Home | History | Annotate | Download | only in AST
      1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Expr constant evaluator.
     11 //
     12 // Constant expression evaluation produces four main results:
     13 //
     14 //  * A success/failure flag indicating whether constant folding was successful.
     15 //    This is the 'bool' return value used by most of the code in this file. A
     16 //    'false' return value indicates that constant folding has failed, and any
     17 //    appropriate diagnostic has already been produced.
     18 //
     19 //  * An evaluated result, valid only if constant folding has not failed.
     20 //
     21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
     22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
     23 //    where it is possible to determine the evaluated result regardless.
     24 //
     25 //  * A set of notes indicating why the evaluation was not a constant expression
     26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
     27 //    too, why the expression could not be folded.
     28 //
     29 // If we are checking for a potential constant expression, failure to constant
     30 // fold a potential constant sub-expression will be indicated by a 'false'
     31 // return value (the expression could not be folded) and no diagnostic (the
     32 // expression is not necessarily non-constant).
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "clang/AST/APValue.h"
     37 #include "clang/AST/ASTContext.h"
     38 #include "clang/AST/ASTDiagnostic.h"
     39 #include "clang/AST/CharUnits.h"
     40 #include "clang/AST/Expr.h"
     41 #include "clang/AST/RecordLayout.h"
     42 #include "clang/AST/StmtVisitor.h"
     43 #include "clang/AST/TypeLoc.h"
     44 #include "clang/Basic/Builtins.h"
     45 #include "clang/Basic/TargetInfo.h"
     46 #include "llvm/ADT/SmallString.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include <cstring>
     49 #include <functional>
     50 
     51 using namespace clang;
     52 using llvm::APSInt;
     53 using llvm::APFloat;
     54 
     55 static bool IsGlobalLValue(APValue::LValueBase B);
     56 
     57 namespace {
     58   struct LValue;
     59   struct CallStackFrame;
     60   struct EvalInfo;
     61 
     62   static QualType getType(APValue::LValueBase B) {
     63     if (!B) return QualType();
     64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
     65       return D->getType();
     66 
     67     const Expr *Base = B.get<const Expr*>();
     68 
     69     // For a materialized temporary, the type of the temporary we materialized
     70     // may not be the type of the expression.
     71     if (const MaterializeTemporaryExpr *MTE =
     72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
     73       SmallVector<const Expr *, 2> CommaLHSs;
     74       SmallVector<SubobjectAdjustment, 2> Adjustments;
     75       const Expr *Temp = MTE->GetTemporaryExpr();
     76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
     77                                                                Adjustments);
     78       // Keep any cv-qualifiers from the reference if we generated a temporary
     79       // for it.
     80       if (Inner != Temp)
     81         return Inner->getType();
     82     }
     83 
     84     return Base->getType();
     85   }
     86 
     87   /// Get an LValue path entry, which is known to not be an array index, as a
     88   /// field or base class.
     89   static
     90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
     91     APValue::BaseOrMemberType Value;
     92     Value.setFromOpaqueValue(E.BaseOrMember);
     93     return Value;
     94   }
     95 
     96   /// Get an LValue path entry, which is known to not be an array index, as a
     97   /// field declaration.
     98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
     99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
    100   }
    101   /// Get an LValue path entry, which is known to not be an array index, as a
    102   /// base class declaration.
    103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
    104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
    105   }
    106   /// Determine whether this LValue path entry for a base class names a virtual
    107   /// base class.
    108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
    109     return getAsBaseOrMember(E).getInt();
    110   }
    111 
    112   /// Find the path length and type of the most-derived subobject in the given
    113   /// path, and find the size of the containing array, if any.
    114   static
    115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
    116                                     ArrayRef<APValue::LValuePathEntry> Path,
    117                                     uint64_t &ArraySize, QualType &Type) {
    118     unsigned MostDerivedLength = 0;
    119     Type = Base;
    120     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
    121       if (Type->isArrayType()) {
    122         const ConstantArrayType *CAT =
    123           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
    124         Type = CAT->getElementType();
    125         ArraySize = CAT->getSize().getZExtValue();
    126         MostDerivedLength = I + 1;
    127       } else if (Type->isAnyComplexType()) {
    128         const ComplexType *CT = Type->castAs<ComplexType>();
    129         Type = CT->getElementType();
    130         ArraySize = 2;
    131         MostDerivedLength = I + 1;
    132       } else if (const FieldDecl *FD = getAsField(Path[I])) {
    133         Type = FD->getType();
    134         ArraySize = 0;
    135         MostDerivedLength = I + 1;
    136       } else {
    137         // Path[I] describes a base class.
    138         ArraySize = 0;
    139       }
    140     }
    141     return MostDerivedLength;
    142   }
    143 
    144   // The order of this enum is important for diagnostics.
    145   enum CheckSubobjectKind {
    146     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
    147     CSK_This, CSK_Real, CSK_Imag
    148   };
    149 
    150   /// A path from a glvalue to a subobject of that glvalue.
    151   struct SubobjectDesignator {
    152     /// True if the subobject was named in a manner not supported by C++11. Such
    153     /// lvalues can still be folded, but they are not core constant expressions
    154     /// and we cannot perform lvalue-to-rvalue conversions on them.
    155     bool Invalid : 1;
    156 
    157     /// Is this a pointer one past the end of an object?
    158     bool IsOnePastTheEnd : 1;
    159 
    160     /// The length of the path to the most-derived object of which this is a
    161     /// subobject.
    162     unsigned MostDerivedPathLength : 30;
    163 
    164     /// The size of the array of which the most-derived object is an element, or
    165     /// 0 if the most-derived object is not an array element.
    166     uint64_t MostDerivedArraySize;
    167 
    168     /// The type of the most derived object referred to by this address.
    169     QualType MostDerivedType;
    170 
    171     typedef APValue::LValuePathEntry PathEntry;
    172 
    173     /// The entries on the path from the glvalue to the designated subobject.
    174     SmallVector<PathEntry, 8> Entries;
    175 
    176     SubobjectDesignator() : Invalid(true) {}
    177 
    178     explicit SubobjectDesignator(QualType T)
    179       : Invalid(false), IsOnePastTheEnd(false), MostDerivedPathLength(0),
    180         MostDerivedArraySize(0), MostDerivedType(T) {}
    181 
    182     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
    183       : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
    184         MostDerivedPathLength(0), MostDerivedArraySize(0) {
    185       if (!Invalid) {
    186         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
    187         ArrayRef<PathEntry> VEntries = V.getLValuePath();
    188         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
    189         if (V.getLValueBase())
    190           MostDerivedPathLength =
    191               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
    192                                        V.getLValuePath(), MostDerivedArraySize,
    193                                        MostDerivedType);
    194       }
    195     }
    196 
    197     void setInvalid() {
    198       Invalid = true;
    199       Entries.clear();
    200     }
    201 
    202     /// Determine whether this is a one-past-the-end pointer.
    203     bool isOnePastTheEnd() const {
    204       if (IsOnePastTheEnd)
    205         return true;
    206       if (MostDerivedArraySize &&
    207           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
    208         return true;
    209       return false;
    210     }
    211 
    212     /// Check that this refers to a valid subobject.
    213     bool isValidSubobject() const {
    214       if (Invalid)
    215         return false;
    216       return !isOnePastTheEnd();
    217     }
    218     /// Check that this refers to a valid subobject, and if not, produce a
    219     /// relevant diagnostic and set the designator as invalid.
    220     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
    221 
    222     /// Update this designator to refer to the first element within this array.
    223     void addArrayUnchecked(const ConstantArrayType *CAT) {
    224       PathEntry Entry;
    225       Entry.ArrayIndex = 0;
    226       Entries.push_back(Entry);
    227 
    228       // This is a most-derived object.
    229       MostDerivedType = CAT->getElementType();
    230       MostDerivedArraySize = CAT->getSize().getZExtValue();
    231       MostDerivedPathLength = Entries.size();
    232     }
    233     /// Update this designator to refer to the given base or member of this
    234     /// object.
    235     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
    236       PathEntry Entry;
    237       APValue::BaseOrMemberType Value(D, Virtual);
    238       Entry.BaseOrMember = Value.getOpaqueValue();
    239       Entries.push_back(Entry);
    240 
    241       // If this isn't a base class, it's a new most-derived object.
    242       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
    243         MostDerivedType = FD->getType();
    244         MostDerivedArraySize = 0;
    245         MostDerivedPathLength = Entries.size();
    246       }
    247     }
    248     /// Update this designator to refer to the given complex component.
    249     void addComplexUnchecked(QualType EltTy, bool Imag) {
    250       PathEntry Entry;
    251       Entry.ArrayIndex = Imag;
    252       Entries.push_back(Entry);
    253 
    254       // This is technically a most-derived object, though in practice this
    255       // is unlikely to matter.
    256       MostDerivedType = EltTy;
    257       MostDerivedArraySize = 2;
    258       MostDerivedPathLength = Entries.size();
    259     }
    260     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
    261     /// Add N to the address of this subobject.
    262     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    263       if (Invalid) return;
    264       if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize) {
    265         Entries.back().ArrayIndex += N;
    266         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
    267           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
    268           setInvalid();
    269         }
    270         return;
    271       }
    272       // [expr.add]p4: For the purposes of these operators, a pointer to a
    273       // nonarray object behaves the same as a pointer to the first element of
    274       // an array of length one with the type of the object as its element type.
    275       if (IsOnePastTheEnd && N == (uint64_t)-1)
    276         IsOnePastTheEnd = false;
    277       else if (!IsOnePastTheEnd && N == 1)
    278         IsOnePastTheEnd = true;
    279       else if (N != 0) {
    280         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
    281         setInvalid();
    282       }
    283     }
    284   };
    285 
    286   /// A stack frame in the constexpr call stack.
    287   struct CallStackFrame {
    288     EvalInfo &Info;
    289 
    290     /// Parent - The caller of this stack frame.
    291     CallStackFrame *Caller;
    292 
    293     /// CallLoc - The location of the call expression for this call.
    294     SourceLocation CallLoc;
    295 
    296     /// Callee - The function which was called.
    297     const FunctionDecl *Callee;
    298 
    299     /// Index - The call index of this call.
    300     unsigned Index;
    301 
    302     /// This - The binding for the this pointer in this call, if any.
    303     const LValue *This;
    304 
    305     /// ParmBindings - Parameter bindings for this function call, indexed by
    306     /// parameters' function scope indices.
    307     APValue *Arguments;
    308 
    309     // Note that we intentionally use std::map here so that references to
    310     // values are stable.
    311     typedef std::map<const void*, APValue> MapTy;
    312     typedef MapTy::const_iterator temp_iterator;
    313     /// Temporaries - Temporary lvalues materialized within this stack frame.
    314     MapTy Temporaries;
    315 
    316     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    317                    const FunctionDecl *Callee, const LValue *This,
    318                    APValue *Arguments);
    319     ~CallStackFrame();
    320 
    321     APValue *getTemporary(const void *Key) {
    322       MapTy::iterator I = Temporaries.find(Key);
    323       return I == Temporaries.end() ? 0 : &I->second;
    324     }
    325     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
    326   };
    327 
    328   /// Temporarily override 'this'.
    329   class ThisOverrideRAII {
    330   public:
    331     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
    332         : Frame(Frame), OldThis(Frame.This) {
    333       if (Enable)
    334         Frame.This = NewThis;
    335     }
    336     ~ThisOverrideRAII() {
    337       Frame.This = OldThis;
    338     }
    339   private:
    340     CallStackFrame &Frame;
    341     const LValue *OldThis;
    342   };
    343 
    344   /// A partial diagnostic which we might know in advance that we are not going
    345   /// to emit.
    346   class OptionalDiagnostic {
    347     PartialDiagnostic *Diag;
    348 
    349   public:
    350     explicit OptionalDiagnostic(PartialDiagnostic *Diag = 0) : Diag(Diag) {}
    351 
    352     template<typename T>
    353     OptionalDiagnostic &operator<<(const T &v) {
    354       if (Diag)
    355         *Diag << v;
    356       return *this;
    357     }
    358 
    359     OptionalDiagnostic &operator<<(const APSInt &I) {
    360       if (Diag) {
    361         SmallVector<char, 32> Buffer;
    362         I.toString(Buffer);
    363         *Diag << StringRef(Buffer.data(), Buffer.size());
    364       }
    365       return *this;
    366     }
    367 
    368     OptionalDiagnostic &operator<<(const APFloat &F) {
    369       if (Diag) {
    370         SmallVector<char, 32> Buffer;
    371         F.toString(Buffer);
    372         *Diag << StringRef(Buffer.data(), Buffer.size());
    373       }
    374       return *this;
    375     }
    376   };
    377 
    378   /// A cleanup, and a flag indicating whether it is lifetime-extended.
    379   class Cleanup {
    380     llvm::PointerIntPair<APValue*, 1, bool> Value;
    381 
    382   public:
    383     Cleanup(APValue *Val, bool IsLifetimeExtended)
    384         : Value(Val, IsLifetimeExtended) {}
    385 
    386     bool isLifetimeExtended() const { return Value.getInt(); }
    387     void endLifetime() {
    388       *Value.getPointer() = APValue();
    389     }
    390   };
    391 
    392   /// EvalInfo - This is a private struct used by the evaluator to capture
    393   /// information about a subexpression as it is folded.  It retains information
    394   /// about the AST context, but also maintains information about the folded
    395   /// expression.
    396   ///
    397   /// If an expression could be evaluated, it is still possible it is not a C
    398   /// "integer constant expression" or constant expression.  If not, this struct
    399   /// captures information about how and why not.
    400   ///
    401   /// One bit of information passed *into* the request for constant folding
    402   /// indicates whether the subexpression is "evaluated" or not according to C
    403   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
    404   /// evaluate the expression regardless of what the RHS is, but C only allows
    405   /// certain things in certain situations.
    406   struct EvalInfo {
    407     ASTContext &Ctx;
    408 
    409     /// EvalStatus - Contains information about the evaluation.
    410     Expr::EvalStatus &EvalStatus;
    411 
    412     /// CurrentCall - The top of the constexpr call stack.
    413     CallStackFrame *CurrentCall;
    414 
    415     /// CallStackDepth - The number of calls in the call stack right now.
    416     unsigned CallStackDepth;
    417 
    418     /// NextCallIndex - The next call index to assign.
    419     unsigned NextCallIndex;
    420 
    421     /// StepsLeft - The remaining number of evaluation steps we're permitted
    422     /// to perform. This is essentially a limit for the number of statements
    423     /// we will evaluate.
