Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "accessors.h"
     31 #include "api.h"
     32 #include "arguments.h"
     33 #include "bootstrapper.h"
     34 #include "compiler.h"
     35 #include "debug.h"
     36 #include "execution.h"
     37 #include "global-handles.h"
     38 #include "natives.h"
     39 #include "runtime.h"
     40 #include "string-search.h"
     41 #include "stub-cache.h"
     42 #include "vm-state-inl.h"
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 
     48 int HandleScope::NumberOfHandles(Isolate* isolate) {
     49   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     50   int n = impl->blocks()->length();
     51   if (n == 0) return 0;
     52   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
     53       (isolate->handle_scope_data()->next - impl->blocks()->last()));
     54 }
     55 
     56 
     57 Object** HandleScope::Extend(Isolate* isolate) {
     58   v8::ImplementationUtilities::HandleScopeData* current =
     59       isolate->handle_scope_data();
     60 
     61   Object** result = current->next;
     62 
     63   ASSERT(result == current->limit);
     64   // Make sure there's at least one scope on the stack and that the
     65   // top of the scope stack isn't a barrier.
     66   if (current->level == 0) {
     67     Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
     68                             "Cannot create a handle without a HandleScope");
     69     return NULL;
     70   }
     71   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     72   // If there's more room in the last block, we use that. This is used
     73   // for fast creation of scopes after scope barriers.
     74   if (!impl->blocks()->is_empty()) {
     75     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
     76     if (current->limit != limit) {
     77       current->limit = limit;
     78       ASSERT(limit - current->next < kHandleBlockSize);
     79     }
     80   }
     81 
     82   // If we still haven't found a slot for the handle, we extend the
     83   // current handle scope by allocating a new handle block.
     84   if (result == current->limit) {
     85     // If there's a spare block, use it for growing the current scope.
     86     result = impl->GetSpareOrNewBlock();
     87     // Add the extension to the global list of blocks, but count the
     88     // extension as part of the current scope.
     89     impl->blocks()->Add(result);
     90     current->limit = &result[kHandleBlockSize];
     91   }
     92 
     93   return result;
     94 }
     95 
     96 
     97 void HandleScope::DeleteExtensions(Isolate* isolate) {
     98   v8::ImplementationUtilities::HandleScopeData* current =
     99       isolate->handle_scope_data();
    100   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
    101 }
    102 
    103 
    104 #ifdef ENABLE_EXTRA_CHECKS
    105 void HandleScope::ZapRange(Object** start, Object** end) {
    106   ASSERT(end - start <= kHandleBlockSize);
    107   for (Object** p = start; p != end; p++) {
    108     *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
    109   }
    110 }
    111 #endif
    112 
    113 
    114 Address HandleScope::current_level_address(Isolate* isolate) {
    115   return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
    116 }
    117 
    118 
    119 Address HandleScope::current_next_address(Isolate* isolate) {
    120   return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
    121 }
    122 
    123 
    124 Address HandleScope::current_limit_address(Isolate* isolate) {
    125   return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
    126 }
    127 
    128 
    129 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
    130                                       Handle<JSArray> array) {
    131   CALL_HEAP_FUNCTION(content->GetIsolate(),
    132                      content->AddKeysFromJSArray(*array), FixedArray);
    133 }
    134 
    135 
    136 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
    137                                Handle<FixedArray> second) {
    138   CALL_HEAP_FUNCTION(first->GetIsolate(),
    139                      first->UnionOfKeys(*second), FixedArray);
    140 }
    141 
    142 
    143 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
    144     Handle<JSFunction> constructor,
    145     Handle<JSGlobalProxy> global) {
    146   CALL_HEAP_FUNCTION(
    147       constructor->GetIsolate(),
    148       constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
    149       JSGlobalProxy);
    150 }
    151 
    152 
    153 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
    154   // If objects constructed from this function exist then changing
    155   // 'estimated_nof_properties' is dangerous since the previous value might
    156   // have been compiled into the fast construct stub. More over, the inobject
    157   // slack tracking logic might have adjusted the previous value, so even
    158   // passing the same value is risky.
