Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "store-buffer.h"
     29 
     30 #include <algorithm>
     31 
     32 #include "v8.h"
     33 #include "store-buffer-inl.h"
     34 #include "v8-counters.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 StoreBuffer::StoreBuffer(Heap* heap)
     40     : heap_(heap),
     41       start_(NULL),
     42       limit_(NULL),
     43       old_start_(NULL),
     44       old_limit_(NULL),
     45       old_top_(NULL),
     46       old_reserved_limit_(NULL),
     47       old_buffer_is_sorted_(false),
     48       old_buffer_is_filtered_(false),
     49       during_gc_(false),
     50       store_buffer_rebuilding_enabled_(false),
     51       callback_(NULL),
     52       may_move_store_buffer_entries_(true),
     53       virtual_memory_(NULL),
     54       hash_set_1_(NULL),
     55       hash_set_2_(NULL),
     56       hash_sets_are_empty_(true) {
     57 }
     58 
     59 
     60 void StoreBuffer::SetUp() {
     61   virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
     62   uintptr_t start_as_int =
     63       reinterpret_cast<uintptr_t>(virtual_memory_->address());
     64   start_ =
     65       reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
     66   limit_ = start_ + (kStoreBufferSize / kPointerSize);
     67 
     68   old_virtual_memory_ =
     69       new VirtualMemory(kOldStoreBufferLength * kPointerSize);
     70   old_top_ = old_start_ =
     71       reinterpret_cast<Address*>(old_virtual_memory_->address());
     72   // Don't know the alignment requirements of the OS, but it is certainly not
     73   // less than 0xfff.
     74   ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
     75   int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
     76   ASSERT(initial_length > 0);
     77   ASSERT(initial_length <= kOldStoreBufferLength);
     78   old_limit_ = old_start_ + initial_length;
     79   old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
     80 
     81   CHECK(old_virtual_memory_->Commit(
     82             reinterpret_cast<void*>(old_start_),
     83             (old_limit_ - old_start_) * kPointerSize,
     84             false));
     85 
     86   ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
     87   ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
     88   Address* vm_limit = reinterpret_cast<Address*>(
     89       reinterpret_cast<char*>(virtual_memory_->address()) +
     90           virtual_memory_->size());
     91   ASSERT(start_ <= vm_limit);
     92   ASSERT(limit_ <= vm_limit);
     93   USE(vm_limit);
     94   ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
     95   ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
     96          0);
     97 
     98   CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
     99                                 kStoreBufferSize,
    100                                 false));  // Not executable.
    101   heap_->public_set_store_buffer_top(start_);
    102 
    103   hash_set_1_ = new uintptr_t[kHashSetLength];
    104   hash_set_2_ = new uintptr_t[kHashSetLength];
    105   hash_sets_are_empty_ = false;
    106 
    107   ClearFilteringHashSets();
    108 }
    109 
    110 
    111 void StoreBuffer::TearDown() {
    112   delete virtual_memory_;
    113   delete old_virtual_memory_;
    114   delete[] hash_set_1_;
    115   delete[] hash_set_2_;
    116   old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
    117   start_ = limit_ = NULL;
    118   heap_->public_set_store_buffer_top(start_);
    119 }
    120 
    121 
    122 void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
    123   isolate->heap()->store_buffer()->Compact();
    124   isolate->counters()->store_buffer_overflows()->Increment();
    125 }
    126 
    127 
    128 void StoreBuffer::Uniq() {
    129   // Remove adjacent duplicates and cells that do not point at new space.
    130   Address previous = NULL;
    131   Address* write = old_start_;
    132   ASSERT(may_move_store_buffer_entries_);
    133   for (Address* read = old_start_; read < old_top_; read++) {
    134     Address current = *read;
    135     if (current != previous) {
    136       if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
    137         *write++ = current;
    138       }
    139     }
    140     previous = current;
    141   }
    142   old_top_ = write;
    143 }
    144 
    145 
    146 bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
    147   return old_limit_ - old_top_ >= space_needed;
    148 }
    149 
    150 
    151 void StoreBuffer::EnsureSpace(intptr_t space_needed) {
    152   while (old_limit_ - old_top_ < space_needed &&
    153          old_limit_ < old_reserved_limit_) {
    154     size_t grow = old_limit_ - old_start_;  // Double size.