    424     unsigned StepsLeft;
    425 
    426     /// BottomFrame - The frame in which evaluation started. This must be
    427     /// initialized after CurrentCall and CallStackDepth.
    428     CallStackFrame BottomFrame;
    429 
    430     /// A stack of values whose lifetimes end at the end of some surrounding
    431     /// evaluation frame.
    432     llvm::SmallVector<Cleanup, 16> CleanupStack;
    433 
    434     /// EvaluatingDecl - This is the declaration whose initializer is being
    435     /// evaluated, if any.
    436     APValue::LValueBase EvaluatingDecl;
    437 
    438     /// EvaluatingDeclValue - This is the value being constructed for the
    439     /// declaration whose initializer is being evaluated, if any.
    440     APValue *EvaluatingDeclValue;
    441 
    442     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
    443     /// notes attached to it will also be stored, otherwise they will not be.
    444     bool HasActiveDiagnostic;
    445 
    446     /// CheckingPotentialConstantExpression - Are we checking whether the
    447     /// expression is a potential constant expression? If so, some diagnostics
    448     /// are suppressed.
    449     bool CheckingPotentialConstantExpression;
    450 
    451     bool IntOverflowCheckMode;
    452 
    453     EvalInfo(const ASTContext &C, Expr::EvalStatus &S,
    454              bool OverflowCheckMode = false)
    455       : Ctx(const_cast<ASTContext&>(C)), EvalStatus(S), CurrentCall(0),
    456         CallStackDepth(0), NextCallIndex(1),
    457         StepsLeft(getLangOpts().ConstexprStepLimit),
    458         BottomFrame(*this, SourceLocation(), 0, 0, 0),
    459         EvaluatingDecl((const ValueDecl*)0), EvaluatingDeclValue(0),
    460         HasActiveDiagnostic(false), CheckingPotentialConstantExpression(false),
    461         IntOverflowCheckMode(OverflowCheckMode) {}
    462 
    463     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
    464       EvaluatingDecl = Base;
    465       EvaluatingDeclValue = &Value;
    466     }
    467 
    468     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
    469 
    470     bool CheckCallLimit(SourceLocation Loc) {
    471       // Don't perform any constexpr calls (other than the call we're checking)
    472       // when checking a potential constant expression.
    473       if (CheckingPotentialConstantExpression && CallStackDepth > 1)
    474         return false;
    475       if (NextCallIndex == 0) {
    476         // NextCallIndex has wrapped around.
    477         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
    478         return false;
    479       }
    480       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
    481         return true;
    482       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
    483         << getLangOpts().ConstexprCallDepth;
    484       return false;
    485     }
    486 
    487     CallStackFrame *getCallFrame(unsigned CallIndex) {
    488       assert(CallIndex && "no call index in getCallFrame");
    489       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
    490       // be null in this loop.
    491       CallStackFrame *Frame = CurrentCall;
    492       while (Frame->Index > CallIndex)
    493         Frame = Frame->Caller;
    494       return (Frame->Index == CallIndex) ? Frame : 0;
    495     }
    496 
    497     bool nextStep(const Stmt *S) {
    498       if (!StepsLeft) {
    499         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
    500         return false;
    501       }
    502       --StepsLeft;
    503       return true;
    504     }
    505 
    506   private:
    507     /// Add a diagnostic to the diagnostics list.
    508     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
    509       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
    510       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
    511       return EvalStatus.Diag->back().second;
    512     }
    513 
    514     /// Add notes containing a call stack to the current point of evaluation.
    515     void addCallStack(unsigned Limit);
    516 
    517   public:
    518     /// Diagnose that the evaluation cannot be folded.
    519     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
    520                               = diag::note_invalid_subexpr_in_const_expr,
    521                             unsigned ExtraNotes = 0) {
    522       // If we have a prior diagnostic, it will be noting that the expression
    523       // isn't a constant expression. This diagnostic is more important.
    524       // FIXME: We might want to show both diagnostics to the user.
    525       if (EvalStatus.Diag) {
    526         unsigned CallStackNotes = CallStackDepth - 1;
    527         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
    528         if (Limit)
    529           CallStackNotes = std::min(CallStackNotes, Limit + 1);
    530         if (CheckingPotentialConstantExpression)
    531           CallStackNotes = 0;
    532 
    533         HasActiveDiagnostic = true;
    534         EvalStatus.Diag->clear();
    535         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
    536         addDiag(Loc, DiagId);
    537         if (!CheckingPotentialConstantExpression)
    538           addCallStack(Limit);
    539         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
    540       }
    541       HasActiveDiagnostic = false;
    542       return OptionalDiagnostic();
    543     }
    544 
    545     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
    546                               = diag::note_invalid_subexpr_in_const_expr,
    547                             unsigned ExtraNotes = 0) {
    548       if (EvalStatus.Diag)
    549         return Diag(E->getExprLoc(), DiagId, ExtraNotes);
    550       HasActiveDiagnostic = false;
    551       return OptionalDiagnostic();
    552     }
    553 
    554     bool getIntOverflowCheckMode() { return IntOverflowCheckMode; }
    555 
    556     /// Diagnose that the evaluation does not produce a C++11 core constant
    557     /// expression.
    558     template<typename LocArg>
    559     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
    560                                  = diag::note_invalid_subexpr_in_const_expr,
    561                                unsigned ExtraNotes = 0) {
    562       // Don't override a previous diagnostic.
    563       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
    564         HasActiveDiagnostic = false;
    565         return OptionalDiagnostic();
    566       }
    567       return Diag(Loc, DiagId, ExtraNotes);
    568     }
    569 
    570     /// Add a note to a prior diagnostic.
    571     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
    572       if (!HasActiveDiagnostic)
    573         return OptionalDiagnostic();
    574       return OptionalDiagnostic(&addDiag(Loc, DiagId));
    575     }
    576 
    577     /// Add a stack of notes to a prior diagnostic.
    578     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
    579       if (HasActiveDiagnostic) {
    580         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
    581                                 Diags.begin(), Diags.end());
    582       }
    583     }
    584 
    585     /// Should we continue evaluation as much as possible after encountering a
    586     /// construct which can't be folded?
    587     bool keepEvaluatingAfterFailure() {
    588       // Should return true in IntOverflowCheckMode, so that we check for
    589       // overflow even if some subexpressions can't be evaluated as constants.
    590       return StepsLeft && (IntOverflowCheckMode ||
    591                            (CheckingPotentialConstantExpression &&
    592                             EvalStatus.Diag && EvalStatus.Diag->empty()));
    593     }
    594   };
    595 
    596   /// Object used to treat all foldable expressions as constant expressions.
    597   struct FoldConstant {
    598     bool Enabled;
    599 
    600     explicit FoldConstant(EvalInfo &Info)
    601       : Enabled(Info.EvalStatus.Diag && Info.EvalStatus.Diag->empty() &&
    602                 !Info.EvalStatus.HasSideEffects) {
    603     }
    604     // Treat the value we've computed since this object was created as constant.
    605     void Fold(EvalInfo &Info) {
    606       if (Enabled && !Info.EvalStatus.Diag->empty() &&
    607           !Info.EvalStatus.HasSideEffects)
    608         Info.EvalStatus.Diag->clear();
    609     }
    610   };
    611 
    612   /// RAII object used to suppress diagnostics and side-effects from a
    613   /// speculative evaluation.
    614   class SpeculativeEvaluationRAII {
    615     EvalInfo &Info;
    616     Expr::EvalStatus Old;
    617 
    618   public:
    619     SpeculativeEvaluationRAII(EvalInfo &Info,
    620                               SmallVectorImpl<PartialDiagnosticAt> *NewDiag = 0)
    621       : Info(Info), Old(Info.EvalStatus) {
    622       Info.EvalStatus.Diag = NewDiag;
    623     }
    624     ~SpeculativeEvaluationRAII() {
    625       Info.EvalStatus = Old;
    626     }
    627   };
    628 
    629   /// RAII object wrapping a full-expression or block scope, and handling
    630   /// the ending of the lifetime of temporaries created within it.
    631   template<bool IsFullExpression>
    632   class ScopeRAII {
    633     EvalInfo &Info;
    634     unsigned OldStackSize;
    635   public:
    636     ScopeRAII(EvalInfo &Info)
    637         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
    638     ~ScopeRAII() {
    639       // Body moved to a static method to encourage the compiler to inline away
    640       // instances of this class.
    641       cleanup(Info, OldStackSize);
    642     }
    643   private:
    644     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
    645       unsigned NewEnd = OldStackSize;
    646       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
    647            I != N; ++I) {
    648         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
    649           // Full-expression cleanup of a lifetime-extended temporary: nothing
    650           // to do, just move this cleanup to the right place in the stack.
    651           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
    652           ++NewEnd;
    653         } else {
    654           // End the lifetime of the object.
    655           Info.CleanupStack[I].endLifetime();
    656         }
    657       }
    658       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
    659                               Info.CleanupStack.end());
    660     }
    661   };
    662   typedef ScopeRAII<false> BlockScopeRAII;
    663   typedef ScopeRAII<true> FullExpressionRAII;
    664 }
    665 
    666 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
    667                                          CheckSubobjectKind CSK) {
    668   if (Invalid)
    669     return false;
    670   if (isOnePastTheEnd()) {
    671     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
    672       << CSK;
    673     setInvalid();
    674     return false;
    675   }
    676   return true;
    677 }
    678 
    679 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
    680                                                     const Expr *E, uint64_t N) {
    681   if (MostDerivedPathLength == Entries.size() && MostDerivedArraySize)
    682     Info.CCEDiag(E, diag::note_constexpr_array_index)
    683       << static_cast<int>(N) << /*array*/ 0
    684       << static_cast<unsigned>(MostDerivedArraySize);
    685   else
    686     Info.CCEDiag(E, diag::note_constexpr_array_index)
    687       << static_cast<int>(N) << /*non-array*/ 1;
    688   setInvalid();
    689 }
    690 
    691 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
    692                                const FunctionDecl *Callee, const LValue *This,
    693                                APValue *Arguments)
    694     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
    695       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
    696   Info.CurrentCall = this;
    697   ++Info.CallStackDepth;
    698 }
    699 
    700 CallStackFrame::~CallStackFrame() {
    701   assert(Info.CurrentCall == this && "calls retired out of order");
    702   --Info.CallStackDepth;
    703   Info.CurrentCall = Caller;
    704 }
    705 
    706 APValue &CallStackFrame::createTemporary(const void *Key,
    707                                          bool IsLifetimeExtended) {
    708   APValue &Result = Temporaries[Key];
    709   assert(Result.isUninit() && "temporary created multiple times");
    710   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
    711   return Result;
    712 }
    713 
    714 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
    715 
    716 void EvalInfo::addCallStack(unsigned Limit) {
    717   // Determine which calls to skip, if any.
    718   unsigned ActiveCalls = CallStackDepth - 1;
    719   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
    720   if (Limit && Limit < ActiveCalls) {
    721     SkipStart = Limit / 2 + Limit % 2;
    722     SkipEnd = ActiveCalls - Limit / 2;
    723   }
    724 
    725   // Walk the call stack and add the diagnostics.
    726   unsigned CallIdx = 0;
    727   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
    728        Frame = Frame->Caller, ++CallIdx) {
    729     // Skip this call?
    730     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
    731       if (CallIdx == SkipStart) {
    732         // Note that we're skipping calls.
    733         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
    734           << unsigned(ActiveCalls - Limit);
    735       }
    736       continue;
    737     }
    738 
    739     SmallVector<char, 128> Buffer;
    740     llvm::raw_svector_ostream Out(Buffer);
    741     describeCall(Frame, Out);
    742     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
    743   }
    744 }
    745 
    746 namespace {
    747   struct ComplexValue {
    748   private:
    749     bool IsInt;
    750 
    751   public:
    752     APSInt IntReal, IntImag;
    753     APFloat FloatReal, FloatImag;
    754 
    755     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
    756 
    757     void makeComplexFloat() { IsInt = false; }
    758     bool isComplexFloat() const { return !IsInt; }
    759     APFloat &getComplexFloatReal() { return FloatReal; }
    760     APFloat &getComplexFloatImag() { return FloatImag; }
    761 
    762     void makeComplexInt() { IsInt = true; }
    763     bool isComplexInt() const { return IsInt; }
    764     APSInt &getComplexIntReal() { return IntReal; }
    765     APSInt &getComplexIntImag() { return IntImag; }
    766 
    767     void moveInto(APValue &v) const {
    768       if (isComplexFloat())
    769         v = APValue(FloatReal, FloatImag);
    770       else
    771         v = APValue(IntReal, IntImag);
    772     }
    773     void setFrom(const APValue &v) {
    774       assert(v.isComplexFloat() || v.isComplexInt());
    775       if (v.isComplexFloat()) {
    776         makeComplexFloat();
    777         FloatReal = v.getComplexFloatReal();
    778         FloatImag = v.getComplexFloatImag();
    779       } else {
    780         makeComplexInt();
    781         IntReal = v.getComplexIntReal();
    782         IntImag = v.getComplexIntImag();
    783       }
    784     }
    785   };
    786 
    787   struct LValue {
    788     APValue::LValueBase Base;
    789     CharUnits Offset;
    790     unsigned CallIndex;
    791     SubobjectDesignator Designator;
    792 
    793     const APValue::LValueBase getLValueBase() const { return Base; }
    794     CharUnits &getLValueOffset() { return Offset; }
    795     const CharUnits &getLValueOffset() const { return Offset; }
    796     unsigned getLValueCallIndex() const { return CallIndex; }
    797     SubobjectDesignator &getLValueDesignator() { return Designator; }
    798     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
    799 
    800     void moveInto(APValue &V) const {
    801       if (Designator.Invalid)
    802         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
    803       else
    804         V = APValue(Base, Offset, Designator.Entries,
    805                     Designator.IsOnePastTheEnd, CallIndex);
    806     }
    807     void setFrom(ASTContext &Ctx, const APValue &V) {
    808       assert(V.isLValue());
    809       Base = V.getLValueBase();
    810       Offset = V.getLValueOffset();
    811       CallIndex = V.getLValueCallIndex();
    812       Designator = SubobjectDesignator(Ctx, V);
    813     }
    814 
    815     void set(APValue::LValueBase B, unsigned I = 0) {
    816       Base = B;
    817       Offset = CharUnits::Zero();
    818       CallIndex = I;
    819       Designator = SubobjectDesignator(getType(B));
    820     }
    821 
    822     // Check that this LValue is not based on a null pointer. If it is, produce
    823     // a diagnostic and mark the designator as invalid.
