue_label());
   1210 }
   1211 
   1212 
   1213 void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
   1214   Comment cmnt(masm_,  "[ BreakStatement");
   1215   SetStatementPosition(stmt);
   1216   NestedStatement* current = nesting_stack_;
   1217   int stack_depth = 0;
   1218   int context_length = 0;
   1219   // When breaking, we clobber the unpredictable value in the accumulator
   1220   // with one that's safe for GC.  If we hit an exit from the try block of
   1221   // try...finally on our way out, we will unconditionally preserve the
   1222   // accumulator on the stack.
   1223   ClearAccumulator();
   1224   while (!current->IsBreakTarget(stmt->target())) {
   1225     current = current->Exit(&stack_depth, &context_length);
   1226   }
   1227   __ Drop(stack_depth);
   1228   if (context_length > 0) {
   1229     while (context_length > 0) {
   1230       LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1231       --context_length;
   1232     }
   1233     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1234                       context_register());
   1235   }
   1236 
   1237   __ jmp(current->AsBreakable()->break_label());
   1238 }
   1239 
   1240 
   1241 void FullCodeGenerator::EmitUnwindBeforeReturn() {
   1242   NestedStatement* current = nesting_stack_;
   1243   int stack_depth = 0;
   1244   int context_length = 0;
   1245   while (current != NULL) {
   1246     current = current->Exit(&stack_depth, &context_length);
   1247   }
   1248   __ Drop(stack_depth);
   1249 }
   1250 
   1251 
   1252 void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
   1253   Comment cmnt(masm_, "[ ReturnStatement");
   1254   SetStatementPosition(stmt);
   1255   Expression* expr = stmt->expression();
   1256   VisitForAccumulatorValue(expr);
   1257   EmitUnwindBeforeReturn();
   1258   EmitReturnSequence();
   1259 }
   1260 
   1261 
   1262 void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
   1263   Comment cmnt(masm_, "[ WithStatement");
   1264   SetStatementPosition(stmt);
   1265 
   1266   VisitForStackValue(stmt->expression());
   1267   PushFunctionArgumentForContextAllocation();
   1268   __ CallRuntime(Runtime::kPushWithContext, 2);
   1269   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1270 
   1271   Scope* saved_scope = scope();
   1272   scope_ = stmt->scope();
   1273   { WithOrCatch body(this);
   1274     Visit(stmt->statement());
   1275   }
   1276   scope_ = saved_scope;
   1277 
   1278   // Pop context.
   1279   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1280   // Update local stack frame context field.
   1281   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1282 }
   1283 
   1284 
   1285 void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
   1286   Comment cmnt(masm_, "[ DoWhileStatement");
   1287   SetStatementPosition(stmt);
   1288   Label body, book_keeping;
   1289 
   1290   Iteration loop_statement(this, stmt);
   1291   increment_loop_depth();
   1292 
   1293   __ bind(&body);
   1294   Visit(stmt->body());
   1295 
   1296   // Record the position of the do while condition and make sure it is
   1297   // possible to break on the condition.
   1298   __ bind(loop_statement.continue_label());
   1299   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
   1300   SetExpressionPosition(stmt->cond(), stmt->condition_position());
   1301   VisitForControl(stmt->cond(),
   1302                   &book_keeping,
   1303                   loop_statement.break_label(),
   1304                   &book_keeping);
   1305 
   1306   // Check stack before looping.
   1307   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
   1308   __ bind(&book_keeping);
   1309   EmitBackEdgeBookkeeping(stmt, &body);
   1310   __ jmp(&body);
   1311 
   1312   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1313   __ bind(loop_statement.break_label());
   1314   decrement_loop_depth();
   1315 }
   1316 
   1317 
   1318 void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
   1319   Comment cmnt(masm_, "[ WhileStatement");
   1320   Label test, body;
   1321 
   1322   Iteration loop_statement(this, stmt);
   1323   increment_loop_depth();
   1324 
   1325   // Emit the test at the bottom of the loop.
   1326   __ jmp(&test);
   1327 
   1328   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1329   __ bind(&body);
   1330   Visit(stmt->body());
   1331 
   1332   // Emit the statement position here as this is where the while
   1333   // statement code starts.
   1334   __ bind(loop_statement.continue_label());
   1335   SetStatementPosition(stmt);
   1336 
   1337   // Check stack before looping.
   1338   EmitBackEdgeBookkeeping(stmt, &body);
   1339 
   1340   __ bind(&test);
   1341   VisitForControl(stmt->cond(),
   1342                   &body,
   1343                   loop_statement.break_label(),
   1344                   loop_statement.break_label());
   1345 
   1346   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1347   __ bind(loop_statement.break_label());
   1348   decrement_loop_depth();
   1349 }
   1350 
   1351 
   1352 void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
   1353   Comment cmnt(masm_, "[ ForStatement");
   1354   Label test, body;
   1355 
   1356   Iteration loop_statement(this, stmt);
   1357 
   1358   // Set statement position for a break slot before entering the for-body.