    155     CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
    156                                       grow * kPointerSize,
    157                                       false));
    158     old_limit_ += grow;
    159   }
    160 
    161   if (SpaceAvailable(space_needed)) return;
    162 
    163   if (old_buffer_is_filtered_) return;
    164   ASSERT(may_move_store_buffer_entries_);
    165   Compact();
    166 
    167   old_buffer_is_filtered_ = true;
    168   bool page_has_scan_on_scavenge_flag = false;
    169 
    170   PointerChunkIterator it(heap_);
    171   MemoryChunk* chunk;
    172   while ((chunk = it.next()) != NULL) {
    173     if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
    174   }
    175 
    176   if (page_has_scan_on_scavenge_flag) {
    177     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
    178   }
    179 
    180   if (SpaceAvailable(space_needed)) return;
    181 
    182   // Sample 1 entry in 97 and filter out the pages where we estimate that more
    183   // than 1 in 8 pointers are to new space.
    184   static const int kSampleFinenesses = 5;
    185   static const struct Samples {
    186     int prime_sample_step;
    187     int threshold;
    188   } samples[kSampleFinenesses] =  {
    189     { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
    190     { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
    191     { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
    192     { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
    193     { 1, 0}
    194   };
    195   for (int i = 0; i < kSampleFinenesses; i++) {
    196     ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
    197     // As a last resort we mark all pages as being exempt from the store buffer.
    198     ASSERT(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
    199     if (SpaceAvailable(space_needed)) return;
    200   }
    201   UNREACHABLE();
    202 }
    203 
    204 
    205 // Sample the store buffer to see if some pages are taking up a lot of space
    206 // in the store buffer.
    207 void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
    208   PointerChunkIterator it(heap_);
    209   MemoryChunk* chunk;
    210   while ((chunk = it.next()) != NULL) {
    211     chunk->set_store_buffer_counter(0);
    212   }
    213   bool created_new_scan_on_scavenge_pages = false;
    214   MemoryChunk* previous_chunk = NULL;
    215   for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
    216     Address addr = *p;
    217     MemoryChunk* containing_chunk = NULL;
    218     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
    219       containing_chunk = previous_chunk;
    220     } else {
    221       containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
    222     }
    223     int old_counter = containing_chunk->store_buffer_counter();
    224     if (old_counter == threshold) {
    225       containing_chunk->set_scan_on_scavenge(true);
    226       created_new_scan_on_scavenge_pages = true;
    227     }
    228     containing_chunk->set_store_buffer_counter(old_counter + 1);
    229     previous_chunk = containing_chunk;
    230   }
    231   if (created_new_scan_on_scavenge_pages) {
    232     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
    233   }
    234   old_buffer_is_filtered_ = true;
    235 }
    236 
    237 
    238 void StoreBuffer::Filter(int flag) {
    239   Address* new_top = old_start_;
    240   MemoryChunk* previous_chunk = NULL;
    241   for (Address* p = old_start_; p < old_top_; p++) {
    242     Address addr = *p;
    243     MemoryChunk* containing_chunk = NULL;
    244     if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
    245       containing_chunk = previous_chunk;
    246     } else {
    247       containing_chunk = MemoryChunk::FromAnyPointerAddress(addr);
    248       previous_chunk = containing_chunk;
    249     }
    250     if (!containing_chunk->IsFlagSet(flag)) {
    251       *new_top++ = addr;
    252     }
    253   }
    254   old_top_ = new_top;
    255 
    256   // Filtering hash sets are inconsistent with the store buffer after this
    257   // operation.
    258   ClearFilteringHashSets();
    259 }
    260 
    261 
    262 void StoreBuffer::SortUniq() {
    263   Compact();
    264   if (old_buffer_is_sorted_) return;
    265   std::sort(old_start_, old_top_);
    266   Uniq();
    267 
    268   old_buffer_is_sorted_ = true;
    269 
    270   // Filtering hash sets are inconsistent with the store buffer after this
    271   // operation.