    159   if (func->shared()->live_objects_may_exist()) return;
    160 
    161   func->shared()->set_expected_nof_properties(nof);
    162   if (func->has_initial_map()) {
    163     Handle<Map> new_initial_map =
    164         func->GetIsolate()->factory()->CopyMap(
    165             Handle<Map>(func->initial_map()));
    166     new_initial_map->set_unused_property_fields(nof);
    167     func->set_initial_map(*new_initial_map);
    168   }
    169 }
    170 
    171 
    172 static int ExpectedNofPropertiesFromEstimate(int estimate) {
    173   // If no properties are added in the constructor, they are more likely
    174   // to be added later.
    175   if (estimate == 0) estimate = 2;
    176 
    177   // We do not shrink objects that go into a snapshot (yet), so we adjust
    178   // the estimate conservatively.
    179   if (Serializer::enabled()) return estimate + 2;
    180 
    181   // Inobject slack tracking will reclaim redundant inobject space later,
    182   // so we can afford to adjust the estimate generously.
    183   if (FLAG_clever_optimizations) {
    184     return estimate + 8;
    185   } else {
    186     return estimate + 3;
    187   }
    188 }
    189 
    190 
    191 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
    192                                           int estimate) {
    193   // See the comment in SetExpectedNofProperties.
    194   if (shared->live_objects_may_exist()) return;
    195 
    196   shared->set_expected_nof_properties(
    197       ExpectedNofPropertiesFromEstimate(estimate));
    198 }
    199 
    200 
    201 void FlattenString(Handle<String> string) {
    202   CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
    203 }
    204 
    205 
    206 Handle<String> FlattenGetString(Handle<String> string) {
    207   CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
    208 }
    209 
    210 
    211 Handle<Object> SetPrototype(Handle<JSFunction> function,
    212                             Handle<Object> prototype) {
    213   ASSERT(function->should_have_prototype());
    214   CALL_HEAP_FUNCTION(function->GetIsolate(),
    215                      Accessors::FunctionSetPrototype(*function,
    216                                                      *prototype,
    217                                                      NULL),
    218                      Object);
    219 }
    220 
    221 
    222 Handle<Object> SetProperty(Isolate* isolate,
    223                            Handle<Object> object,
    224                            Handle<Object> key,
    225                            Handle<Object> value,
    226                            PropertyAttributes attributes,
    227                            StrictModeFlag strict_mode) {
    228   CALL_HEAP_FUNCTION(
    229       isolate,
    230       Runtime::SetObjectProperty(
    231           isolate, object, key, value, attributes, strict_mode),
    232       Object);
    233 }
    234 
    235 
    236 Handle<Object> ForceSetProperty(Handle<JSObject> object,
    237                                 Handle<Object> key,
    238                                 Handle<Object> value,
    239                                 PropertyAttributes attributes) {
    240   Isolate* isolate = object->GetIsolate();
    241   CALL_HEAP_FUNCTION(
    242       isolate,
    243       Runtime::ForceSetObjectProperty(
    244           isolate, object, key, value, attributes),
    245       Object);
    246 }
    247 
    248 
    249 Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key) {
    250   Isolate* isolate = object->GetIsolate();
    251   CALL_HEAP_FUNCTION(isolate,
    252                      Runtime::DeleteObjectProperty(
    253                          isolate, object, key, JSReceiver::NORMAL_DELETION),
    254                      Object);
    255 }
    256 
    257 
    258 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
    259                                    Handle<Object> key) {
    260   Isolate* isolate = object->GetIsolate();
    261   CALL_HEAP_FUNCTION(isolate,
    262                      Runtime::DeleteObjectProperty(
    263                          isolate, object, key, JSReceiver::FORCE_DELETION),
    264                      Object);