    824     bool checkNullPointer(EvalInfo &Info, const Expr *E,
    825                           CheckSubobjectKind CSK) {
    826       if (Designator.Invalid)
    827         return false;
    828       if (!Base) {
    829         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
    830           << CSK;
    831         Designator.setInvalid();
    832         return false;
    833       }
    834       return true;
    835     }
    836 
    837     // Check this LValue refers to an object. If not, set the designator to be
    838     // invalid and emit a diagnostic.
    839     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
    840       // Outside C++11, do not build a designator referring to a subobject of
    841       // any object: we won't use such a designator for anything.
    842       if (!Info.getLangOpts().CPlusPlus11)
    843         Designator.setInvalid();
    844       return checkNullPointer(Info, E, CSK) &&
    845              Designator.checkSubobject(Info, E, CSK);
    846     }
    847 
    848     void addDecl(EvalInfo &Info, const Expr *E,
    849                  const Decl *D, bool Virtual = false) {
    850       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
    851         Designator.addDeclUnchecked(D, Virtual);
    852     }
    853     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
    854       if (checkSubobject(Info, E, CSK_ArrayToPointer))
    855         Designator.addArrayUnchecked(CAT);
    856     }
    857     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
    858       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
    859         Designator.addComplexUnchecked(EltTy, Imag);
    860     }
    861     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
    862       if (checkNullPointer(Info, E, CSK_ArrayIndex))
    863         Designator.adjustIndex(Info, E, N);
    864     }
    865   };
    866 
    867   struct MemberPtr {
    868     MemberPtr() {}
    869     explicit MemberPtr(const ValueDecl *Decl) :
    870       DeclAndIsDerivedMember(Decl, false), Path() {}
    871 
    872     /// The member or (direct or indirect) field referred to by this member
    873     /// pointer, or 0 if this is a null member pointer.
    874     const ValueDecl *getDecl() const {
    875       return DeclAndIsDerivedMember.getPointer();
    876     }
    877     /// Is this actually a member of some type derived from the relevant class?
    878     bool isDerivedMember() const {
    879       return DeclAndIsDerivedMember.getInt();
    880     }
    881     /// Get the class which the declaration actually lives in.
    882     const CXXRecordDecl *getContainingRecord() const {
    883       return cast<CXXRecordDecl>(
    884           DeclAndIsDerivedMember.getPointer()->getDeclContext());
    885     }
    886 
    887     void moveInto(APValue &V) const {
    888       V = APValue(getDecl(), isDerivedMember(), Path);
    889     }
    890     void setFrom(const APValue &V) {
    891       assert(V.isMemberPointer());
    892       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
    893       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
    894       Path.clear();
    895       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
    896       Path.insert(Path.end(), P.begin(), P.end());
    897     }
    898 
    899     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
    900     /// whether the member is a member of some class derived from the class type
    901     /// of the member pointer.
    902     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
    903     /// Path - The path of base/derived classes from the member declaration's
    904     /// class (exclusive) to the class type of the member pointer (inclusive).
    905     SmallVector<const CXXRecordDecl*, 4> Path;
    906 
    907     /// Perform a cast towards the class of the Decl (either up or down the
    908     /// hierarchy).
    909     bool castBack(const CXXRecordDecl *Class) {
    910       assert(!Path.empty());
    911       const CXXRecordDecl *Expected;
    912       if (Path.size() >= 2)
    913         Expected = Path[Path.size() - 2];
    914       else
    915         Expected = getContainingRecord();
    916       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
    917         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
    918         // if B does not contain the original member and is not a base or
    919         // derived class of the class containing the original member, the result
    920         // of the cast is undefined.
    921         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
    922         // (D::*). We consider that to be a language defect.
    923         return false;
    924       }
    925       Path.pop_back();
    926       return true;
    927     }
    928     /// Perform a base-to-derived member pointer cast.
    929     bool castToDerived(const CXXRecordDecl *Derived) {
    930       if (!getDecl())
    931         return true;
    932       if (!isDerivedMember()) {
    933         Path.push_back(Derived);
    934         return true;
    935       }
    936       if (!castBack(Derived))
    937         return false;
    938       if (Path.empty())
    939         DeclAndIsDerivedMember.setInt(false);
    940       return true;
    941     }
    942     /// Perform a derived-to-base member pointer cast.
    943     bool castToBase(const CXXRecordDecl *Base) {
    944       if (!getDecl())
    945         return true;
    946       if (Path.empty())
    947         DeclAndIsDerivedMember.setInt(true);
    948       if (isDerivedMember()) {
    949         Path.push_back(Base);
    950         return true;
    951       }
    952       return castBack(Base);
    953     }
    954   };
    955 
    956   /// Compare two member pointers, which are assumed to be of the same type.
    957   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
    958     if (!LHS.getDecl() || !RHS.getDecl())
    959       return !LHS.getDecl() && !RHS.getDecl();
    960     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
    961       return false;
    962     return LHS.Path == RHS.Path;
    963   }
    964 }
    965 
    966 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
    967 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
    968                             const LValue &This, const Expr *E,
    969                             bool AllowNonLiteralTypes = false);
    970 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
    971 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
    972 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
    973                                   EvalInfo &Info);
    974 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
    975 static bool EvaluateInteger(const Expr *E, APSInt  &Result, EvalInfo &Info);
    976 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
    977                                     EvalInfo &Info);
    978 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
    979 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
    980 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
    981 
    982 //===----------------------------------------------------------------------===//
    983 // Misc utilities
    984 //===----------------------------------------------------------------------===//
    985 
    986 /// Produce a string describing the given constexpr call.
    987 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
    988   unsigned ArgIndex = 0;
    989   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
    990                       !isa<CXXConstructorDecl>(Frame->Callee) &&
    991                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
    992 
    993   if (!IsMemberCall)
    994     Out << *Frame->Callee << '(';
    995 
    996   if (Frame->This && IsMemberCall) {
    997     APValue Val;
    998     Frame->This->moveInto(Val);
    999     Val.printPretty(Out, Frame->Info.Ctx,
   1000                     Frame->This->Designator.MostDerivedType);
   1001     // FIXME: Add parens around Val if needed.
   1002     Out << "->" << *Frame->Callee << '(';
   1003     IsMemberCall = false;
   1004   }
   1005 
   1006   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
   1007        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
   1008     if (ArgIndex > (unsigned)IsMemberCall)
   1009       Out << ", ";
   1010 
   1011     const ParmVarDecl *Param = *I;
   1012     const APValue &Arg = Frame->Arguments[ArgIndex];
   1013     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
   1014 
   1015     if (ArgIndex == 0 && IsMemberCall)
   1016       Out << "->" << *Frame->Callee << '(';
   1017   }
   1018 
   1019   Out << ')';
   1020 }
   1021 
   1022 /// Evaluate an expression to see if it had side-effects, and discard its
   1023 /// result.
   1024 /// \return \c true if the caller should keep evaluating.
   1025 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
   1026   APValue Scratch;
   1027   if (!Evaluate(Scratch, Info, E)) {
   1028     Info.EvalStatus.HasSideEffects = true;
   1029     return Info.keepEvaluatingAfterFailure();
   1030   }
   1031   return true;
   1032 }
   1033 
   1034 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
   1035 /// return its existing value.
   1036 static int64_t getExtValue(const APSInt &Value) {
   1037   return Value.isSigned() ? Value.getSExtValue()
   1038                           : static_cast<int64_t>(Value.getZExtValue());
   1039 }
   1040 
   1041 /// Should this call expression be treated as a string literal?
   1042 static bool IsStringLiteralCall(const CallExpr *E) {
   1043   unsigned Builtin = E->isBuiltinCall();
   1044   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
   1045           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
   1046 }
   1047 
   1048 static bool IsGlobalLValue(APValue::LValueBase B) {
   1049   // C++11 [expr.const]p3 An address constant expression is a prvalue core
   1050   // constant expression of pointer type that evaluates to...
   1051 
   1052   // ... a null pointer value, or a prvalue core constant expression of type
   1053   // std::nullptr_t.
   1054   if (!B) return true;
   1055 
   1056   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   1057     // ... the address of an object with static storage duration,
   1058     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   1059       return VD->hasGlobalStorage();
   1060     // ... the address of a function,
   1061     return isa<FunctionDecl>(D);
   1062   }
   1063 
   1064   const Expr *E = B.get<const Expr*>();
   1065   switch (E->getStmtClass()) {
   1066   default:
   1067     return false;
   1068   case Expr::CompoundLiteralExprClass: {
   1069     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
   1070     return CLE->isFileScope() && CLE->isLValue();
   1071   }
   1072   case Expr::MaterializeTemporaryExprClass:
   1073     // A materialized temporary might have been lifetime-extended to static
   1074     // storage duration.
   1075     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
   1076   // A string literal has static storage duration.
   1077   case Expr::StringLiteralClass:
   1078   case Expr::PredefinedExprClass:
   1079   case Expr::ObjCStringLiteralClass:
   1080   case Expr::ObjCEncodeExprClass:
   1081   case Expr::CXXTypeidExprClass:
   1082   case Expr::CXXUuidofExprClass:
   1083     return true;
   1084   case Expr::CallExprClass:
   1085     return IsStringLiteralCall(cast<CallExpr>(E));
   1086   // For GCC compatibility, &&label has static storage duration.
   1087   case Expr::AddrLabelExprClass:
   1088     return true;
   1089   // A Block literal expression may be used as the initialization value for
   1090   // Block variables at global or local static scope.
   1091   case Expr::BlockExprClass:
   1092     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
   1093   case Expr::ImplicitValueInitExprClass:
   1094     // FIXME:
   1095     // We can never form an lvalue with an implicit value initialization as its
   1096     // base through expression evaluation, so these only appear in one case: the
   1097     // implicit variable declaration we invent when checking whether a constexpr
   1098     // constructor can produce a constant expression. We must assume that such
   1099     // an expression might be a global lvalue.
   1100     return true;
   1101   }
   1102 }
   1103 
   1104 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
   1105   assert(Base && "no location for a null lvalue");
   1106   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1107   if (VD)
   1108     Info.Note(VD->getLocation(), diag::note_declared_at);
   1109   else
   1110     Info.Note(Base.get<const Expr*>()->getExprLoc(),
   1111               diag::note_constexpr_temporary_here);
   1112 }
   1113 
   1114 /// Check that this reference or pointer core constant expression is a valid
   1115 /// value for an address or reference constant expression. Return true if we
   1116 /// can fold this expression, whether or not it's a constant expression.
   1117 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
   1118                                           QualType Type, const LValue &LVal) {
   1119   bool IsReferenceType = Type->isReferenceType();
   1120 
   1121   APValue::LValueBase Base = LVal.getLValueBase();
   1122   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
   1123 
   1124   // Check that the object is a global. Note that the fake 'this' object we
   1125   // manufacture when checking potential constant expressions is conservatively
   1126   // assumed to be global here.
   1127   if (!IsGlobalLValue(Base)) {
   1128     if (Info.getLangOpts().CPlusPlus11) {
   1129       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1130       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
   1131         << IsReferenceType << !Designator.Entries.empty()
   1132         << !!VD << VD;
   1133       NoteLValueLocation(Info, Base);
   1134     } else {
   1135       Info.Diag(Loc);
   1136     }
   1137     // Don't allow references to temporaries to escape.
   1138     return false;
   1139   }
   1140   assert((Info.CheckingPotentialConstantExpression ||
   1141           LVal.getLValueCallIndex() == 0) &&
   1142          "have call index for global lvalue");
   1143 
   1144   // Check if this is a thread-local variable.
   1145   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
   1146     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
   1147       if (Var->getTLSKind())
   1148         return false;
   1149     }
   1150   }
   1151 
   1152   // Allow address constant expressions to be past-the-end pointers. This is
   1153   // an extension: the standard requires them to point to an object.
   1154   if (!IsReferenceType)
   1155     return true;
   1156 
   1157   // A reference constant expression must refer to an object.
   1158   if (!Base) {
   1159     // FIXME: diagnostic
   1160     Info.CCEDiag(Loc);
   1161     return true;
   1162   }
   1163 
   1164   // Does this refer one past the end of some object?
   1165   if (Designator.isOnePastTheEnd()) {
   1166     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
   1167     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
   1168       << !Designator.Entries.empty() << !!VD << VD;
   1169     NoteLValueLocation(Info, Base);
   1170   }
   1171 
   1172   return true;
   1173 }
   1174 
   1175 /// Check that this core constant expression is of literal type, and if not,
   1176 /// produce an appropriate diagnostic.
   1177 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
   1178                              const LValue *This = 0) {
   1179   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
   1180     return true;
   1181 
   1182   // C++1y: A constant initializer for an object o [...] may also invoke
   1183   // constexpr constructors for o and its subobjects even if those objects
   1184   // are of non-literal class types.
   1185   if (Info.getLangOpts().CPlusPlus1y && This &&
   1186       Info.EvaluatingDecl == This->getLValueBase())
   1187     return true;
   1188 
   1189   // Prvalue constant expressions must be of literal types.
   1190   if (Info.getLangOpts().CPlusPlus11)
   1191     Info.Diag(E, diag::note_constexpr_nonliteral)
   1192       << E->getType();
   1193   else
   1194     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1195   return false;
   1196 }
   1197 
   1198 /// Check that this core constant expression value is a valid value for a
   1199 /// constant expression. If not, report an appropriate diagnostic. Does not
   1200 /// check that the expression is of literal type.
   1201 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
   1202                                     QualType Type, const APValue &Value) {
   1203   if (Value.isUninit()) {
   1204     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
   1205       << true << Type;
   1206     return false;
   1207   }
   1208 
   1209   // Core issue 1454: For a literal constant expression of array or class type,
   1210   // each subobject of its value shall have been initialized by a constant
   1211   // expression.
   1212   if (Value.isArray()) {
   1213     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
   1214     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
   1215       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
   1216                                    Value.getArrayInitializedElt(I)))
   1217         return false;
   1218     }
   1219     if (!Value.hasArrayFiller())
   1220       return true;
   1221     return CheckConstantExpression(Info, DiagLoc, EltTy,
   1222                                    Value.getArrayFiller());
   1223   }
   1224   if (Value.isUnion() && Value.getUnionField()) {
   1225     return CheckConstantExpression(Info, DiagLoc,
   1226                                    Value.getUnionField()->getType(),
   1227                                    Value.getUnionValue());
   1228   }
   1229   if (Value.isStruct()) {
   1230     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
   1231     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
   1232       unsigned BaseIndex = 0;
   1233       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   1234              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
   1235         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1236                                      Value.getStructBase(BaseIndex)))
   1237           return false;
   1238       }
   1239     }
   1240     for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
   1241          I != E; ++I) {
   1242       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
   1243                                    Value.getStructField(I->getFieldIndex())))
   1244         return false;
   1245     }
   1246   }
   1247 
   1248   if (Value.isLValue()) {
   1249     LValue LVal;
   1250     LVal.setFrom(Info.Ctx, Value);
   1251     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
   1252   }
   1253 
   1254   // Everything else is fine.