    272   ClearFilteringHashSets();
    273 }
    274 
    275 
    276 bool StoreBuffer::PrepareForIteration() {
    277   Compact();
    278   PointerChunkIterator it(heap_);
    279   MemoryChunk* chunk;
    280   bool page_has_scan_on_scavenge_flag = false;
    281   while ((chunk = it.next()) != NULL) {
    282     if (chunk->scan_on_scavenge()) page_has_scan_on_scavenge_flag = true;
    283   }
    284 
    285   if (page_has_scan_on_scavenge_flag) {
    286     Filter(MemoryChunk::SCAN_ON_SCAVENGE);
    287   }
    288 
    289   // Filtering hash sets are inconsistent with the store buffer after
    290   // iteration.
    291   ClearFilteringHashSets();
    292 
    293   return page_has_scan_on_scavenge_flag;
    294 }
    295 
    296 
    297 #ifdef DEBUG
    298 void StoreBuffer::Clean() {
    299   ClearFilteringHashSets();
    300   Uniq();  // Also removes things that no longer point to new space.
    301   EnsureSpace(kStoreBufferSize / 2);
    302 }
    303 
    304 
    305 static Address* in_store_buffer_1_element_cache = NULL;
    306 
    307 
    308 bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
    309   if (!FLAG_enable_slow_asserts) return true;
    310   if (in_store_buffer_1_element_cache != NULL &&
    311       *in_store_buffer_1_element_cache == cell_address) {
    312     return true;
    313   }
    314   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
    315   for (Address* current = top - 1; current >= start_; current--) {
    316     if (*current == cell_address) {
    317       in_store_buffer_1_element_cache = current;
    318       return true;
    319     }
    320   }
    321   for (Address* current = old_top_ - 1; current >= old_start_; current--) {
    322     if (*current == cell_address) {
    323       in_store_buffer_1_element_cache = current;
    324       return true;
    325     }
    326   }
    327   return false;
    328 }
    329 #endif
    330 
    331 
    332 void StoreBuffer::ClearFilteringHashSets() {
    333   if (!hash_sets_are_empty_) {
    334     memset(reinterpret_cast<void*>(hash_set_1_),
    335            0,
    336            sizeof(uintptr_t) * kHashSetLength);
    337     memset(reinterpret_cast<void*>(hash_set_2_),
    338            0,
    339            sizeof(uintptr_t) * kHashSetLength);
    340     hash_sets_are_empty_ = true;
    341   }
    342 }
    343 
    344 
    345 void StoreBuffer::GCPrologue() {
    346   ClearFilteringHashSets();
    347   during_gc_ = true;
    348 }
    349 
    350 
    351 #ifdef VERIFY_HEAP
    352 static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
    353   // Do nothing.
    354 }
    355 
    356 
    357 void StoreBuffer::VerifyPointers(PagedSpace* space,
    358                                  RegionCallback region_callback) {
    359   PageIterator it(space);
    360 
    361   while (it.has_next()) {
    362     Page* page = it.next();
    363     FindPointersToNewSpaceOnPage(
    364         reinterpret_cast<PagedSpace*>(page->owner()),
    365         page,
    366         region_callback,
    367         &DummyScavengePointer,
    368         false);
    369   }
    370 }
    371 
    372 
    373 void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
    374   LargeObjectIterator it(space);
    375   for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
    376     if (object->IsFixedArray()) {
    377       Address slot_address = object->address();
    378       Address end = object->address() + object->Size();
    379 
    380       while (slot_address < end) {
    381         HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
    382         // When we are not in GC the Heap::InNewSpace() predicate
    383         // checks that pointers which satisfy predicate point into
    384         // the active semispace.