    265 }
    266 
    267 
    268 Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key) {
    269   Isolate* isolate = obj->GetIsolate();
    270   CALL_HEAP_FUNCTION(isolate,
    271                      Runtime::HasObjectProperty(isolate, obj, key), Object);
    272 }
    273 
    274 
    275 Handle<Object> GetProperty(Handle<JSReceiver> obj,
    276                            const char* name) {
    277   Isolate* isolate = obj->GetIsolate();
    278   Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
    279   CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
    280 }
    281 
    282 
    283 Handle<Object> GetProperty(Isolate* isolate,
    284                            Handle<Object> obj,
    285                            Handle<Object> key) {
    286   CALL_HEAP_FUNCTION(isolate,
    287                      Runtime::GetObjectProperty(isolate, obj, key), Object);
    288 }
    289 
    290 
    291 Handle<Object> LookupSingleCharacterStringFromCode(Isolate* isolate,
    292                                                    uint32_t index) {
    293   CALL_HEAP_FUNCTION(
    294       isolate,
    295       isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
    296 }
    297 
    298 
    299 Handle<String> SubString(Handle<String> str,
    300                          int start,
    301                          int end,
    302                          PretenureFlag pretenure) {
    303   CALL_HEAP_FUNCTION(str->GetIsolate(),
    304                      str->SubString(start, end, pretenure), String);
    305 }
    306 
    307 
    308 Handle<JSObject> Copy(Handle<JSObject> obj) {
    309   Isolate* isolate = obj->GetIsolate();
    310   CALL_HEAP_FUNCTION(isolate,
    311                      isolate->heap()->CopyJSObject(*obj), JSObject);
    312 }
    313 
    314 
    315 Handle<JSObject> DeepCopy(Handle<JSObject> obj) {
    316   Isolate* isolate = obj->GetIsolate();
    317   CALL_HEAP_FUNCTION(isolate,
    318                      obj->DeepCopy(isolate),
    319                      JSObject);
    320 }
    321 
    322 
    323 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
    324   CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
    325 }
    326 
    327 
    328 // Wrappers for scripts are kept alive and cached in weak global
    329 // handles referred from foreign objects held by the scripts as long as
    330 // they are used. When they are not used anymore, the garbage
    331 // collector will call the weak callback on the global handle
    332 // associated with the wrapper and get rid of both the wrapper and the
    333 // handle.
    334 static void ClearWrapperCache(v8::Isolate* v8_isolate,
    335                               Persistent<v8::Value>* handle,
    336                               void*) {
    337   Handle<Object> cache = Utils::OpenPersistent(handle);
    338   JSValue* wrapper = JSValue::cast(*cache);
    339   Foreign* foreign = Script::cast(wrapper->value())->wrapper();
    340   ASSERT(foreign->foreign_address() ==
    341          reinterpret_cast<Address>(cache.location()));
    342   foreign->set_foreign_address(0);
    343   Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
    344   isolate->global_handles()->Destroy(cache.location());
    345   isolate->counters()->script_wrappers()->Decrement();
    346 }
    347 
    348 
    349 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
    350   if (script->wrapper()->foreign_address() != NULL) {
    351     // Return the script wrapper directly from the cache.
    352     return Handle<JSValue>(
    353         reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
    354   }
    355   Isolate* isolate = script->GetIsolate();
    356   // Construct a new script wrapper.
    357   isolate->counters()->script_wrappers()->Increment();
    358   Handle<JSFunction> constructor = isolate->script_function();
    359   Handle<JSValue> result =
    360       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
    361 
    362   // The allocation might have triggered a GC, which could have called this
    363   // function recursively, and a wrapper has already been created and cached.
    364   // In that case, simply return the cached wrapper.
