Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <string.h>
     29 
     30 #include "v8.h"
     31 #include "zone-inl.h"
     32 
     33 namespace v8 {
     34 namespace internal {
     35 
     36 
     37 // Segments represent chunks of memory: They have starting address
     38 // (encoded in the this pointer) and a size in bytes. Segments are
     39 // chained together forming a LIFO structure with the newest segment
     40 // available as segment_head_. Segments are allocated using malloc()
     41 // and de-allocated using free().
     42 
     43 class Segment {
     44  public:
     45   void Initialize(Segment* next, int size) {
     46     next_ = next;
     47     size_ = size;
     48   }
     49 
     50   Segment* next() const { return next_; }
     51   void clear_next() { next_ = NULL; }
     52 
     53   int size() const { return size_; }
     54   int capacity() const { return size_ - sizeof(Segment); }
     55 
     56   Address start() const { return address(sizeof(Segment)); }
     57   Address end() const { return address(size_); }
     58 
     59  private:
     60   // Computes the address of the nth byte in this segment.
     61   Address address(int n) const {
     62     return Address(this) + n;
     63   }
     64 
     65   Segment* next_;
     66   int size_;
     67 };
     68 
     69 
     70 Zone::Zone(Isolate* isolate)
     71     : allocation_size_(0),
     72       segment_bytes_allocated_(0),
     73       position_(0),
     74       limit_(0),
     75       segment_head_(NULL),
     76       isolate_(isolate) {
     77 }
     78 
     79 
     80 Zone::~Zone() {
     81   DeleteAll();
     82   DeleteKeptSegment();
     83 
     84   ASSERT(segment_bytes_allocated_ == 0);
     85 }
     86 
     87 
     88 void Zone::DeleteAll() {
     89 #ifdef DEBUG
     90   // Constant byte value used for zapping dead memory in debug mode.
     91   static const unsigned char kZapDeadByte = 0xcd;
     92 #endif
     93 
     94   // Find a segment with a suitable size to keep around.
     95   Segment* keep = NULL;
     96   // Traverse the chained list of segments, zapping (in debug mode)
     97   // and freeing every segment except the one we wish to keep.
     98   for (Segment* current = segment_head_; current != NULL; ) {
     99     Segment* next = current->next();
    100     if (keep == NULL && current->size() <= kMaximumKeptSegmentSize) {
    101       // Unlink the segment we wish to keep from the list.
    102       keep = current;
    103       keep->clear_next();
    104     } else {
    105       int size = current->size();
    106 #ifdef DEBUG
    107       // Zap the entire current segment (including the header).
    108       memset(current, kZapDeadByte, size);
    109 #endif
    110       DeleteSegment(current, size);
    111     }
    112     current = next;
    113   }
    114 
    115   // If we have found a segment we want to keep, we must recompute the
    116   // variables 'position' and 'limit' to prepare for future allocate
    117   // attempts. Otherwise, we must clear the position and limit to
    118   // force a new segment to be allocated on demand.
    119   if (keep != NULL) {
    120     Address start = keep->start();
    121     position_ = RoundUp(start, kAlignment);
    122     limit_ = keep->end();
    123 #ifdef DEBUG
    124     // Zap the contents of the kept segment (but not the header).
    125     memset(start, kZapDeadByte, keep->capacity());
    126 #endif
    127   } else {
    128     position_ = limit_ = 0;
    129   }
    130 
    131   // Update the head segment to be the kept segment (if any).
    132   segment_head_ = keep;
    133 }
    134 
    135 
    136 void Zone::DeleteKeptSegment() {
    137 #ifdef DEBUG
    138   // Constant byte value used for zapping dead memory in debug mode.
    139   static const unsigned char kZapDeadByte = 0xcd;
    140 #endif
    141 
    142   ASSERT(segment_head_ == NULL || segment_head_->next() == NULL);
    143   if (segment_head_ != NULL) {
    144     int size = segment_head_->size();
    145 #ifdef DEBUG
    146     // Zap the entire kept segment (including the header).
    147     memset(segment_head_, kZapDeadByte, size);
    148 #endif
    149     DeleteSegment(segment_head_, size);
    150     segment_head_ = NULL;
    151   }
    152 
    153   ASSERT(segment_bytes_allocated_ == 0);
    154 }
    155 
    156 
    157 // Creates a new segment, sets it size, and pushes it to the front
    158 // of the segment chain. Returns the new segment.
    159 Segment* Zone::NewSegment(int size) {
    160   Segment* result = reinterpret_cast<Segment*>(Malloced::New(size));
    161   adjust_segment_bytes_allocated(size);
    162   if (result != NULL) {
    163     result->Initialize(segment_head_, size);
    164     segment_head_ = result;
    165   }
    166   return result;
    167 }
    168 
    169 
    170 // Deletes the given segment. Does not touch the segment chain.
    171 void Zone::DeleteSegment(Segment* segment, int size) {
    172   adjust_segment_bytes_allocated(-size);
    173   Malloced::Delete(segment);
    174 }
    175 
    176 
    177 Address Zone::NewExpand(int size) {
    178   // Make sure the requested size is already properly aligned and that
    179   // there isn't enough room in the Zone to satisfy the request.
    180   ASSERT(size == RoundDown(size, kAlignment));
    181   ASSERT(size > limit_ - position_);
    182 
    183   // Compute the new segment size. We use a 'high water mark'
    184   // strategy, where we increase the segment size every time we expand
    185   // except that we employ a maximum segment size when we delete. This
    186   // is to avoid excessive malloc() and free() overhead.
    187   Segment* head = segment_head_;
    188   int old_size = (head == NULL) ? 0 : head->size();
    189   static const int kSegmentOverhead = sizeof(Segment) + kAlignment;
    190   int new_size_no_overhead = size + (old_size << 1);
    191   int new_size = kSegmentOverhead + new_size_no_overhead;
    192   // Guard against integer overflow.
    193   if (new_size_no_overhead < size || new_size < kSegmentOverhead) {
    194     V8::FatalProcessOutOfMemory("Zone");
    195     return NULL;
    196   }
    197   if (new_size < kMinimumSegmentSize) {
    198     new_size = kMinimumSegmentSize;
    199   } else if (new_size > kMaximumSegmentSize) {
    200     // Limit the size of new segments to avoid growing the segment size
    201     // exponentially, thus putting pressure on contiguous virtual address space.
    202     // All the while making sure to allocate a segment large enough to hold the
    203     // requested size.
    204     new_size = Max(kSegmentOverhead + size, kMaximumSegmentSize);
    205   }
    206   Segment* segment = NewSegment(new_size);
    207   if (segment == NULL) {
    208     V8::FatalProcessOutOfMemory("Zone");
    209     return NULL;
    210   }
    211 
    212   // Recompute 'top' and 'limit' based on the new segment.
    213   Address result = RoundUp(segment->start(), kAlignment);
    214   position_ = result + size;
    215   // Check for address overflow.
    216   if (position_ < result) {
    217     V8::FatalProcessOutOfMemory("Zone");
    218     return NULL;
    219   }
    220   limit_ = segment->end();
    221   ASSERT(position_ <= limit_);
    222   return result;
    223 }
    224 
    225 
    226 } }  // namespace v8::internal
    227