    385         heap_->InNewSpace(*slot);
    386         slot_address += kPointerSize;
    387       }
    388     }
    389   }
    390 }
    391 #endif
    392 
    393 
    394 void StoreBuffer::Verify() {
    395 #ifdef VERIFY_HEAP
    396   VerifyPointers(heap_->old_pointer_space(),
    397                  &StoreBuffer::FindPointersToNewSpaceInRegion);
    398   VerifyPointers(heap_->map_space(),
    399                  &StoreBuffer::FindPointersToNewSpaceInMapsRegion);
    400   VerifyPointers(heap_->lo_space());
    401 #endif
    402 }
    403 
    404 
    405 void StoreBuffer::GCEpilogue() {
    406   during_gc_ = false;
    407 #ifdef VERIFY_HEAP
    408   if (FLAG_verify_heap) {
    409     Verify();
    410   }
    411 #endif
    412 }
    413 
    414 
    415 void StoreBuffer::FindPointersToNewSpaceInRegion(
    416     Address start,
    417     Address end,
    418     ObjectSlotCallback slot_callback,
    419     bool clear_maps) {
    420   for (Address slot_address = start;
    421        slot_address < end;
    422        slot_address += kPointerSize) {
    423     Object** slot = reinterpret_cast<Object**>(slot_address);
    424     if (heap_->InNewSpace(*slot)) {
    425       HeapObject* object = reinterpret_cast<HeapObject*>(*slot);
    426       ASSERT(object->IsHeapObject());
    427       // The new space object was not promoted if it still contains a map
    428       // pointer. Clear the map field now lazily.
    429       if (clear_maps) ClearDeadObject(object);
    430       slot_callback(reinterpret_cast<HeapObject**>(slot), object);
    431       if (heap_->InNewSpace(*slot)) {
    432         EnterDirectlyIntoStoreBuffer(slot_address);
    433       }
    434     }
    435   }
    436 }
    437 
    438 
    439 // Compute start address of the first map following given addr.
    440 static inline Address MapStartAlign(Address addr) {
    441   Address page = Page::FromAddress(addr)->area_start();
    442   return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
    443 }
    444 
    445 
    446 // Compute end address of the first map preceding given addr.
    447 static inline Address MapEndAlign(Address addr) {
    448   Address page = Page::FromAllocationTop(addr)->area_start();
    449   return page + ((addr - page) / Map::kSize * Map::kSize);
    450 }
    451 
    452 
    453 void StoreBuffer::FindPointersToNewSpaceInMaps(
    454     Address start,
    455     Address end,
    456     ObjectSlotCallback slot_callback,
    457     bool clear_maps) {
    458   ASSERT(MapStartAlign(start) == start);
    459   ASSERT(MapEndAlign(end) == end);
    460 
    461   Address map_address = start;
    462   while (map_address < end) {
    463     ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
    464     ASSERT(Memory::Object_at(map_address)->IsMap());
    465 
    466     Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
    467     Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
    468 
    469     FindPointersToNewSpaceInRegion(pointer_fields_start,
    470                                    pointer_fields_end,
    471                                    slot_callback,
    472                                    clear_maps);
    473     map_address += Map::kSize;
    474   }
    475 }
    476 
    477 
    478 void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
    479     Address start,
    480     Address end,
    481     ObjectSlotCallback slot_callback,
    482     bool clear_maps) {
    483   Address map_aligned_start = MapStartAlign(start);
    484   Address map_aligned_end   = MapEndAlign(end);
    485 
    486   ASSERT(map_aligned_start == start);
    487   ASSERT(map_aligned_end == end);
    488 
    489   FindPointersToNewSpaceInMaps(map_aligned_start,
    490                                map_aligned_end,
    491                                slot_callback,
    492                                clear_maps);
    493 }
    494 
    495 
    496 // This function iterates over all the pointers in a paged space in the heap,
    497 // looking for pointers into new space.  Within the pages there may be dead
    498 // objects that have not been overwritten by free spaces or fillers because of
    499 // lazy sweeping.  These dead objects may not contain pointers to new space.
    500 // The garbage areas that have been swept properly (these will normally be the
    501 // large ones) will be marked with free space and filler map words.  In
    502 // addition any area that has never been used at all for object allocation must
    503 // be marked with a free space or filler.  Because the free space and filler
    504 // maps do not move we can always recognize these even after a compaction.
    505 // Normal objects like FixedArrays and JSObjects should not contain references
    506 // to these maps.  The special garbage section (see comment in spaces.h) is
    507 // skipped since it can contain absolutely anything.  Any objects that are
    508 // allocated during iteration may or may not be visited by the iteration, but
    509 // they will not be partially visited.