    365   if (script->wrapper()->foreign_address() != NULL) {
    366     return Handle<JSValue>(
    367         reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
    368   }
    369 
    370   result->set_value(*script);
    371 
    372   // Create a new weak global handle and use it to cache the wrapper
    373   // for future use. The cache will automatically be cleared by the
    374   // garbage collector when it is not used anymore.
    375   Handle<Object> handle = isolate->global_handles()->Create(*result);
    376   isolate->global_handles()->MakeWeak(handle.location(),
    377                                       NULL,
    378                                       &ClearWrapperCache);
    379   script->wrapper()->set_foreign_address(
    380       reinterpret_cast<Address>(handle.location()));
    381   return result;
    382 }
    383 
    384 
    385 // Init line_ends array with code positions of line ends inside script
    386 // source.
    387 void InitScriptLineEnds(Handle<Script> script) {
    388   if (!script->line_ends()->IsUndefined()) return;
    389 
    390   Isolate* isolate = script->GetIsolate();
    391 
    392   if (!script->source()->IsString()) {
    393     ASSERT(script->source()->IsUndefined());
    394     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
    395     script->set_line_ends(*empty);
    396     ASSERT(script->line_ends()->IsFixedArray());
    397     return;
    398   }
    399 
    400   Handle<String> src(String::cast(script->source()), isolate);
    401 
    402   Handle<FixedArray> array = CalculateLineEnds(src, true);
    403 
    404   if (*array != isolate->heap()->empty_fixed_array()) {
    405     array->set_map(isolate->heap()->fixed_cow_array_map());
    406   }
    407 
    408   script->set_line_ends(*array);
    409   ASSERT(script->line_ends()->IsFixedArray());
    410 }
    411 
    412 
    413 template <typename SourceChar>
    414 static void CalculateLineEnds(Isolate* isolate,
    415                               List<int>* line_ends,
    416                               Vector<const SourceChar> src,
    417                               bool with_last_line) {
    418   const int src_len = src.length();
    419   StringSearch<uint8_t, SourceChar> search(isolate, STATIC_ASCII_VECTOR("\n"));
    420 
    421   // Find and record line ends.
    422   int position = 0;
    423   while (position != -1 && position < src_len) {
    424     position = search.Search(src, position);
    425     if (position != -1) {
    426       line_ends->Add(position);
    427       position++;
    428     } else if (with_last_line) {
    429       // Even if the last line misses a line end, it is counted.
    430       line_ends->Add(src_len);
    431       return;
    432     }
    433   }
    434 }
    435 
    436 
    437 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
    438                                      bool with_last_line) {
    439   src = FlattenGetString(src);
    440   // Rough estimate of line count based on a roughly estimated average
    441   // length of (unpacked) code.
    442   int line_count_estimate = src->length() >> 4;
    443   List<int> line_ends(line_count_estimate);
    444   Isolate* isolate = src->GetIsolate();
    445   {
    446     DisallowHeapAllocation no_allocation;  // ensure vectors stay valid.
    447     // Dispatch on type of strings.
    448     String::FlatContent content = src->GetFlatContent();
    449     ASSERT(content.IsFlat());
    450     if (content.IsAscii()) {
    451       CalculateLineEnds(isolate,
    452                         &line_ends,
    453                         content.ToOneByteVector(),
    454                         with_last_line);
    455     } else {
    456       CalculateLineEnds(isolate,
    457                         &line_ends,
    458                         content.ToUC16Vector(),
    459                         with_last_line);
    460     }
    461   }
    462   int line_count = line_ends.length();
    463   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
    464   for (int i = 0; i < line_count; i++) {
    465     array->set(i, Smi::FromInt(line_ends[i]));
    466   }
    467   return array;
    468 }
    469 
    470 
    471 // Convert code position into line number.