   1255   return true;
   1256 }
   1257 
   1258 const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
   1259   return LVal.Base.dyn_cast<const ValueDecl*>();
   1260 }
   1261 
   1262 static bool IsLiteralLValue(const LValue &Value) {
   1263   if (Value.CallIndex)
   1264     return false;
   1265   const Expr *E = Value.Base.dyn_cast<const Expr*>();
   1266   return E && !isa<MaterializeTemporaryExpr>(E);
   1267 }
   1268 
   1269 static bool IsWeakLValue(const LValue &Value) {
   1270   const ValueDecl *Decl = GetLValueBaseDecl(Value);
   1271   return Decl && Decl->isWeak();
   1272 }
   1273 
   1274 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
   1275   // A null base expression indicates a null pointer.  These are always
   1276   // evaluatable, and they are false unless the offset is zero.
   1277   if (!Value.getLValueBase()) {
   1278     Result = !Value.getLValueOffset().isZero();
   1279     return true;
   1280   }
   1281 
   1282   // We have a non-null base.  These are generally known to be true, but if it's
   1283   // a weak declaration it can be null at runtime.
   1284   Result = true;
   1285   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
   1286   return !Decl || !Decl->isWeak();
   1287 }
   1288 
   1289 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
   1290   switch (Val.getKind()) {
   1291   case APValue::Uninitialized:
   1292     return false;
   1293   case APValue::Int:
   1294     Result = Val.getInt().getBoolValue();
   1295     return true;
   1296   case APValue::Float:
   1297     Result = !Val.getFloat().isZero();
   1298     return true;
   1299   case APValue::ComplexInt:
   1300     Result = Val.getComplexIntReal().getBoolValue() ||
   1301              Val.getComplexIntImag().getBoolValue();
   1302     return true;
   1303   case APValue::ComplexFloat:
   1304     Result = !Val.getComplexFloatReal().isZero() ||
   1305              !Val.getComplexFloatImag().isZero();
   1306     return true;
   1307   case APValue::LValue:
   1308     return EvalPointerValueAsBool(Val, Result);
   1309   case APValue::MemberPointer:
   1310     Result = Val.getMemberPointerDecl();
   1311     return true;
   1312   case APValue::Vector:
   1313   case APValue::Array:
   1314   case APValue::Struct:
   1315   case APValue::Union:
   1316   case APValue::AddrLabelDiff:
   1317     return false;
   1318   }
   1319 
   1320   llvm_unreachable("unknown APValue kind");
   1321 }
   1322 
   1323 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
   1324                                        EvalInfo &Info) {
   1325   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
   1326   APValue Val;
   1327   if (!Evaluate(Val, Info, E))
   1328     return false;
   1329   return HandleConversionToBool(Val, Result);
   1330 }
   1331 
   1332 template<typename T>
   1333 static void HandleOverflow(EvalInfo &Info, const Expr *E,
   1334                            const T &SrcValue, QualType DestType) {
   1335   Info.CCEDiag(E, diag::note_constexpr_overflow)
   1336     << SrcValue << DestType;
   1337 }
   1338 
   1339 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
   1340                                  QualType SrcType, const APFloat &Value,
   1341                                  QualType DestType, APSInt &Result) {
   1342   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1343   // Determine whether we are converting to unsigned or signed.
   1344   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
   1345 
   1346   Result = APSInt(DestWidth, !DestSigned);
   1347   bool ignored;
   1348   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
   1349       & APFloat::opInvalidOp)
   1350     HandleOverflow(Info, E, Value, DestType);
   1351   return true;
   1352 }
   1353 
   1354 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
   1355                                    QualType SrcType, QualType DestType,
   1356                                    APFloat &Result) {
   1357   APFloat Value = Result;
   1358   bool ignored;
   1359   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
   1360                      APFloat::rmNearestTiesToEven, &ignored)
   1361       & APFloat::opOverflow)
   1362     HandleOverflow(Info, E, Value, DestType);
   1363   return true;
   1364 }
   1365 
   1366 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
   1367                                  QualType DestType, QualType SrcType,
   1368                                  APSInt &Value) {
   1369   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
   1370   APSInt Result = Value;
   1371   // Figure out if this is a truncate, extend or noop cast.
   1372   // If the input is signed, do a sign extend, noop, or truncate.
   1373   Result = Result.extOrTrunc(DestWidth);
   1374   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
   1375   return Result;
   1376 }
   1377 
   1378 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
   1379                                  QualType SrcType, const APSInt &Value,
   1380                                  QualType DestType, APFloat &Result) {
   1381   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
   1382   if (Result.convertFromAPInt(Value, Value.isSigned(),
   1383                               APFloat::rmNearestTiesToEven)
   1384       & APFloat::opOverflow)
   1385     HandleOverflow(Info, E, Value, DestType);
   1386   return true;
   1387 }
   1388 
   1389 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
   1390                                   APValue &Value, const FieldDecl *FD) {
   1391   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
   1392 
   1393   if (!Value.isInt()) {
   1394     // Trying to store a pointer-cast-to-integer into a bitfield.
   1395     // FIXME: In this case, we should provide the diagnostic for casting
   1396     // a pointer to an integer.
   1397     assert(Value.isLValue() && "integral value neither int nor lvalue?");
   1398     Info.Diag(E);
   1399     return false;
   1400   }
   1401 
   1402   APSInt &Int = Value.getInt();
   1403   unsigned OldBitWidth = Int.getBitWidth();
   1404   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
   1405   if (NewBitWidth < OldBitWidth)
   1406     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
   1407   return true;
   1408 }
   1409 
   1410 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
   1411                                   llvm::APInt &Res) {
   1412   APValue SVal;
   1413   if (!Evaluate(SVal, Info, E))
   1414     return false;
   1415   if (SVal.isInt()) {
   1416     Res = SVal.getInt();
   1417     return true;
   1418   }
   1419   if (SVal.isFloat()) {
   1420     Res = SVal.getFloat().bitcastToAPInt();
   1421     return true;
   1422   }
   1423   if (SVal.isVector()) {
   1424     QualType VecTy = E->getType();
   1425     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
   1426     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
   1427     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   1428     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   1429     Res = llvm::APInt::getNullValue(VecSize);
   1430     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
   1431       APValue &Elt = SVal.getVectorElt(i);
   1432       llvm::APInt EltAsInt;
   1433       if (Elt.isInt()) {
   1434         EltAsInt = Elt.getInt();
   1435       } else if (Elt.isFloat()) {
   1436         EltAsInt = Elt.getFloat().bitcastToAPInt();
   1437       } else {
   1438         // Don't try to handle vectors of anything other than int or float
   1439         // (not sure if it's possible to hit this case).
   1440         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1441         return false;
   1442       }
   1443       unsigned BaseEltSize = EltAsInt.getBitWidth();
   1444       if (BigEndian)
   1445         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
   1446       else
   1447         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
   1448     }
   1449     return true;
   1450   }
   1451   // Give up if the input isn't an int, float, or vector.  For example, we
   1452   // reject "(v4i16)(intptr_t)&a".
   1453   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1454   return false;
   1455 }
   1456 
   1457 /// Perform the given integer operation, which is known to need at most BitWidth
   1458 /// bits, and check for overflow in the original type (if that type was not an
   1459 /// unsigned type).
   1460 template<typename Operation>
   1461 static APSInt CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
   1462                                    const APSInt &LHS, const APSInt &RHS,
   1463                                    unsigned BitWidth, Operation Op) {
   1464   if (LHS.isUnsigned())
   1465     return Op(LHS, RHS);
   1466 
   1467   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
   1468   APSInt Result = Value.trunc(LHS.getBitWidth());
   1469   if (Result.extend(BitWidth) != Value) {
   1470     if (Info.getIntOverflowCheckMode())
   1471       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
   1472         diag::warn_integer_constant_overflow)
   1473           << Result.toString(10) << E->getType();
   1474     else
   1475       HandleOverflow(Info, E, Value, E->getType());
   1476   }
   1477   return Result;
   1478 }
   1479 
   1480 /// Perform the given binary integer operation.
   1481 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
   1482                               BinaryOperatorKind Opcode, APSInt RHS,
   1483                               APSInt &Result) {
   1484   switch (Opcode) {
   1485   default:
   1486     Info.Diag(E);
   1487     return false;
   1488   case BO_Mul:
   1489     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
   1490                                   std::multiplies<APSInt>());
   1491     return true;
   1492   case BO_Add:
   1493     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
   1494                                   std::plus<APSInt>());
   1495     return true;
   1496   case BO_Sub:
   1497     Result = CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
   1498                                   std::minus<APSInt>());
   1499     return true;
   1500   case BO_And: Result = LHS & RHS; return true;
   1501   case BO_Xor: Result = LHS ^ RHS; return true;
   1502   case BO_Or:  Result = LHS | RHS; return true;
   1503   case BO_Div:
   1504   case BO_Rem:
   1505     if (RHS == 0) {
   1506       Info.Diag(E, diag::note_expr_divide_by_zero);
   1507       return false;
   1508     }
   1509     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1.
   1510     if (RHS.isNegative() && RHS.isAllOnesValue() &&
   1511         LHS.isSigned() && LHS.isMinSignedValue())
   1512       HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType());
   1513     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
   1514     return true;
   1515   case BO_Shl: {
   1516     if (Info.getLangOpts().OpenCL)
   1517       // OpenCL 6.3j: shift values are effectively % word size of LHS.
   1518       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   1519                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   1520                     RHS.isUnsigned());
   1521     else if (RHS.isSigned() && RHS.isNegative()) {
   1522       // During constant-folding, a negative shift is an opposite shift. Such
   1523       // a shift is not a constant expression.
   1524       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   1525       RHS = -RHS;
   1526       goto shift_right;
   1527     }
   1528   shift_left:
   1529     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
   1530     // the shifted type.
   1531     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   1532     if (SA != RHS) {
   1533       Info.CCEDiag(E, diag::note_constexpr_large_shift)
   1534         << RHS << E->getType() << LHS.getBitWidth();
   1535     } else if (LHS.isSigned()) {
   1536       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
   1537       // operand, and must not overflow the corresponding unsigned type.
   1538       if (LHS.isNegative())
   1539         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
   1540       else if (LHS.countLeadingZeros() < SA)
   1541         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
   1542     }
   1543     Result = LHS << SA;
   1544     return true;
   1545   }
   1546   case BO_Shr: {
   1547     if (Info.getLangOpts().OpenCL)
   1548       // OpenCL 6.3j: shift values are effectively % word size of LHS.
   1549       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
   1550                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
   1551                     RHS.isUnsigned());
   1552     else if (RHS.isSigned() && RHS.isNegative()) {
   1553       // During constant-folding, a negative shift is an opposite shift. Such a
   1554       // shift is not a constant expression.
   1555       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
   1556       RHS = -RHS;
   1557       goto shift_left;
   1558     }
   1559   shift_right:
   1560     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
   1561     // shifted type.
   1562     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
   1563     if (SA != RHS)
   1564       Info.CCEDiag(E, diag::note_constexpr_large_shift)
   1565         << RHS << E->getType() << LHS.getBitWidth();
   1566     Result = LHS >> SA;
   1567     return true;
   1568   }
   1569 
   1570   case BO_LT: Result = LHS < RHS; return true;
   1571   case BO_GT: Result = LHS > RHS; return true;
   1572   case BO_LE: Result = LHS <= RHS; return true;
   1573   case BO_GE: Result = LHS >= RHS; return true;
   1574   case BO_EQ: Result = LHS == RHS; return true;
   1575   case BO_NE: Result = LHS != RHS; return true;
   1576   }
   1577 }
   1578 
   1579 /// Perform the given binary floating-point operation, in-place, on LHS.
   1580 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
   1581                                   APFloat &LHS, BinaryOperatorKind Opcode,
   1582                                   const APFloat &RHS) {
   1583   switch (Opcode) {
   1584   default:
   1585     Info.Diag(E);
   1586     return false;
   1587   case BO_Mul:
   1588     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
   1589     break;
   1590   case BO_Add:
   1591     LHS.add(RHS, APFloat::rmNearestTiesToEven);
   1592     break;
   1593   case BO_Sub:
   1594     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
   1595     break;
   1596   case BO_Div:
   1597     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
   1598     break;
   1599   }
   1600 
   1601   if (LHS.isInfinity() || LHS.isNaN())
   1602     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
   1603   return true;
   1604 }
   1605 
   1606 /// Cast an lvalue referring to a base subobject to a derived class, by
   1607 /// truncating the lvalue's path to the given length.
   1608 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
   1609                                const RecordDecl *TruncatedType,
   1610                                unsigned TruncatedElements) {
   1611   SubobjectDesignator &D = Result.Designator;
   1612 
   1613   // Check we actually point to a derived class object.
   1614   if (TruncatedElements == D.Entries.size())
   1615     return true;
   1616   assert(TruncatedElements >= D.MostDerivedPathLength &&
   1617          "not casting to a derived class");
   1618   if (!Result.checkSubobject(Info, E, CSK_Derived))
   1619     return false;
   1620 
   1621   // Truncate the path to the subobject, and remove any derived-to-base offsets.
   1622   const RecordDecl *RD = TruncatedType;
   1623   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
   1624     if (RD->isInvalidDecl()) return false;
   1625     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   1626     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
   1627     if (isVirtualBaseClass(D.Entries[I]))
   1628       Result.Offset -= Layout.getVBaseClassOffset(Base);
   1629     else
   1630       Result.Offset -= Layout.getBaseClassOffset(Base);
   1631     RD = Base;
   1632   }
   1633   D.Entries.resize(TruncatedElements);
   1634   return true;
   1635 }
   1636 
   1637 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1638                                    const CXXRecordDecl *Derived,
   1639                                    const CXXRecordDecl *Base,
   1640                                    const ASTRecordLayout *RL = 0) {
   1641   if (!RL) {
   1642     if (Derived->isInvalidDecl()) return false;
   1643     RL = &Info.Ctx.getASTRecordLayout(Derived);
   1644   }
   1645 
   1646   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
   1647   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
   1648   return true;
   1649 }
   1650 
   1651 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
   1652                              const CXXRecordDecl *DerivedDecl,
   1653                              const CXXBaseSpecifier *Base) {
   1654   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
   1655 
   1656   if (!Base->isVirtual())
   1657     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
   1658 
   1659   SubobjectDesignator &D = Obj.Designator;
   1660   if (D.Invalid)
   1661     return false;
   1662 
   1663   // Extract most-derived object and corresponding type.