    510 void StoreBuffer::FindPointersToNewSpaceOnPage(
    511     PagedSpace* space,
    512     Page* page,
    513     RegionCallback region_callback,
    514     ObjectSlotCallback slot_callback,
    515     bool clear_maps) {
    516   Address visitable_start = page->area_start();
    517   Address end_of_page = page->area_end();
    518 
    519   Address visitable_end = visitable_start;
    520 
    521   Object* free_space_map = heap_->free_space_map();
    522   Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
    523 
    524   while (visitable_end < end_of_page) {
    525     Object* o = *reinterpret_cast<Object**>(visitable_end);
    526     // Skip fillers but not things that look like fillers in the special
    527     // garbage section which can contain anything.
    528     if (o == free_space_map ||
    529         o == two_pointer_filler_map ||
    530         (visitable_end == space->top() && visitable_end != space->limit())) {
    531       if (visitable_start != visitable_end) {
    532         // After calling this the special garbage section may have moved.
    533         (this->*region_callback)(visitable_start,
    534                                  visitable_end,
    535                                  slot_callback,
    536                                  clear_maps);
    537         if (visitable_end >= space->top() && visitable_end < space->limit()) {
    538           visitable_end = space->limit();
    539           visitable_start = visitable_end;
    540           continue;
    541         }
    542       }
    543       if (visitable_end == space->top() && visitable_end != space->limit()) {
    544         visitable_start = visitable_end = space->limit();
    545       } else {
    546         // At this point we are either at the start of a filler or we are at
    547         // the point where the space->top() used to be before the
    548         // visit_pointer_region call above.  Either way we can skip the
    549         // object at the current spot:  We don't promise to visit objects
    550         // allocated during heap traversal, and if space->top() moved then it
    551         // must be because an object was allocated at this point.
    552         visitable_start =
    553             visitable_end + HeapObject::FromAddress(visitable_end)->Size();
    554         visitable_end = visitable_start;
    555       }
    556     } else {
    557       ASSERT(o != free_space_map);
    558       ASSERT(o != two_pointer_filler_map);
    559       ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
    560       visitable_end += kPointerSize;
    561     }
    562   }
    563   ASSERT(visitable_end == end_of_page);
    564   if (visitable_start != visitable_end) {
    565     (this->*region_callback)(visitable_start,
    566                              visitable_end,
    567                              slot_callback,
    568                              clear_maps);
    569   }
    570 }
    571 
    572 
    573 void StoreBuffer::IteratePointersInStoreBuffer(
    574     ObjectSlotCallback slot_callback,
    575     bool clear_maps) {
    576   Address* limit = old_top_;
    577   old_top_ = old_start_;
    578   {
    579     DontMoveStoreBufferEntriesScope scope(this);
    580     for (Address* current = old_start_; current < limit; current++) {
    581 #ifdef DEBUG
    582       Address* saved_top = old_top_;
    583 #endif
    584       Object** slot = reinterpret_cast<Object**>(*current);
    585       Object* object = *slot;
    586       if (heap_->InFromSpace(object)) {
    587         HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
    588         // The new space object was not promoted if it still contains a map
    589         // pointer. Clear the map field now lazily.
    590         if (clear_maps) ClearDeadObject(heap_object);
    591         slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
    592         if (heap_->InNewSpace(*slot)) {
    593           EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
    594         }
    595       }
    596       ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
    597     }
    598   }
    599 }
    600 
    601 
    602 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
    603   IteratePointersToNewSpace(slot_callback, false);
    604 }
    605 
    606 
    607 void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
    608     ObjectSlotCallback slot_callback) {
    609   IteratePointersToNewSpace(slot_callback, true);
    610 }
    611 
    612 
    613 void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
    614                                             bool clear_maps) {
    615   // We do not sort or remove duplicated entries from the store buffer because
    616   // we expect that callback will rebuild the store buffer thus removing
    617   // all duplicates and pointers to old space.
    618   bool some_pages_to_scan = PrepareForIteration();
    619 
    620   // TODO(gc): we want to skip slots on evacuation candidates
    621   // but we can't simply figure that out from slot address
    622   // because slot can belong to a large object.