    472 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
    473   InitScriptLineEnds(script);
    474   DisallowHeapAllocation no_allocation;
    475   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    476   const int line_ends_len = line_ends_array->length();
    477 
    478   if (!line_ends_len) return -1;
    479 
    480   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
    481     return script->line_offset()->value();
    482   }
    483 
    484   int left = 0;
    485   int right = line_ends_len;
    486   while (int half = (right - left) / 2) {
    487     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
    488       right -= half;
    489     } else {
    490       left += half;
    491     }
    492   }
    493   return right + script->line_offset()->value();
    494 }
    495 
    496 
    497 // Convert code position into column number.
    498 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
    499   int line_number = GetScriptLineNumber(script, code_pos);
    500   if (line_number == -1) return -1;
    501 
    502   DisallowHeapAllocation no_allocation;
    503   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    504   line_number = line_number - script->line_offset()->value();
    505   if (line_number == 0) return code_pos + script->column_offset()->value();
    506   int prev_line_end_pos =
    507       Smi::cast(line_ends_array->get(line_number - 1))->value();
    508   return code_pos - (prev_line_end_pos + 1);
    509 }
    510 
    511 
    512 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
    513   DisallowHeapAllocation no_allocation;
    514   if (!script->line_ends()->IsUndefined()) {
    515     return GetScriptLineNumber(script, code_pos);
    516   }
    517   // Slow mode: we do not have line_ends. We have to iterate through source.
    518   if (!script->source()->IsString()) {
    519     return -1;
    520   }
    521   String* source = String::cast(script->source());
    522   int line = 0;
    523   int len = source->length();
    524   for (int pos = 0; pos < len; pos++) {
    525     if (pos == code_pos) {
    526       break;
    527     }
    528     if (source->Get(pos) == '\n') {
    529       line++;
    530     }
    531   }
    532   return line;
    533 }
    534 
    535 
    536 // Compute the property keys from the interceptor.
    537 // TODO(rossberg): support symbols in API, and filter here if needed.
    538 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
    539                                                  Handle<JSObject> object) {
    540   Isolate* isolate = receiver->GetIsolate();
    541   Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
    542   PropertyCallbackArguments
    543       args(isolate, interceptor->data(), *receiver, *object);
    544   v8::Handle<v8::Array> result;
    545   if (!interceptor->enumerator()->IsUndefined()) {
    546     v8::NamedPropertyEnumerator enum_fun =
    547         v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
    548     LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
    549     result = args.Call(enum_fun);
    550   }
    551 #if ENABLE_EXTRA_CHECKS
    552   CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
    553 #endif
    554   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
    555                                    result);
    556 }
    557 
    558 
    559 // Compute the element keys from the interceptor.
    560 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
    561                                                    Handle<JSObject> object) {
    562   Isolate* isolate = receiver->GetIsolate();
    563   Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
    564   PropertyCallbackArguments
    565       args(isolate, interceptor->data(), *receiver, *object);
    566   v8::Handle<v8::Array> result;
    567   if (!interceptor->enumerator()->IsUndefined()) {
    568     v8::IndexedPropertyEnumerator enum_fun =
    569         v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
    570     LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
    571     result = args.Call(enum_fun);
    572 #if ENABLE_EXTRA_CHECKS
    573     CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
    574 #endif
    575   }
    576   return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
    577                                    result);
    578 }
    579 
    580 
    581 Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
    582   Isolate* isolate = script->GetIsolate();
    583   Handle<String> name_or_source_url_key =
    584       isolate->factory()->InternalizeOneByteString(
    585           STATIC_ASCII_VECTOR("nameOrSourceURL"));
    586   Handle<JSValue> script_wrapper = GetScriptWrapper(script);
    587   Handle<Object> property = GetProperty(isolate,
    588                                         script_wrapper,
    589                                         name_or_source_url_key);
    590   ASSERT(property->IsJSFunction());
    591   Handle<JSFunction> method = Handle<JSFunction>::cast(property);
    592   bool caught_exception;
    593   Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
    594                                              NULL, &caught_exception);
    595   if (caught_exception) {
    596     result = isolate->factory()->undefined_value();
    597   }
    598   return result;
    599 }
    600 
    601 
    602 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
    603   int len = array->length();
    604   for (int i = 0; i < len; i++) {
    605     Object* e = array->get(i);
    606     if (!(e->IsString() || e->IsNumber())) return false;
    607   }
    608   return true;
    609 }
    610 
    611 
    612 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
    613                                           KeyCollectionType type,
    614                                           bool* threw) {
    615   USE(ContainsOnlyValidKeys);
    616   Isolate* isolate = object->GetIsolate();
    617   Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
    618   Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
    619       isolate->context()->native_context()->arguments_boilerplate(),
    620       isolate);
    621   Handle<JSFunction> arguments_function = Handle<JSFunction>(
    622       JSFunction::cast(arguments_boilerplate->map()->constructor()),
    623       isolate);
    624 
    625   // Only collect keys if access is permitted.