   1359   SetStatementPosition(stmt);
   1360 
   1361   if (stmt->init() != NULL) {
   1362     Visit(stmt->init());
   1363   }
   1364 
   1365   increment_loop_depth();
   1366   // Emit the test at the bottom of the loop (even if empty).
   1367   __ jmp(&test);
   1368 
   1369   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
   1370   __ bind(&body);
   1371   Visit(stmt->body());
   1372 
   1373   PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
   1374   __ bind(loop_statement.continue_label());
   1375   if (stmt->next() != NULL) {
   1376     Visit(stmt->next());
   1377   }
   1378 
   1379   // Emit the statement position here as this is where the for
   1380   // statement code starts.
   1381   SetStatementPosition(stmt);
   1382 
   1383   // Check stack before looping.
   1384   EmitBackEdgeBookkeeping(stmt, &body);
   1385 
   1386   __ bind(&test);
   1387   if (stmt->cond() != NULL) {
   1388     VisitForControl(stmt->cond(),
   1389                     &body,
   1390                     loop_statement.break_label(),
   1391                     loop_statement.break_label());
   1392   } else {
   1393     __ jmp(&body);
   1394   }
   1395 
   1396   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
   1397   __ bind(loop_statement.break_label());
   1398   decrement_loop_depth();
   1399 }
   1400 
   1401 
   1402 void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
   1403   Comment cmnt(masm_, "[ TryCatchStatement");
   1404   SetStatementPosition(stmt);
   1405   // The try block adds a handler to the exception handler chain before
   1406   // entering, and removes it again when exiting normally.  If an exception
   1407   // is thrown during execution of the try block, the handler is consumed
   1408   // and control is passed to the catch block with the exception in the
   1409   // result register.
   1410 
   1411   Label try_entry, handler_entry, exit;
   1412   __ jmp(&try_entry);
   1413   __ bind(&handler_entry);
   1414   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
   1415   // Exception handler code, the exception is in the result register.
   1416   // Extend the context before executing the catch block.
   1417   { Comment cmnt(masm_, "[ Extend catch context");
   1418     __ Push(stmt->variable()->name());
   1419     __ Push(result_register());
   1420     PushFunctionArgumentForContextAllocation();
   1421     __ CallRuntime(Runtime::kPushCatchContext, 3);
   1422     StoreToFrameField(StandardFrameConstants::kContextOffset,
   1423                       context_register());
   1424   }
   1425 
   1426   Scope* saved_scope = scope();
   1427   scope_ = stmt->scope();
   1428   ASSERT(scope_->declarations()->is_empty());
   1429   { WithOrCatch catch_body(this);
   1430     Visit(stmt->catch_block());
   1431   }
   1432   // Restore the context.
   1433   LoadContextField(context_register(), Context::PREVIOUS_INDEX);
   1434   StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
   1435   scope_ = saved_scope;
   1436   __ jmp(&exit);
   1437 
   1438   // Try block code. Sets up the exception handler chain.
   1439   __ bind(&try_entry);
   1440   __ PushTryHandler(StackHandler::CATCH, stmt->index());
   1441   { TryCatch try_body(this);
   1442     Visit(stmt->try_block());
   1443   }
   1444   __ PopTryHandler();
   1445   __ bind(&exit);
   1446 }
   1447 
   1448 
   1449 void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
   1450   Comment cmnt(masm_, "[ TryFinallyStatement");
   1451   SetStatementPosition(stmt);
   1452   // Try finally is compiled by setting up a try-handler on the stack while
   1453   // executing the try body, and removing it again afterwards.
   1454   //
   1455   // The try-finally construct can enter the finally block in three ways:
   1456   // 1. By exiting the try-block normally. This removes the try-handler and
   1457   //    calls the finally block code before continuing.
   1458   // 2. By exiting the try-block with a function-local control flow transfer
   1459   //    (break/continue/return). The site of the, e.g., break removes the
   1460   //    try handler and calls the finally block code before continuing
   1461   //    its outward control transfer.
   1462   // 3. By exiting the try-block with a thrown exception.
   1463   //    This can happen in nested function calls. It traverses the try-handler
   1464   //    chain and consumes the try-handler entry before jumping to the
   1465   //    handler code. The handler code then calls the finally-block before
   1466   //    rethrowing the exception.
   1467   //
   1468   // The finally block must assume a return address on top of the stack
   1469   // (or in the link register on ARM chips) and a value (return value or
   1470   // exception) in the result register (rax/eax/r0), both of which must
   1471   // be preserved. The return address isn't GC-safe, so it should be
   1472   // cooked before GC.
   1473   Label try_entry, handler_entry, finally_entry;
   1474 
   1475   // Jump to try-handler setup and try-block code.
   1476   __ jmp(&try_entry);
   1477   __ bind(&handler_entry);
   1478   handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
   1479   // Exception handler code.  This code is only executed when an exception
   1480   // is thrown.  The exception is in the result register, and must be
   1481   // preserved by the finally block.  Call the finally block and then
   1482   // rethrow the exception if it returns.