   1664   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
   1665   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
   1666     return false;
   1667 
   1668   // Find the virtual base class.
   1669   if (DerivedDecl->isInvalidDecl()) return false;
   1670   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
   1671   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
   1672   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
   1673   return true;
   1674 }
   1675 
   1676 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
   1677                                  QualType Type, LValue &Result) {
   1678   for (CastExpr::path_const_iterator PathI = E->path_begin(),
   1679                                      PathE = E->path_end();
   1680        PathI != PathE; ++PathI) {
   1681     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
   1682                           *PathI))
   1683       return false;
   1684     Type = (*PathI)->getType();
   1685   }
   1686   return true;
   1687 }
   1688 
   1689 /// Update LVal to refer to the given field, which must be a member of the type
   1690 /// currently described by LVal.
   1691 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
   1692                                const FieldDecl *FD,
   1693                                const ASTRecordLayout *RL = 0) {
   1694   if (!RL) {
   1695     if (FD->getParent()->isInvalidDecl()) return false;
   1696     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
   1697   }
   1698 
   1699   unsigned I = FD->getFieldIndex();
   1700   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
   1701   LVal.addDecl(Info, E, FD);
   1702   return true;
   1703 }
   1704 
   1705 /// Update LVal to refer to the given indirect field.
   1706 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
   1707                                        LValue &LVal,
   1708                                        const IndirectFieldDecl *IFD) {
   1709   for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   1710                                          CE = IFD->chain_end(); C != CE; ++C)
   1711     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(*C)))
   1712       return false;
   1713   return true;
   1714 }
   1715 
   1716 /// Get the size of the given type in char units.
   1717 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
   1718                          QualType Type, CharUnits &Size) {
   1719   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
   1720   // extension.
   1721   if (Type->isVoidType() || Type->isFunctionType()) {
   1722     Size = CharUnits::One();
   1723     return true;
   1724   }
   1725 
   1726   if (!Type->isConstantSizeType()) {
   1727     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
   1728     // FIXME: Better diagnostic.
   1729     Info.Diag(Loc);
   1730     return false;
   1731   }
   1732 
   1733   Size = Info.Ctx.getTypeSizeInChars(Type);
   1734   return true;
   1735 }
   1736 
   1737 /// Update a pointer value to model pointer arithmetic.
   1738 /// \param Info - Information about the ongoing evaluation.
   1739 /// \param E - The expression being evaluated, for diagnostic purposes.
   1740 /// \param LVal - The pointer value to be updated.
   1741 /// \param EltTy - The pointee type represented by LVal.
   1742 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
   1743 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
   1744                                         LValue &LVal, QualType EltTy,
   1745                                         int64_t Adjustment) {
   1746   CharUnits SizeOfPointee;
   1747   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
   1748     return false;
   1749 
   1750   // Compute the new offset in the appropriate width.
   1751   LVal.Offset += Adjustment * SizeOfPointee;
   1752   LVal.adjustIndex(Info, E, Adjustment);
   1753   return true;
   1754 }
   1755 
   1756 /// Update an lvalue to refer to a component of a complex number.
   1757 /// \param Info - Information about the ongoing evaluation.
   1758 /// \param LVal - The lvalue to be updated.
   1759 /// \param EltTy - The complex number's component type.
   1760 /// \param Imag - False for the real component, true for the imaginary.
   1761 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
   1762                                        LValue &LVal, QualType EltTy,
   1763                                        bool Imag) {
   1764   if (Imag) {
   1765     CharUnits SizeOfComponent;
   1766     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
   1767       return false;
   1768     LVal.Offset += SizeOfComponent;
   1769   }
   1770   LVal.addComplex(Info, E, EltTy, Imag);
   1771   return true;
   1772 }
   1773 
   1774 /// Try to evaluate the initializer for a variable declaration.
   1775 ///
   1776 /// \param Info   Information about the ongoing evaluation.
   1777 /// \param E      An expression to be used when printing diagnostics.
   1778 /// \param VD     The variable whose initializer should be obtained.
   1779 /// \param Frame  The frame in which the variable was created. Must be null
   1780 ///               if this variable is not local to the evaluation.
   1781 /// \param Result Filled in with a pointer to the value of the variable.
   1782 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
   1783                                 const VarDecl *VD, CallStackFrame *Frame,
   1784                                 APValue *&Result) {
   1785   // If this is a parameter to an active constexpr function call, perform
   1786   // argument substitution.
   1787   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
   1788     // Assume arguments of a potential constant expression are unknown
   1789     // constant expressions.
   1790     if (Info.CheckingPotentialConstantExpression)
   1791       return false;
   1792     if (!Frame || !Frame->Arguments) {
   1793       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1794       return false;
   1795     }
   1796     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
   1797     return true;
   1798   }
   1799 
   1800   // If this is a local variable, dig out its value.
   1801   if (Frame) {
   1802     Result = Frame->getTemporary(VD);
   1803     assert(Result && "missing value for local variable");
   1804     return true;
   1805   }
   1806 
   1807   // Dig out the initializer, and use the declaration which it's attached to.
   1808   const Expr *Init = VD->getAnyInitializer(VD);
   1809   if (!Init || Init->isValueDependent()) {
   1810     // If we're checking a potential constant expression, the variable could be
   1811     // initialized later.
   1812     if (!Info.CheckingPotentialConstantExpression)
   1813       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1814     return false;
   1815   }
   1816 
   1817   // If we're currently evaluating the initializer of this declaration, use that
   1818   // in-flight value.
   1819   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
   1820     Result = Info.EvaluatingDeclValue;
   1821     return true;
   1822   }
   1823 
   1824   // Never evaluate the initializer of a weak variable. We can't be sure that
   1825   // this is the definition which will be used.
   1826   if (VD->isWeak()) {
   1827     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   1828     return false;
   1829   }
   1830 
   1831   // Check that we can fold the initializer. In C++, we will have already done
   1832   // this in the cases where it matters for conformance.
   1833   SmallVector<PartialDiagnosticAt, 8> Notes;
   1834   if (!VD->evaluateValue(Notes)) {
   1835     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
   1836               Notes.size() + 1) << VD;
   1837     Info.Note(VD->getLocation(), diag::note_declared_at);
   1838     Info.addNotes(Notes);
   1839     return false;
   1840   } else if (!VD->checkInitIsICE()) {
   1841     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
   1842                  Notes.size() + 1) << VD;
   1843     Info.Note(VD->getLocation(), diag::note_declared_at);
   1844     Info.addNotes(Notes);
   1845   }
   1846 
   1847   Result = VD->getEvaluatedValue();
   1848   return true;
   1849 }
   1850 
   1851 static bool IsConstNonVolatile(QualType T) {
   1852   Qualifiers Quals = T.getQualifiers();
   1853   return Quals.hasConst() && !Quals.hasVolatile();
   1854 }
   1855 
   1856 /// Get the base index of the given base class within an APValue representing
   1857 /// the given derived class.
   1858 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
   1859                              const CXXRecordDecl *Base) {
   1860   Base = Base->getCanonicalDecl();
   1861   unsigned Index = 0;
   1862   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
   1863          E = Derived->bases_end(); I != E; ++I, ++Index) {
   1864     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
   1865       return Index;
   1866   }
   1867 
   1868   llvm_unreachable("base class missing from derived class's bases list");
   1869 }
   1870 
   1871 /// Extract the value of a character from a string literal.
   1872 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
   1873                                             uint64_t Index) {
   1874   // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   1875   const StringLiteral *S = cast<StringLiteral>(Lit);
   1876   const ConstantArrayType *CAT =
   1877       Info.Ctx.getAsConstantArrayType(S->getType());
   1878   assert(CAT && "string literal isn't an array");
   1879   QualType CharType = CAT->getElementType();
   1880   assert(CharType->isIntegerType() && "unexpected character type");
   1881 
   1882   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   1883                CharType->isUnsignedIntegerType());
   1884   if (Index < S->getLength())
   1885     Value = S->getCodeUnit(Index);
   1886   return Value;
   1887 }
   1888 
   1889 // Expand a string literal into an array of characters.
   1890 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
   1891                                 APValue &Result) {
   1892   const StringLiteral *S = cast<StringLiteral>(Lit);
   1893   const ConstantArrayType *CAT =
   1894       Info.Ctx.getAsConstantArrayType(S->getType());
   1895   assert(CAT && "string literal isn't an array");
   1896   QualType CharType = CAT->getElementType();
   1897   assert(CharType->isIntegerType() && "unexpected character type");
   1898 
   1899   unsigned Elts = CAT->getSize().getZExtValue();
   1900   Result = APValue(APValue::UninitArray(),
   1901                    std::min(S->getLength(), Elts), Elts);
   1902   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
   1903                CharType->isUnsignedIntegerType());
   1904   if (Result.hasArrayFiller())
   1905     Result.getArrayFiller() = APValue(Value);
   1906   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
   1907     Value = S->getCodeUnit(I);
   1908     Result.getArrayInitializedElt(I) = APValue(Value);
   1909   }
   1910 }
   1911 
   1912 // Expand an array so that it has more than Index filled elements.
   1913 static void expandArray(APValue &Array, unsigned Index) {
   1914   unsigned Size = Array.getArraySize();
   1915   assert(Index < Size);
   1916 
   1917   // Always at least double the number of elements for which we store a value.
   1918   unsigned OldElts = Array.getArrayInitializedElts();
   1919   unsigned NewElts = std::max(Index+1, OldElts * 2);
   1920   NewElts = std::min(Size, std::max(NewElts, 8u));
   1921 
   1922   // Copy the data across.
   1923   APValue NewValue(APValue::UninitArray(), NewElts, Size);
   1924   for (unsigned I = 0; I != OldElts; ++I)
   1925     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
   1926   for (unsigned I = OldElts; I != NewElts; ++I)
   1927     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
   1928   if (NewValue.hasArrayFiller())
   1929     NewValue.getArrayFiller() = Array.getArrayFiller();
   1930   Array.swap(NewValue);
   1931 }
   1932 
   1933 /// Kinds of access we can perform on an object, for diagnostics.
   1934 enum AccessKinds {
   1935   AK_Read,
   1936   AK_Assign,
   1937   AK_Increment,
   1938   AK_Decrement
   1939 };
   1940 
   1941 /// A handle to a complete object (an object that is not a subobject of
   1942 /// another object).
   1943 struct CompleteObject {
   1944   /// The value of the complete object.
   1945   APValue *Value;
   1946   /// The type of the complete object.
   1947   QualType Type;
   1948 
   1949   CompleteObject() : Value(0) {}
   1950   CompleteObject(APValue *Value, QualType Type)
   1951       : Value(Value), Type(Type) {
   1952     assert(Value && "missing value for complete object");
   1953   }
   1954 
   1955   LLVM_EXPLICIT operator bool() const { return Value; }
   1956 };
   1957 
   1958 /// Find the designated sub-object of an rvalue.
   1959 template<typename SubobjectHandler>
   1960 typename SubobjectHandler::result_type
   1961 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
   1962               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
   1963   if (Sub.Invalid)
   1964     // A diagnostic will have already been produced.
   1965     return handler.failed();
   1966   if (Sub.isOnePastTheEnd()) {
   1967     if (Info.getLangOpts().CPlusPlus11)
   1968       Info.Diag(E, diag::note_constexpr_access_past_end)
   1969         << handler.AccessKind;
   1970     else
   1971       Info.Diag(E);
   1972     return handler.failed();
   1973   }
   1974 
   1975   APValue *O = Obj.Value;
   1976   QualType ObjType = Obj.Type;
   1977   const FieldDecl *LastField = 0;
   1978 
   1979   // Walk the designator's path to find the subobject.
   1980   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
   1981     if (O->isUninit()) {
   1982       if (!Info.CheckingPotentialConstantExpression)
   1983         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
   1984       return handler.failed();
   1985     }
   1986 
   1987     if (I == N) {
   1988       if (!handler.found(*O, ObjType))
   1989         return false;
   1990 
   1991       // If we modified a bit-field, truncate it to the right width.
   1992       if (handler.AccessKind != AK_Read &&
   1993           LastField && LastField->isBitField() &&
   1994           !truncateBitfieldValue(Info, E, *O, LastField))
   1995         return false;
   1996 
   1997       return true;
   1998     }
   1999 
   2000     LastField = 0;
   2001     if (ObjType->isArrayType()) {
   2002       // Next subobject is an array element.
   2003       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
   2004       assert(CAT && "vla in literal type?");
   2005       uint64_t Index = Sub.Entries[I].ArrayIndex;
   2006       if (CAT->getSize().ule(Index)) {
   2007         // Note, it should not be possible to form a pointer with a valid
   2008         // designator which points more than one past the end of the array.
   2009         if (Info.getLangOpts().CPlusPlus11)
   2010           Info.Diag(E, diag::note_constexpr_access_past_end)
   2011             << handler.AccessKind;
   2012         else
   2013           Info.Diag(E);
   2014         return handler.failed();
   2015       }
   2016 
   2017       ObjType = CAT->getElementType();
   2018 
   2019       // An array object is represented as either an Array APValue or as an
   2020       // LValue which refers to a string literal.
   2021       if (O->isLValue()) {
   2022         assert(I == N - 1 && "extracting subobject of character?");
   2023         assert(!O->hasLValuePath() || O->getLValuePath().empty());
   2024         if (handler.AccessKind != AK_Read)
   2025           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
   2026                               *O);
   2027         else
   2028           return handler.foundString(*O, ObjType, Index);
   2029       }
   2030 
   2031       if (O->getArrayInitializedElts() > Index)
   2032         O = &O->getArrayInitializedElt(Index);
   2033       else if (handler.AccessKind != AK_Read) {
   2034         expandArray(*O, Index);
   2035         O = &O->getArrayInitializedElt(Index);
   2036       } else
   2037         O = &O->getArrayFiller();
   2038     } else if (ObjType->isAnyComplexType()) {
   2039       // Next subobject is a complex number.