    626   for (Handle<Object> p = object;
    627        *p != isolate->heap()->null_value();
    628        p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
    629     if (p->IsJSProxy()) {
    630       Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
    631       Handle<Object> args[] = { proxy };
    632       Handle<Object> names = Execution::Call(
    633           isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
    634       if (*threw) return content;
    635       content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
    636       break;
    637     }
    638 
    639     Handle<JSObject> current(JSObject::cast(*p), isolate);
    640 
    641     // Check access rights if required.
    642     if (current->IsAccessCheckNeeded() &&
    643         !isolate->MayNamedAccess(*current,
    644                                  isolate->heap()->undefined_value(),
    645                                  v8::ACCESS_KEYS)) {
    646       isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
    647       if (isolate->has_scheduled_exception()) {
    648         isolate->PromoteScheduledException();
    649         *threw = true;
    650       }
    651       break;
    652     }
    653 
    654     // Compute the element keys.
    655     Handle<FixedArray> element_keys =
    656         isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
    657     current->GetEnumElementKeys(*element_keys);
    658     content = UnionOfKeys(content, element_keys);
    659     ASSERT(ContainsOnlyValidKeys(content));
    660 
    661     // Add the element keys from the interceptor.
    662     if (current->HasIndexedInterceptor()) {
    663       v8::Handle<v8::Array> result =
    664           GetKeysForIndexedInterceptor(object, current);
    665       if (!result.IsEmpty())
    666         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    667       ASSERT(ContainsOnlyValidKeys(content));
    668     }
    669 
    670     // We can cache the computed property keys if access checks are
    671     // not needed and no interceptors are involved.
    672     //
    673     // We do not use the cache if the object has elements and
    674     // therefore it does not make sense to cache the property names
    675     // for arguments objects.  Arguments objects will always have
    676     // elements.
    677     // Wrapped strings have elements, but don't have an elements
    678     // array or dictionary.  So the fast inline test for whether to
    679     // use the cache says yes, so we should not create a cache.
    680     bool cache_enum_keys =
    681         ((current->map()->constructor() != *arguments_function) &&
    682          !current->IsJSValue() &&
    683          !current->IsAccessCheckNeeded() &&
    684          !current->HasNamedInterceptor() &&
    685          !current->HasIndexedInterceptor());
    686     // Compute the property keys and cache them if possible.
    687     content =
    688         UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
    689     ASSERT(ContainsOnlyValidKeys(content));
    690 
    691     // Add the property keys from the interceptor.
    692     if (current->HasNamedInterceptor()) {
    693       v8::Handle<v8::Array> result =
    694           GetKeysForNamedInterceptor(object, current);
    695       if (!result.IsEmpty())
    696         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    697       ASSERT(ContainsOnlyValidKeys(content));
    698     }
    699 
    700     // If we only want local properties we bail out after the first
    701     // iteration.