    623   IteratePointersInStoreBuffer(slot_callback, clear_maps);
    624 
    625   // We are done scanning all the pointers that were in the store buffer, but
    626   // there may be some pages marked scan_on_scavenge that have pointers to new
    627   // space that are not in the store buffer.  We must scan them now.  As we
    628   // scan, the surviving pointers to new space will be added to the store
    629   // buffer.  If there are still a lot of pointers to new space then we will
    630   // keep the scan_on_scavenge flag on the page and discard the pointers that
    631   // were added to the store buffer.  If there are not many pointers to new
    632   // space left on the page we will keep the pointers in the store buffer and
    633   // remove the flag from the page.
    634   if (some_pages_to_scan) {
    635     if (callback_ != NULL) {
    636       (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
    637     }
    638     PointerChunkIterator it(heap_);
    639     MemoryChunk* chunk;
    640     while ((chunk = it.next()) != NULL) {
    641       if (chunk->scan_on_scavenge()) {
    642         chunk->set_scan_on_scavenge(false);
    643         if (callback_ != NULL) {
    644           (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
    645         }
    646         if (chunk->owner() == heap_->lo_space()) {
    647           LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
    648           HeapObject* array = large_page->GetObject();
    649           ASSERT(array->IsFixedArray());
    650           Address start = array->address();
    651           Address end = start + array->Size();
    652           FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
    653         } else {
    654           Page* page = reinterpret_cast<Page*>(chunk);
    655           PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
    656           FindPointersToNewSpaceOnPage(
    657               owner,
    658               page,
    659               (owner == heap_->map_space() ?
    660                  &StoreBuffer::FindPointersToNewSpaceInMapsRegion :
    661                  &StoreBuffer::FindPointersToNewSpaceInRegion),
    662               slot_callback,
    663               clear_maps);
    664         }
    665       }
    666     }
    667     if (callback_ != NULL) {
    668       (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
    669     }
    670   }
    671 }
    672 
    673 
    674 void StoreBuffer::Compact() {
    675   Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
    676 
    677   if (top == start_) return;
    678 
    679   // There's no check of the limit in the loop below so we check here for
    680   // the worst case (compaction doesn't eliminate any pointers).
    681   ASSERT(top <= limit_);
    682   heap_->public_set_store_buffer_top(start_);
    683   EnsureSpace(top - start_);
    684   ASSERT(may_move_store_buffer_entries_);
    685   // Goes through the addresses in the store buffer attempting to remove
    686   // duplicates.  In the interest of speed this is a lossy operation.  Some
    687   // duplicates will remain.  We have two hash sets with different hash
    688   // functions to reduce the number of unnecessary clashes.
    689   hash_sets_are_empty_ = false;  // Hash sets are in use.
    690   for (Address* current = start_; current < top; current++) {
    691     ASSERT(!heap_->cell_space()->Contains(*current));
    692     ASSERT(!heap_->code_space()->Contains(*current));
    693     ASSERT(!heap_->old_data_space()->Contains(*current));
    694     uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
    695     // Shift out the last bits including any tags.
    696     int_addr >>= kPointerSizeLog2;
    697     // The upper part of an address is basically random because of ASLR and OS
    698     // non-determinism, so we use only the bits within a page for hashing to
    699     // make v8's behavior (more) deterministic.
    700     uintptr_t hash_addr =
    701         int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
    702     int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
    703                  (kHashSetLength - 1));
    704     if (hash_set_1_[hash1] == int_addr) continue;
    705     uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
    706     hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
    707     hash2 &= (kHashSetLength - 1);
    708     if (hash_set_2_[hash2] == int_addr) continue;
    709     if (hash_set_1_[hash1] == 0) {
    710       hash_set_1_[hash1] = int_addr;
    711     } else if (hash_set_2_[hash2] == 0) {
    712       hash_set_2_[hash2] = int_addr;
    713     } else {
    714       // Rather than slowing down we just throw away some entries.  This will
    715       // cause some duplicates to remain undetected.
    716       hash_set_1_[hash1] = int_addr;
    717       hash_set_2_[hash2] = 0;
    718     }
    719     old_buffer_is_sorted_ = false;
    720     old_buffer_is_filtered_ = false;
    721     *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
    722     ASSERT(old_top_ <= old_limit_);
    723   }
    724   heap_->isolate()->counters()->store_buffer_compactions()->Increment();
    725 }
    726 
    727 } }  // namespace v8::internal
    728