   2040       uint64_t Index = Sub.Entries[I].ArrayIndex;
   2041       if (Index > 1) {
   2042         if (Info.getLangOpts().CPlusPlus11)
   2043           Info.Diag(E, diag::note_constexpr_access_past_end)
   2044             << handler.AccessKind;
   2045         else
   2046           Info.Diag(E);
   2047         return handler.failed();
   2048       }
   2049 
   2050       bool WasConstQualified = ObjType.isConstQualified();
   2051       ObjType = ObjType->castAs<ComplexType>()->getElementType();
   2052       if (WasConstQualified)
   2053         ObjType.addConst();
   2054 
   2055       assert(I == N - 1 && "extracting subobject of scalar?");
   2056       if (O->isComplexInt()) {
   2057         return handler.found(Index ? O->getComplexIntImag()
   2058                                    : O->getComplexIntReal(), ObjType);
   2059       } else {
   2060         assert(O->isComplexFloat());
   2061         return handler.found(Index ? O->getComplexFloatImag()
   2062                                    : O->getComplexFloatReal(), ObjType);
   2063       }
   2064     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
   2065       if (Field->isMutable() && handler.AccessKind == AK_Read) {
   2066         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
   2067           << Field;
   2068         Info.Note(Field->getLocation(), diag::note_declared_at);
   2069         return handler.failed();
   2070       }
   2071 
   2072       // Next subobject is a class, struct or union field.
   2073       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
   2074       if (RD->isUnion()) {
   2075         const FieldDecl *UnionField = O->getUnionField();
   2076         if (!UnionField ||
   2077             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
   2078           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
   2079             << handler.AccessKind << Field << !UnionField << UnionField;
   2080           return handler.failed();
   2081         }
   2082         O = &O->getUnionValue();
   2083       } else
   2084         O = &O->getStructField(Field->getFieldIndex());
   2085 
   2086       bool WasConstQualified = ObjType.isConstQualified();
   2087       ObjType = Field->getType();
   2088       if (WasConstQualified && !Field->isMutable())
   2089         ObjType.addConst();
   2090 
   2091       if (ObjType.isVolatileQualified()) {
   2092         if (Info.getLangOpts().CPlusPlus) {
   2093           // FIXME: Include a description of the path to the volatile subobject.
   2094           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2095             << handler.AccessKind << 2 << Field;
   2096           Info.Note(Field->getLocation(), diag::note_declared_at);
   2097         } else {
   2098           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   2099         }
   2100         return handler.failed();
   2101       }
   2102 
   2103       LastField = Field;
   2104     } else {
   2105       // Next subobject is a base class.
   2106       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
   2107       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
   2108       O = &O->getStructBase(getBaseIndex(Derived, Base));
   2109 
   2110       bool WasConstQualified = ObjType.isConstQualified();
   2111       ObjType = Info.Ctx.getRecordType(Base);
   2112       if (WasConstQualified)
   2113         ObjType.addConst();
   2114     }
   2115   }
   2116 }
   2117 
   2118 namespace {
   2119 struct ExtractSubobjectHandler {
   2120   EvalInfo &Info;
   2121   APValue &Result;
   2122 
   2123   static const AccessKinds AccessKind = AK_Read;
   2124 
   2125   typedef bool result_type;
   2126   bool failed() { return false; }
   2127   bool found(APValue &Subobj, QualType SubobjType) {
   2128     Result = Subobj;
   2129     return true;
   2130   }
   2131   bool found(APSInt &Value, QualType SubobjType) {
   2132     Result = APValue(Value);
   2133     return true;
   2134   }
   2135   bool found(APFloat &Value, QualType SubobjType) {
   2136     Result = APValue(Value);
   2137     return true;
   2138   }
   2139   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2140     Result = APValue(extractStringLiteralCharacter(
   2141         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
   2142     return true;
   2143   }
   2144 };
   2145 } // end anonymous namespace
   2146 
   2147 const AccessKinds ExtractSubobjectHandler::AccessKind;
   2148 
   2149 /// Extract the designated sub-object of an rvalue.
   2150 static bool extractSubobject(EvalInfo &Info, const Expr *E,
   2151                              const CompleteObject &Obj,
   2152                              const SubobjectDesignator &Sub,
   2153                              APValue &Result) {
   2154   ExtractSubobjectHandler Handler = { Info, Result };
   2155   return findSubobject(Info, E, Obj, Sub, Handler);
   2156 }
   2157 
   2158 namespace {
   2159 struct ModifySubobjectHandler {
   2160   EvalInfo &Info;
   2161   APValue &NewVal;
   2162   const Expr *E;
   2163 
   2164   typedef bool result_type;
   2165   static const AccessKinds AccessKind = AK_Assign;
   2166 
   2167   bool checkConst(QualType QT) {
   2168     // Assigning to a const object has undefined behavior.
   2169     if (QT.isConstQualified()) {
   2170       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2171       return false;
   2172     }
   2173     return true;
   2174   }
   2175 
   2176   bool failed() { return false; }
   2177   bool found(APValue &Subobj, QualType SubobjType) {
   2178     if (!checkConst(SubobjType))
   2179       return false;
   2180     // We've been given ownership of NewVal, so just swap it in.
   2181     Subobj.swap(NewVal);
   2182     return true;
   2183   }
   2184   bool found(APSInt &Value, QualType SubobjType) {
   2185     if (!checkConst(SubobjType))
   2186       return false;
   2187     if (!NewVal.isInt()) {
   2188       // Maybe trying to write a cast pointer value into a complex?
   2189       Info.Diag(E);
   2190       return false;
   2191     }
   2192     Value = NewVal.getInt();
   2193     return true;
   2194   }
   2195   bool found(APFloat &Value, QualType SubobjType) {
   2196     if (!checkConst(SubobjType))
   2197       return false;
   2198     Value = NewVal.getFloat();
   2199     return true;
   2200   }
   2201   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2202     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
   2203   }
   2204 };
   2205 } // end anonymous namespace
   2206 
   2207 const AccessKinds ModifySubobjectHandler::AccessKind;
   2208 
   2209 /// Update the designated sub-object of an rvalue to the given value.
   2210 static bool modifySubobject(EvalInfo &Info, const Expr *E,
   2211                             const CompleteObject &Obj,
   2212                             const SubobjectDesignator &Sub,
   2213                             APValue &NewVal) {
   2214   ModifySubobjectHandler Handler = { Info, NewVal, E };
   2215   return findSubobject(Info, E, Obj, Sub, Handler);
   2216 }
   2217 
   2218 /// Find the position where two subobject designators diverge, or equivalently
   2219 /// the length of the common initial subsequence.
   2220 static unsigned FindDesignatorMismatch(QualType ObjType,
   2221                                        const SubobjectDesignator &A,
   2222                                        const SubobjectDesignator &B,
   2223                                        bool &WasArrayIndex) {
   2224   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
   2225   for (/**/; I != N; ++I) {
   2226     if (!ObjType.isNull() &&
   2227         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
   2228       // Next subobject is an array element.
   2229       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
   2230         WasArrayIndex = true;
   2231         return I;
   2232       }
   2233       if (ObjType->isAnyComplexType())
   2234         ObjType = ObjType->castAs<ComplexType>()->getElementType();
   2235       else
   2236         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
   2237     } else {
   2238       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
   2239         WasArrayIndex = false;
   2240         return I;
   2241       }
   2242       if (const FieldDecl *FD = getAsField(A.Entries[I]))
   2243         // Next subobject is a field.
   2244         ObjType = FD->getType();
   2245       else
   2246         // Next subobject is a base class.
   2247         ObjType = QualType();
   2248     }
   2249   }
   2250   WasArrayIndex = false;
   2251   return I;
   2252 }
   2253 
   2254 /// Determine whether the given subobject designators refer to elements of the
   2255 /// same array object.
   2256 static bool AreElementsOfSameArray(QualType ObjType,
   2257                                    const SubobjectDesignator &A,
   2258                                    const SubobjectDesignator &B) {
   2259   if (A.Entries.size() != B.Entries.size())
   2260     return false;
   2261 
   2262   bool IsArray = A.MostDerivedArraySize != 0;
   2263   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
   2264     // A is a subobject of the array element.
   2265     return false;
   2266 
   2267   // If A (and B) designates an array element, the last entry will be the array
   2268   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
   2269   // of length 1' case, and the entire path must match.
   2270   bool WasArrayIndex;
   2271   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
   2272   return CommonLength >= A.Entries.size() - IsArray;
   2273 }
   2274 
   2275 /// Find the complete object to which an LValue refers.
   2276 CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, AccessKinds AK,
   2277                                   const LValue &LVal, QualType LValType) {
   2278   if (!LVal.Base) {
   2279     Info.Diag(E, diag::note_constexpr_access_null) << AK;
   2280     return CompleteObject();
   2281   }
   2282 
   2283   CallStackFrame *Frame = 0;
   2284   if (LVal.CallIndex) {
   2285     Frame = Info.getCallFrame(LVal.CallIndex);
   2286     if (!Frame) {
   2287       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
   2288         << AK << LVal.Base.is<const ValueDecl*>();
   2289       NoteLValueLocation(Info, LVal.Base);
   2290       return CompleteObject();
   2291     }
   2292   }
   2293 
   2294   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
   2295   // is not a constant expression (even if the object is non-volatile). We also
   2296   // apply this rule to C++98, in order to conform to the expected 'volatile'
   2297   // semantics.
   2298   if (LValType.isVolatileQualified()) {
   2299     if (Info.getLangOpts().CPlusPlus)
   2300       Info.Diag(E, diag::note_constexpr_access_volatile_type)
   2301         << AK << LValType;
   2302     else
   2303       Info.Diag(E);
   2304     return CompleteObject();
   2305   }
   2306 
   2307   // Compute value storage location and type of base object.
   2308   APValue *BaseVal = 0;
   2309   QualType BaseType = getType(LVal.Base);
   2310 
   2311   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
   2312     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
   2313     // In C++11, constexpr, non-volatile variables initialized with constant
   2314     // expressions are constant expressions too. Inside constexpr functions,
   2315     // parameters are constant expressions even if they're non-const.
   2316     // In C++1y, objects local to a constant expression (those with a Frame) are
   2317     // both readable and writable inside constant expressions.
   2318     // In C, such things can also be folded, although they are not ICEs.
   2319     const VarDecl *VD = dyn_cast<VarDecl>(D);
   2320     if (VD) {
   2321       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
   2322         VD = VDef;
   2323     }
   2324     if (!VD || VD->isInvalidDecl()) {
   2325       Info.Diag(E);
   2326       return CompleteObject();
   2327     }
   2328 
   2329     // Accesses of volatile-qualified objects are not allowed.
   2330     if (BaseType.isVolatileQualified()) {
   2331       if (Info.getLangOpts().CPlusPlus) {
   2332         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2333           << AK << 1 << VD;
   2334         Info.Note(VD->getLocation(), diag::note_declared_at);
   2335       } else {
   2336         Info.Diag(E);
   2337       }
   2338       return CompleteObject();
   2339     }
   2340 
   2341     // Unless we're looking at a local variable or argument in a constexpr call,
   2342     // the variable we're reading must be const.
   2343     if (!Frame) {
   2344       if (Info.getLangOpts().CPlusPlus1y &&
   2345           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
   2346         // OK, we can read and modify an object if we're in the process of
   2347         // evaluating its initializer, because its lifetime began in this
   2348         // evaluation.
   2349       } else if (AK != AK_Read) {
   2350         // All the remaining cases only permit reading.
   2351         Info.Diag(E, diag::note_constexpr_modify_global);
   2352         return CompleteObject();
   2353       } else if (VD->isConstexpr()) {
   2354         // OK, we can read this variable.
   2355       } else if (BaseType->isIntegralOrEnumerationType()) {
   2356         if (!BaseType.isConstQualified()) {
   2357           if (Info.getLangOpts().CPlusPlus) {
   2358             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
   2359             Info.Note(VD->getLocation(), diag::note_declared_at);
   2360           } else {
   2361             Info.Diag(E);
   2362           }
   2363           return CompleteObject();
   2364         }
   2365       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
   2366         // We support folding of const floating-point types, in order to make
   2367         // static const data members of such types (supported as an extension)
   2368         // more useful.
   2369         if (Info.getLangOpts().CPlusPlus11) {
   2370           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   2371           Info.Note(VD->getLocation(), diag::note_declared_at);
   2372         } else {
   2373           Info.CCEDiag(E);
   2374         }
   2375       } else {
   2376         // FIXME: Allow folding of values of any literal type in all languages.
   2377         if (Info.getLangOpts().CPlusPlus11) {
   2378           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
   2379           Info.Note(VD->getLocation(), diag::note_declared_at);
   2380         } else {
   2381           Info.Diag(E);
   2382         }
   2383         return CompleteObject();
   2384       }
   2385     }
   2386 
   2387     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
   2388       return CompleteObject();
   2389   } else {
   2390     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   2391 
   2392     if (!Frame) {
   2393       if (const MaterializeTemporaryExpr *MTE =
   2394               dyn_cast<MaterializeTemporaryExpr>(Base)) {
   2395         assert(MTE->getStorageDuration() == SD_Static &&
   2396                "should have a frame for a non-global materialized temporary");
   2397 
   2398         // Per C++1y [expr.const]p2:
   2399         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
   2400         //   - a [...] glvalue of integral or enumeration type that refers to
   2401         //     a non-volatile const object [...]
   2402         //   [...]
   2403         //   - a [...] glvalue of literal type that refers to a non-volatile
   2404         //     object whose lifetime began within the evaluation of e.
   2405         //
   2406         // C++11 misses the 'began within the evaluation of e' check and
   2407         // instead allows all temporaries, including things like:
   2408         //   int &&r = 1;
   2409         //   int x = ++r;
   2410         //   constexpr int k = r;
   2411         // Therefore we use the C++1y rules in C++11 too.
   2412         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
   2413         const ValueDecl *ED = MTE->getExtendingDecl();
   2414         if (!(BaseType.isConstQualified() &&
   2415               BaseType->isIntegralOrEnumerationType()) &&
   2416             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
   2417           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
   2418           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
   2419           return CompleteObject();
   2420         }
   2421 
   2422         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
   2423         assert(BaseVal && "got reference to unevaluated temporary");
   2424       } else {
   2425         Info.Diag(E);
   2426         return CompleteObject();
   2427       }
   2428     } else {
   2429       BaseVal = Frame->getTemporary(Base);
   2430       assert(BaseVal && "missing value for temporary");
   2431     }
   2432 
   2433     // Volatile temporary objects cannot be accessed in constant expressions.