    702     if (type == LOCAL_ONLY)
    703       break;
    704   }
    705   return content;
    706 }
    707 
    708 
    709 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
    710   Isolate* isolate = object->GetIsolate();
    711   isolate->counters()->for_in()->Increment();
    712   Handle<FixedArray> elements =
    713       GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
    714   return isolate->factory()->NewJSArrayWithElements(elements);
    715 }
    716 
    717 
    718 Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
    719   ASSERT(array->length() >= length);
    720   if (array->length() == length) return array;
    721 
    722   Handle<FixedArray> new_array =
    723       array->GetIsolate()->factory()->NewFixedArray(length);
    724   for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
    725   return new_array;
    726 }
    727 
    728 
    729 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
    730                                        bool cache_result) {
    731   Isolate* isolate = object->GetIsolate();
    732   if (object->HasFastProperties()) {
    733     if (object->map()->instance_descriptors()->HasEnumCache()) {
    734       int own_property_count = object->map()->EnumLength();
    735       // If we have an enum cache, but the enum length of the given map is set
    736       // to kInvalidEnumCache, this means that the map itself has never used the
    737       // present enum cache. The first step to using the cache is to set the
    738       // enum length of the map by counting the number of own descriptors that
    739       // are not DONT_ENUM or SYMBOLIC.
    740       if (own_property_count == Map::kInvalidEnumCache) {
    741         own_property_count = object->map()->NumberOfDescribedProperties(
    742             OWN_DESCRIPTORS, DONT_SHOW);
    743 
    744         if (cache_result) object->map()->SetEnumLength(own_property_count);
    745       }
    746 
    747       DescriptorArray* desc = object->map()->instance_descriptors();
    748       Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
    749 
    750       // In case the number of properties required in the enum are actually
    751       // present, we can reuse the enum cache. Otherwise, this means that the
    752       // enum cache was generated for a previous (smaller) version of the
    753       // Descriptor Array. In that case we regenerate the enum cache.
    754       if (own_property_count <= keys->length()) {
    755         isolate->counters()->enum_cache_hits()->Increment();
    756         return ReduceFixedArrayTo(keys, own_property_count);
    757       }
    758     }
    759 
    760     Handle<Map> map(object->map());
    761 
    762     if (map->instance_descriptors()->IsEmpty()) {
    763       isolate->counters()->enum_cache_hits()->Increment();
    764       if (cache_result) map->SetEnumLength(0);
    765       return isolate->factory()->empty_fixed_array();
    766     }
    767 
    768     isolate->counters()->enum_cache_misses()->Increment();
    769     int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_SHOW);
    770 
    771     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
    772     Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
    773 
    774     Handle<DescriptorArray> descs =
    775         Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
    776 
    777     int real_size = map->NumberOfOwnDescriptors();
    778     int enum_size = 0;
    779     int index = 0;
    780 
    781     for (int i = 0; i < descs->number_of_descriptors(); i++) {
    782       PropertyDetails details = descs->GetDetails(i);
    783       Object* key = descs->GetKey(i);
    784       if (!(details.IsDontEnum() || key->IsSymbol())) {
    785         if (i < real_size) ++enum_size;
    786         storage->set(index, key);
    787         if (!indices.is_null()) {
    788           if (details.type() != FIELD) {
    789             indices = Handle<FixedArray>();
    790           } else {
    791             int field_index = descs->GetFieldIndex(i);
    792             if (field_index >= map->inobject_properties()) {
    793               field_index = -(field_index - map->inobject_properties() + 1);
    794             }
    795             indices->set(index, Smi::FromInt(field_index));
    796           }
    797         }
    798         index++;
    799       }
    800     }
    801     ASSERT(index == storage->length());
    802 
    803     Handle<FixedArray> bridge_storage =
    804         isolate->factory()->NewFixedArray(
    805             DescriptorArray::kEnumCacheBridgeLength);
    806     DescriptorArray* desc = object->map()->instance_descriptors();
    807     desc->SetEnumCache(*bridge_storage,
    808                        *storage,
    809                        indices.is_null() ? Object::cast(Smi::FromInt(0))
    810                                          : Object::cast(*indices));
    811     if (cache_result) {
    812       object->map()->SetEnumLength(enum_size);
    813     }
    814 
    815     return ReduceFixedArrayTo(storage, enum_size);
    816   } else {
    817     Handle<NameDictionary> dictionary(object->property_dictionary());
    818 
    819     int length = dictionary->NumberOfElements();
    820     if (length == 0) {
    821       return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
    822     }
    823 
    824     // The enumeration array is generated by allocating an array big enough to
    825     // hold all properties that have been seen, whether they are are deleted or
    826     // not. Subsequently all visible properties are added to the array. If some
    827     // properties were not visible, the array is trimmed so it only contains
    828     // visible properties. This improves over adding elements and sorting by
    829     // index by having linear complexity rather than n*log(n).