   1483   __ Call(&finally_entry);
   1484   __ Push(result_register());
   1485   __ CallRuntime(Runtime::kReThrow, 1);
   1486 
   1487   // Finally block implementation.
   1488   __ bind(&finally_entry);
   1489   EnterFinallyBlock();
   1490   { Finally finally_body(this);
   1491     Visit(stmt->finally_block());
   1492   }
   1493   ExitFinallyBlock();  // Return to the calling code.
   1494 
   1495   // Set up try handler.
   1496   __ bind(&try_entry);
   1497   __ PushTryHandler(StackHandler::FINALLY, stmt->index());
   1498   { TryFinally try_body(this, &finally_entry);
   1499     Visit(stmt->try_block());
   1500   }
   1501   __ PopTryHandler();
   1502   // Execute the finally block on the way out.  Clobber the unpredictable
   1503   // value in the result register with one that's safe for GC because the
   1504   // finally block will unconditionally preserve the result register on the
   1505   // stack.
   1506   ClearAccumulator();
   1507   __ Call(&finally_entry);
   1508 }
   1509 
   1510 
   1511 void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
   1512 #ifdef ENABLE_DEBUGGER_SUPPORT
   1513   Comment cmnt(masm_, "[ DebuggerStatement");
   1514   SetStatementPosition(stmt);
   1515 
   1516   __ DebugBreak();
   1517   // Ignore the return value.
   1518 #endif
   1519 }
   1520 
   1521 
   1522 void FullCodeGenerator::VisitConditional(Conditional* expr) {
   1523   Comment cmnt(masm_, "[ Conditional");
   1524   Label true_case, false_case, done;
   1525   VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
   1526 
   1527   PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
   1528   __ bind(&true_case);
   1529   SetExpressionPosition(expr->then_expression(),
   1530                         expr->then_expression_position());
   1531   if (context()->IsTest()) {
   1532     const TestContext* for_test = TestContext::cast(context());
   1533     VisitForControl(expr->then_expression(),
   1534                     for_test->true_label(),
   1535                     for_test->false_label(),
   1536                     NULL);
   1537   } else {
   1538     VisitInDuplicateContext(expr->then_expression());
   1539     __ jmp(&done);
   1540   }
   1541 
   1542   PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
   1543   __ bind(&false_case);
   1544   SetExpressionPosition(expr->else_expression(),
   1545                         expr->else_expression_position());
   1546   VisitInDuplicateContext(expr->else_expression());
   1547   // If control flow falls through Visit, merge it with true case here.
   1548   if (!context()->IsTest()) {
   1549     __ bind(&done);
   1550   }
   1551 }
   1552 
   1553 
   1554 void FullCodeGenerator::VisitLiteral(Literal* expr) {
   1555   Comment cmnt(masm_, "[ Literal");
   1556   context()->Plug(expr->value());
   1557 }
   1558 
   1559 
   1560 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
   1561   Comment cmnt(masm_, "[ FunctionLiteral");
   1562 
   1563   // Build the function boilerplate and instantiate it.
   1564   Handle<SharedFunctionInfo> function_info =
   1565       Compiler::BuildFunctionInfo(expr, script());
   1566   if (function_info.is_null()) {
   1567     SetStackOverflow();
   1568     return;
   1569   }
   1570   EmitNewClosure(function_info, expr->pretenure());
   1571 }
   1572 
   1573 
   1574 void FullCodeGenerator::VisitSharedFunctionInfoLiteral(
   1575     SharedFunctionInfoLiteral* expr) {
   1576   Comment cmnt(masm_, "[ SharedFunctionInfoLiteral");
   1577   EmitNewClosure(expr->shared_function_info(), false);
   1578 }
   1579 
   1580 
   1581 void FullCodeGenerator::VisitThrow(Throw* expr) {
   1582   Comment cmnt(masm_, "[ Throw");
   1583   VisitForStackValue(expr->exception());
   1584   __ CallRuntime(Runtime::kThrow, 1);
   1585   // Never returns here.
   1586 }
   1587 
   1588 
   1589 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
   1590     int* stack_depth,
   1591     int* context_length) {
   1592   // The macros used here must preserve the result register.
   1593   __ Drop(*stack_depth);
   1594   __ PopTryHandler();
   1595   *stack_depth = 0;
   1596   return previous_;
   1597 }
   1598 
   1599 
   1600 bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
   1601   Expression* sub_expr;
   1602   Handle<String> check;
   1603   if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
   1604     EmitLiteralCompareTypeof(expr, sub_expr, check);
   1605     return true;
   1606   }
   1607 
   1608   if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
   1609     EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
   1610     return true;
   1611   }
   1612 
   1613   if (expr->IsLiteralCompareNull(&sub_expr)) {
   1614     EmitLiteralCompareNil(expr, sub_expr, kNullValue);
   1615     return true;
   1616   }
   1617 
   1618   return false;
   1619 }
   1620 
   1621 
   1622 #undef __
   1623 
   1624 
   1625 } }  // namespace v8::internal
   1626