   2434     if (BaseType.isVolatileQualified()) {
   2435       if (Info.getLangOpts().CPlusPlus) {
   2436         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
   2437           << AK << 0;
   2438         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
   2439       } else {
   2440         Info.Diag(E);
   2441       }
   2442       return CompleteObject();
   2443     }
   2444   }
   2445 
   2446   // During the construction of an object, it is not yet 'const'.
   2447   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
   2448   // and this doesn't do quite the right thing for const subobjects of the
   2449   // object under construction.
   2450   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
   2451     BaseType = Info.Ctx.getCanonicalType(BaseType);
   2452     BaseType.removeLocalConst();
   2453   }
   2454 
   2455   // In C++1y, we can't safely access any mutable state when checking a
   2456   // potential constant expression.
   2457   if (Frame && Info.getLangOpts().CPlusPlus1y &&
   2458       Info.CheckingPotentialConstantExpression)
   2459     return CompleteObject();
   2460 
   2461   return CompleteObject(BaseVal, BaseType);
   2462 }
   2463 
   2464 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
   2465 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
   2466 /// glvalue referred to by an entity of reference type.
   2467 ///
   2468 /// \param Info - Information about the ongoing evaluation.
   2469 /// \param Conv - The expression for which we are performing the conversion.
   2470 ///               Used for diagnostics.
   2471 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
   2472 ///               case of a non-class type).
   2473 /// \param LVal - The glvalue on which we are attempting to perform this action.
   2474 /// \param RVal - The produced value will be placed here.
   2475 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
   2476                                            QualType Type,
   2477                                            const LValue &LVal, APValue &RVal) {
   2478   if (LVal.Designator.Invalid)
   2479     return false;
   2480 
   2481   // Check for special cases where there is no existing APValue to look at.
   2482   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
   2483   if (!LVal.Designator.Invalid && Base && !LVal.CallIndex &&
   2484       !Type.isVolatileQualified()) {
   2485     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
   2486       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
   2487       // initializer until now for such expressions. Such an expression can't be
   2488       // an ICE in C, so this only matters for fold.
   2489       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   2490       if (Type.isVolatileQualified()) {
   2491         Info.Diag(Conv);
   2492         return false;
   2493       }
   2494       APValue Lit;
   2495       if (!Evaluate(Lit, Info, CLE->getInitializer()))
   2496         return false;
   2497       CompleteObject LitObj(&Lit, Base->getType());
   2498       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
   2499     } else if (isa<StringLiteral>(Base)) {
   2500       // We represent a string literal array as an lvalue pointing at the
   2501       // corresponding expression, rather than building an array of chars.
   2502       // FIXME: Support PredefinedExpr, ObjCEncodeExpr, MakeStringConstant
   2503       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
   2504       CompleteObject StrObj(&Str, Base->getType());
   2505       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
   2506     }
   2507   }
   2508 
   2509   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
   2510   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
   2511 }
   2512 
   2513 /// Perform an assignment of Val to LVal. Takes ownership of Val.
   2514 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
   2515                              QualType LValType, APValue &Val) {
   2516   if (LVal.Designator.Invalid)
   2517     return false;
   2518 
   2519   if (!Info.getLangOpts().CPlusPlus1y) {
   2520     Info.Diag(E);
   2521     return false;
   2522   }
   2523 
   2524   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
   2525   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
   2526 }
   2527 
   2528 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
   2529   return T->isSignedIntegerType() &&
   2530          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
   2531 }
   2532 
   2533 namespace {
   2534 struct CompoundAssignSubobjectHandler {
   2535   EvalInfo &Info;
   2536   const Expr *E;
   2537   QualType PromotedLHSType;
   2538   BinaryOperatorKind Opcode;
   2539   const APValue &RHS;
   2540 
   2541   static const AccessKinds AccessKind = AK_Assign;
   2542 
   2543   typedef bool result_type;
   2544 
   2545   bool checkConst(QualType QT) {
   2546     // Assigning to a const object has undefined behavior.
   2547     if (QT.isConstQualified()) {
   2548       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2549       return false;
   2550     }
   2551     return true;
   2552   }
   2553 
   2554   bool failed() { return false; }
   2555   bool found(APValue &Subobj, QualType SubobjType) {
   2556     switch (Subobj.getKind()) {
   2557     case APValue::Int:
   2558       return found(Subobj.getInt(), SubobjType);
   2559     case APValue::Float:
   2560       return found(Subobj.getFloat(), SubobjType);
   2561     case APValue::ComplexInt:
   2562     case APValue::ComplexFloat:
   2563       // FIXME: Implement complex compound assignment.
   2564       Info.Diag(E);
   2565       return false;
   2566     case APValue::LValue:
   2567       return foundPointer(Subobj, SubobjType);
   2568     default:
   2569       // FIXME: can this happen?
   2570       Info.Diag(E);
   2571       return false;
   2572     }
   2573   }
   2574   bool found(APSInt &Value, QualType SubobjType) {
   2575     if (!checkConst(SubobjType))
   2576       return false;
   2577 
   2578     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
   2579       // We don't support compound assignment on integer-cast-to-pointer
   2580       // values.
   2581       Info.Diag(E);
   2582       return false;
   2583     }
   2584 
   2585     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
   2586                                     SubobjType, Value);
   2587     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
   2588       return false;
   2589     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
   2590     return true;
   2591   }
   2592   bool found(APFloat &Value, QualType SubobjType) {
   2593     return checkConst(SubobjType) &&
   2594            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
   2595                                   Value) &&
   2596            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
   2597            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
   2598   }
   2599   bool foundPointer(APValue &Subobj, QualType SubobjType) {
   2600     if (!checkConst(SubobjType))
   2601       return false;
   2602 
   2603     QualType PointeeType;
   2604     if (const PointerType *PT = SubobjType->getAs<PointerType>())
   2605       PointeeType = PT->getPointeeType();
   2606 
   2607     if (PointeeType.isNull() || !RHS.isInt() ||
   2608         (Opcode != BO_Add && Opcode != BO_Sub)) {
   2609       Info.Diag(E);
   2610       return false;
   2611     }
   2612 
   2613     int64_t Offset = getExtValue(RHS.getInt());
   2614     if (Opcode == BO_Sub)
   2615       Offset = -Offset;
   2616 
   2617     LValue LVal;
   2618     LVal.setFrom(Info.Ctx, Subobj);
   2619     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
   2620       return false;
   2621     LVal.moveInto(Subobj);
   2622     return true;
   2623   }
   2624   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2625     llvm_unreachable("shouldn't encounter string elements here");
   2626   }
   2627 };
   2628 } // end anonymous namespace
   2629 
   2630 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
   2631 
   2632 /// Perform a compound assignment of LVal <op>= RVal.
   2633 static bool handleCompoundAssignment(
   2634     EvalInfo &Info, const Expr *E,
   2635     const LValue &LVal, QualType LValType, QualType PromotedLValType,
   2636     BinaryOperatorKind Opcode, const APValue &RVal) {
   2637   if (LVal.Designator.Invalid)
   2638     return false;
   2639 
   2640   if (!Info.getLangOpts().CPlusPlus1y) {
   2641     Info.Diag(E);
   2642     return false;
   2643   }
   2644 
   2645   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
   2646   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
   2647                                              RVal };
   2648   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
   2649 }
   2650 
   2651 namespace {
   2652 struct IncDecSubobjectHandler {
   2653   EvalInfo &Info;
   2654   const Expr *E;
   2655   AccessKinds AccessKind;
   2656   APValue *Old;
   2657 
   2658   typedef bool result_type;
   2659 
   2660   bool checkConst(QualType QT) {
   2661     // Assigning to a const object has undefined behavior.
   2662     if (QT.isConstQualified()) {
   2663       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
   2664       return false;
   2665     }
   2666     return true;
   2667   }
   2668 
   2669   bool failed() { return false; }
   2670   bool found(APValue &Subobj, QualType SubobjType) {
   2671     // Stash the old value. Also clear Old, so we don't clobber it later
   2672     // if we're post-incrementing a complex.
   2673     if (Old) {
   2674       *Old = Subobj;
   2675       Old = 0;
   2676     }
   2677 
   2678     switch (Subobj.getKind()) {
   2679     case APValue::Int:
   2680       return found(Subobj.getInt(), SubobjType);
   2681     case APValue::Float:
   2682       return found(Subobj.getFloat(), SubobjType);
   2683     case APValue::ComplexInt:
   2684       return found(Subobj.getComplexIntReal(),
   2685                    SubobjType->castAs<ComplexType>()->getElementType()
   2686                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
   2687     case APValue::ComplexFloat:
   2688       return found(Subobj.getComplexFloatReal(),
   2689                    SubobjType->castAs<ComplexType>()->getElementType()
   2690                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
   2691     case APValue::LValue:
   2692       return foundPointer(Subobj, SubobjType);
   2693     default:
   2694       // FIXME: can this happen?
   2695       Info.Diag(E);
   2696       return false;
   2697     }
   2698   }
   2699   bool found(APSInt &Value, QualType SubobjType) {
   2700     if (!checkConst(SubobjType))
   2701       return false;
   2702 
   2703     if (!SubobjType->isIntegerType()) {
   2704       // We don't support increment / decrement on integer-cast-to-pointer
   2705       // values.
   2706       Info.Diag(E);
   2707       return false;
   2708     }
   2709 
   2710     if (Old) *Old = APValue(Value);
   2711 
   2712     // bool arithmetic promotes to int, and the conversion back to bool
   2713     // doesn't reduce mod 2^n, so special-case it.
   2714     if (SubobjType->isBooleanType()) {
   2715       if (AccessKind == AK_Increment)
   2716         Value = 1;
   2717       else
   2718         Value = !Value;
   2719       return true;
   2720     }
   2721 
   2722     bool WasNegative = Value.isNegative();
   2723     if (AccessKind == AK_Increment) {
   2724       ++Value;
   2725 
   2726       if (!WasNegative && Value.isNegative() &&
   2727           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
   2728         APSInt ActualValue(Value, /*IsUnsigned*/true);
   2729         HandleOverflow(Info, E, ActualValue, SubobjType);
   2730       }
   2731     } else {
   2732       --Value;
   2733 
   2734       if (WasNegative && !Value.isNegative() &&
   2735           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
   2736         unsigned BitWidth = Value.getBitWidth();
   2737         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
   2738         ActualValue.setBit(BitWidth);
   2739         HandleOverflow(Info, E, ActualValue, SubobjType);
   2740       }
   2741     }
   2742     return true;
   2743   }
   2744   bool found(APFloat &Value, QualType SubobjType) {
   2745     if (!checkConst(SubobjType))
   2746       return false;
   2747 
   2748     if (Old) *Old = APValue(Value);
   2749 
   2750     APFloat One(Value.getSemantics(), 1);
   2751     if (AccessKind == AK_Increment)
   2752       Value.add(One, APFloat::rmNearestTiesToEven);
   2753     else
   2754       Value.subtract(One, APFloat::rmNearestTiesToEven);
   2755     return true;
   2756   }
   2757   bool foundPointer(APValue &Subobj, QualType SubobjType) {
   2758     if (!checkConst(SubobjType))
   2759       return false;
   2760 
   2761     QualType PointeeType;
   2762     if (const PointerType *PT = SubobjType->getAs<PointerType>())
   2763       PointeeType = PT->getPointeeType();
   2764     else {
   2765       Info.Diag(E);
   2766       return false;
   2767     }
   2768 
   2769     LValue LVal;
   2770     LVal.setFrom(Info.Ctx, Subobj);
   2771     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
   2772                                      AccessKind == AK_Increment ? 1 : -1))
   2773       return false;
   2774     LVal.moveInto(Subobj);
   2775     return true;
   2776   }
   2777   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
   2778     llvm_unreachable("shouldn't encounter string elements here");
   2779   }
   2780 };
   2781 } // end anonymous namespace
   2782 
   2783 /// Perform an increment or decrement on LVal.
   2784 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
   2785                          QualType LValType, bool IsIncrement, APValue *Old) {
   2786   if (LVal.Designator.Invalid)
   2787     return false;
   2788 
   2789   if (!Info.getLangOpts().CPlusPlus1y) {
   2790     Info.Diag(E);
   2791     return false;
   2792   }
   2793 
   2794   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
   2795   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
   2796   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
   2797   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
   2798 }
   2799 
   2800 /// Build an lvalue for the object argument of a member function call.
   2801 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
   2802                                    LValue &This) {
   2803   if (Object->getType()->isPointerType())
   2804     return EvaluatePointer(Object, This, Info);
   2805 
   2806   if (Object->isGLValue())
   2807     return EvaluateLValue(Object, This, Info);
   2808 
   2809   if (Object->getType()->isLiteralType(Info.Ctx))
   2810     return EvaluateTemporary(Object, This, Info);
   2811 
   2812   return false;
   2813 }
   2814 
   2815 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
   2816 /// lvalue referring to the result.
   2817 ///
   2818 /// \param Info - Information about the ongoing evaluation.
   2819 /// \param LV - An lvalue referring to the base of the member pointer.
   2820 /// \param RHS - The member pointer expression.
   2821 /// \param IncludeMember - Specifies whether the member itself is included in
   2822 ///        the resulting LValue subobject designator. This is not possible when
   2823 ///        creating a bound member function.
   2824 /// \return The field or method declaration to which the member pointer refers,
   2825 ///         or 0 if evaluation fails.
   2826 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   2827                                                   QualType LVType,
   2828                                                   LValue &LV,
   2829                                                   const Expr *RHS,
   2830                                                   bool IncludeMember = true) {
   2831   MemberPtr MemPtr;
   2832   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
   2833     return 0;
   2834 
   2835   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
   2836   // member value, the behavior is undefined.
   2837   if (!MemPtr.getDecl()) {
   2838     // FIXME: Specific diagnostic.
   2839     Info.Diag(RHS);
   2840     return 0;
   2841   }
   2842 
   2843   if (MemPtr.isDerivedMember()) {
   2844     // This is a member of some derived class. Truncate LV appropriately.
   2845     // The end of the derived-to-base path for the base object must match the
   2846     // derived-to-base path for the member pointer.
   2847     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
   2848         LV.Designator.Entries.size()) {
   2849       Info.Diag(RHS);
   2850       return 0;
   2851     }
   2852     unsigned PathLengthToMember =
   2853         LV.Designator.Entries.size() - MemPtr.Path.size();
   2854     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
   2855       const CXXRecordDecl *LVDecl = getAsBaseClass(
   2856           LV.Designator.Entries[PathLengthToMember + I]);
   2857       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
   2858       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
   2859         Info.Diag(RHS);
   2860         return 0;
   2861       }
   2862     }
   2863 
   2864     // Truncate the lvalue to the appropriate derived class.