    830 
    831     // By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
    832     // we can predict the number of holes in the final array. If there will be
    833     // more than 50% holes, regenerate the enumeration indices to reduce the
    834     // number of holes to a minimum. This avoids allocating a large array if
    835     // many properties were added but subsequently deleted.
    836     int next_enumeration = dictionary->NextEnumerationIndex();
    837     if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
    838       NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
    839       next_enumeration = dictionary->NextEnumerationIndex();
    840     }
    841 
    842     Handle<FixedArray> storage =
    843         isolate->factory()->NewFixedArray(next_enumeration);
    844 
    845     storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
    846     ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_SHOW));
    847     return storage;
    848   }
    849 }
    850 
    851 
    852 Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
    853                                        Handle<Object> key) {
    854   CALL_HEAP_FUNCTION(table->GetIsolate(),
    855                      table->Add(*key),
    856                      ObjectHashSet);
    857 }
    858 
    859 
    860 Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
    861                                           Handle<Object> key) {
    862   CALL_HEAP_FUNCTION(table->GetIsolate(),
    863                      table->Remove(*key),
    864                      ObjectHashSet);
    865 }
    866 
    867 
    868 Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
    869                                                Handle<Object> key,
    870                                                Handle<Object> value) {
    871   CALL_HEAP_FUNCTION(table->GetIsolate(),
    872                      table->Put(*key, *value),
    873                      ObjectHashTable);
    874 }
    875 
    876 
    877 DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
    878     : impl_(isolate->handle_scope_implementer()) {
    879   impl_->BeginDeferredScope();
    880   v8::ImplementationUtilities::HandleScopeData* data =
    881       impl_->isolate()->handle_scope_data();
    882   Object** new_next = impl_->GetSpareOrNewBlock();
    883   Object** new_limit = &new_next[kHandleBlockSize];
    884   ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
    885   impl_->blocks()->Add(new_next);
    886 
    887 #ifdef DEBUG
    888   prev_level_ = data->level;
    889 #endif
    890   data->level++;
    891   prev_limit_ = data->limit;
    892   prev_next_ = data->next;
    893   data->next = new_next;
    894   data->limit = new_limit;
    895 }
    896 
    897 
    898 DeferredHandleScope::~DeferredHandleScope() {
    899   impl_->isolate()->handle_scope_data()->level--;
    900   ASSERT(handles_detached_);
    901   ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
    902 }
    903 
    904 
    905 DeferredHandles* DeferredHandleScope::Detach() {
    906   DeferredHandles* deferred = impl_->Detach(prev_limit_);
    907   v8::ImplementationUtilities::HandleScopeData* data =
    908       impl_->isolate()->handle_scope_data();
    909   data->next = prev_next_;
    910   data->limit = prev_limit_;
    911 #ifdef DEBUG
    912   handles_detached_ = true;
    913 #endif
    914   return deferred;
    915 }
    916 
    917 
    918 } }  // namespace v8::internal
    919