   2865     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
   2866                             PathLengthToMember))
   2867       return 0;
   2868   } else if (!MemPtr.Path.empty()) {
   2869     // Extend the LValue path with the member pointer's path.
   2870     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
   2871                                   MemPtr.Path.size() + IncludeMember);
   2872 
   2873     // Walk down to the appropriate base class.
   2874     if (const PointerType *PT = LVType->getAs<PointerType>())
   2875       LVType = PT->getPointeeType();
   2876     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
   2877     assert(RD && "member pointer access on non-class-type expression");
   2878     // The first class in the path is that of the lvalue.
   2879     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
   2880       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
   2881       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
   2882         return 0;
   2883       RD = Base;
   2884     }
   2885     // Finally cast to the class containing the member.
   2886     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
   2887                                 MemPtr.getContainingRecord()))
   2888       return 0;
   2889   }
   2890 
   2891   // Add the member. Note that we cannot build bound member functions here.
   2892   if (IncludeMember) {
   2893     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
   2894       if (!HandleLValueMember(Info, RHS, LV, FD))
   2895         return 0;
   2896     } else if (const IndirectFieldDecl *IFD =
   2897                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
   2898       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
   2899         return 0;
   2900     } else {
   2901       llvm_unreachable("can't construct reference to bound member function");
   2902     }
   2903   }
   2904 
   2905   return MemPtr.getDecl();
   2906 }
   2907 
   2908 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
   2909                                                   const BinaryOperator *BO,
   2910                                                   LValue &LV,
   2911                                                   bool IncludeMember = true) {
   2912   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
   2913 
   2914   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
   2915     if (Info.keepEvaluatingAfterFailure()) {
   2916       MemberPtr MemPtr;
   2917       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
   2918     }
   2919     return 0;
   2920   }
   2921 
   2922   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
   2923                                    BO->getRHS(), IncludeMember);
   2924 }
   2925 
   2926 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
   2927 /// the provided lvalue, which currently refers to the base object.
   2928 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
   2929                                     LValue &Result) {
   2930   SubobjectDesignator &D = Result.Designator;
   2931   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
   2932     return false;
   2933 
   2934   QualType TargetQT = E->getType();
   2935   if (const PointerType *PT = TargetQT->getAs<PointerType>())
   2936     TargetQT = PT->getPointeeType();
   2937 
   2938   // Check this cast lands within the final derived-to-base subobject path.
   2939   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
   2940     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2941       << D.MostDerivedType << TargetQT;
   2942     return false;
   2943   }
   2944 
   2945   // Check the type of the final cast. We don't need to check the path,
   2946   // since a cast can only be formed if the path is unique.
   2947   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
   2948   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
   2949   const CXXRecordDecl *FinalType;
   2950   if (NewEntriesSize == D.MostDerivedPathLength)
   2951     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
   2952   else
   2953     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
   2954   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
   2955     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
   2956       << D.MostDerivedType << TargetQT;
   2957     return false;
   2958   }
   2959 
   2960   // Truncate the lvalue to the appropriate derived class.
   2961   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
   2962 }
   2963 
   2964 namespace {
   2965 enum EvalStmtResult {
   2966   /// Evaluation failed.
   2967   ESR_Failed,
   2968   /// Hit a 'return' statement.
   2969   ESR_Returned,
   2970   /// Evaluation succeeded.
   2971   ESR_Succeeded,
   2972   /// Hit a 'continue' statement.
   2973   ESR_Continue,
   2974   /// Hit a 'break' statement.
   2975   ESR_Break,
   2976   /// Still scanning for 'case' or 'default' statement.
   2977   ESR_CaseNotFound
   2978 };
   2979 }
   2980 
   2981 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
   2982   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
   2983     // We don't need to evaluate the initializer for a static local.
   2984     if (!VD->hasLocalStorage())
   2985       return true;
   2986 
   2987     LValue Result;
   2988     Result.set(VD, Info.CurrentCall->Index);
   2989     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
   2990 
   2991     if (!VD->getInit()) {
   2992       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
   2993         << false << VD->getType();
   2994       Val = APValue();
   2995       return false;
   2996     }
   2997 
   2998     if (!EvaluateInPlace(Val, Info, Result, VD->getInit())) {
   2999       // Wipe out any partially-computed value, to allow tracking that this
   3000       // evaluation failed.
   3001       Val = APValue();
   3002       return false;
   3003     }
   3004   }
   3005 
   3006   return true;
   3007 }
   3008 
   3009 /// Evaluate a condition (either a variable declaration or an expression).
   3010 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
   3011                          const Expr *Cond, bool &Result) {
   3012   FullExpressionRAII Scope(Info);
   3013   if (CondDecl && !EvaluateDecl(Info, CondDecl))
   3014     return false;
   3015   return EvaluateAsBooleanCondition(Cond, Result, Info);
   3016 }
   3017 
   3018 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
   3019                                    const Stmt *S, const SwitchCase *SC = 0);
   3020 
   3021 /// Evaluate the body of a loop, and translate the result as appropriate.
   3022 static EvalStmtResult EvaluateLoopBody(APValue &Result, EvalInfo &Info,
   3023                                        const Stmt *Body,
   3024                                        const SwitchCase *Case = 0) {
   3025   BlockScopeRAII Scope(Info);
   3026   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
   3027   case ESR_Break:
   3028     return ESR_Succeeded;
   3029   case ESR_Succeeded:
   3030   case ESR_Continue:
   3031     return ESR_Continue;
   3032   case ESR_Failed:
   3033   case ESR_Returned:
   3034   case ESR_CaseNotFound:
   3035     return ESR;
   3036   }
   3037   llvm_unreachable("Invalid EvalStmtResult!");
   3038 }
   3039 
   3040 /// Evaluate a switch statement.
   3041 static EvalStmtResult EvaluateSwitch(APValue &Result, EvalInfo &Info,
   3042                                      const SwitchStmt *SS) {
   3043   BlockScopeRAII Scope(Info);
   3044 
   3045   // Evaluate the switch condition.
   3046   APSInt Value;
   3047   {
   3048     FullExpressionRAII Scope(Info);
   3049     if (SS->getConditionVariable() &&
   3050         !EvaluateDecl(Info, SS->getConditionVariable()))
   3051       return ESR_Failed;
   3052     if (!EvaluateInteger(SS->getCond(), Value, Info))
   3053       return ESR_Failed;
   3054   }
   3055 
   3056   // Find the switch case corresponding to the value of the condition.
   3057   // FIXME: Cache this lookup.
   3058   const SwitchCase *Found = 0;
   3059   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
   3060        SC = SC->getNextSwitchCase()) {
   3061     if (isa<DefaultStmt>(SC)) {
   3062       Found = SC;
   3063       continue;
   3064     }
   3065 
   3066     const CaseStmt *CS = cast<CaseStmt>(SC);
   3067     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
   3068     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
   3069                               : LHS;
   3070     if (LHS <= Value && Value <= RHS) {
   3071       Found = SC;
   3072       break;
   3073     }
   3074   }
   3075 
   3076   if (!Found)
   3077     return ESR_Succeeded;
   3078 
   3079   // Search the switch body for the switch case and evaluate it from there.
   3080   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
   3081   case ESR_Break:
   3082     return ESR_Succeeded;
   3083   case ESR_Succeeded:
   3084   case ESR_Continue:
   3085   case ESR_Failed:
   3086   case ESR_Returned:
   3087     return ESR;
   3088   case ESR_CaseNotFound:
   3089     // This can only happen if the switch case is nested within a statement
   3090     // expression. We have no intention of supporting that.
   3091     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
   3092     return ESR_Failed;
   3093   }
   3094   llvm_unreachable("Invalid EvalStmtResult!");
   3095 }
   3096 
   3097 // Evaluate a statement.
   3098 static EvalStmtResult EvaluateStmt(APValue &Result, EvalInfo &Info,
   3099                                    const Stmt *S, const SwitchCase *Case) {
   3100   if (!Info.nextStep(S))
   3101     return ESR_Failed;
   3102 
   3103   // If we're hunting down a 'case' or 'default' label, recurse through
   3104   // substatements until we hit the label.
   3105   if (Case) {
   3106     // FIXME: We don't start the lifetime of objects whose initialization we
   3107     // jump over. However, such objects must be of class type with a trivial
   3108     // default constructor that initialize all subobjects, so must be empty,
   3109     // so this almost never matters.
   3110     switch (S->getStmtClass()) {
   3111     case Stmt::CompoundStmtClass:
   3112       // FIXME: Precompute which substatement of a compound statement we
   3113       // would jump to, and go straight there rather than performing a
   3114       // linear scan each time.
   3115     case Stmt::LabelStmtClass:
   3116     case Stmt::AttributedStmtClass:
   3117     case Stmt::DoStmtClass:
   3118       break;
   3119 
   3120     case Stmt::CaseStmtClass:
   3121     case Stmt::DefaultStmtClass:
   3122       if (Case == S)
   3123         Case = 0;
   3124       break;
   3125 
   3126     case Stmt::IfStmtClass: {
   3127       // FIXME: Precompute which side of an 'if' we would jump to, and go
   3128       // straight there rather than scanning both sides.
   3129       const IfStmt *IS = cast<IfStmt>(S);
   3130 
   3131       // Wrap the evaluation in a block scope, in case it's a DeclStmt
   3132       // preceded by our switch label.
   3133       BlockScopeRAII Scope(Info);
   3134 
   3135       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
   3136       if (ESR != ESR_CaseNotFound || !IS->getElse())
   3137         return ESR;
   3138       return EvaluateStmt(Result, Info, IS->getElse(), Case);
   3139     }
   3140 
   3141     case Stmt::WhileStmtClass: {
   3142       EvalStmtResult ESR =
   3143           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
   3144       if (ESR != ESR_Continue)
   3145         return ESR;
   3146       break;
   3147     }
   3148 
   3149     case Stmt::ForStmtClass: {
   3150       const ForStmt *FS = cast<ForStmt>(S);
   3151       EvalStmtResult ESR =
   3152           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
   3153       if (ESR != ESR_Continue)
   3154         return ESR;
   3155       if (FS->getInc()) {
   3156         FullExpressionRAII IncScope(Info);
   3157         if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3158           return ESR_Failed;
   3159       }
   3160       break;
   3161     }
   3162 
   3163     case Stmt::DeclStmtClass:
   3164       // FIXME: If the variable has initialization that can't be jumped over,
   3165       // bail out of any immediately-surrounding compound-statement too.
   3166     default:
   3167       return ESR_CaseNotFound;
   3168     }
   3169   }
   3170 
   3171   switch (S->getStmtClass()) {
   3172   default:
   3173     if (const Expr *E = dyn_cast<Expr>(S)) {
   3174       // Don't bother evaluating beyond an expression-statement which couldn't
   3175       // be evaluated.
   3176       FullExpressionRAII Scope(Info);
   3177       if (!EvaluateIgnoredValue(Info, E))
   3178         return ESR_Failed;
   3179       return ESR_Succeeded;
   3180     }
   3181 
   3182     Info.Diag(S->getLocStart());
   3183     return ESR_Failed;
   3184 
   3185   case Stmt::NullStmtClass:
   3186     return ESR_Succeeded;
   3187 
   3188   case Stmt::DeclStmtClass: {
   3189     const DeclStmt *DS = cast<DeclStmt>(S);
   3190     for (DeclStmt::const_decl_iterator DclIt = DS->decl_begin(),
   3191            DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
   3192       // Each declaration initialization is its own full-expression.
   3193       // FIXME: This isn't quite right; if we're performing aggregate
   3194       // initialization, each braced subexpression is its own full-expression.
   3195       FullExpressionRAII Scope(Info);
   3196       if (!EvaluateDecl(Info, *DclIt) && !Info.keepEvaluatingAfterFailure())
   3197         return ESR_Failed;
   3198     }
   3199     return ESR_Succeeded;
   3200   }
   3201 
   3202   case Stmt::ReturnStmtClass: {
   3203     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
   3204     FullExpressionRAII Scope(Info);
   3205     if (RetExpr && !Evaluate(Result, Info, RetExpr))
   3206       return ESR_Failed;
   3207     return ESR_Returned;
   3208   }
   3209 
   3210   case Stmt::CompoundStmtClass: {
   3211     BlockScopeRAII Scope(Info);
   3212 
   3213     const CompoundStmt *CS = cast<CompoundStmt>(S);
   3214     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
   3215            BE = CS->body_end(); BI != BE; ++BI) {
   3216       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI, Case);
   3217       if (ESR == ESR_Succeeded)
   3218         Case = 0;
   3219       else if (ESR != ESR_CaseNotFound)
   3220         return ESR;
   3221     }
   3222     return Case ? ESR_CaseNotFound : ESR_Succeeded;
   3223   }
   3224 
   3225   case Stmt::IfStmtClass: {
   3226     const IfStmt *IS = cast<IfStmt>(S);
   3227 
   3228     // Evaluate the condition, as either a var decl or as an expression.
   3229     BlockScopeRAII Scope(Info);
   3230     bool Cond;
   3231     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
   3232       return ESR_Failed;
   3233 
   3234     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
   3235       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
   3236       if (ESR != ESR_Succeeded)
   3237         return ESR;
   3238     }
   3239     return ESR_Succeeded;
   3240   }
   3241 
   3242   case Stmt::WhileStmtClass: {
   3243     const WhileStmt *WS = cast<WhileStmt>(S);
   3244     while (true) {
   3245       BlockScopeRAII Scope(Info);
   3246       bool Continue;
   3247       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
   3248                         Continue))
   3249         return ESR_Failed;
   3250       if (!Continue)
   3251         break;
   3252 
   3253       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
   3254       if (ESR != ESR_Continue)
   3255         return ESR;
   3256     }
   3257     return ESR_Succeeded;
   3258   }
   3259 
   3260   case Stmt::DoStmtClass: {
   3261     const DoStmt *DS = cast<DoStmt>(S);
   3262     bool Continue;
   3263     do {
   3264       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
   3265       if (ESR != ESR_Continue)
   3266         return ESR;
   3267       Case = 0;
   3268 
   3269       FullExpressionRAII CondScope(Info);
   3270       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
   3271         return ESR_Failed;
   3272     } while (Continue);
   3273     return ESR_Succeeded;
   3274   }
   3275 
   3276   case Stmt::ForStmtClass: {
   3277     const ForStmt *FS = cast<ForStmt>(S);
   3278     BlockScopeRAII Scope(Info);
   3279     if (FS->getInit()) {
   3280       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
   3281       if (ESR != ESR_Succeeded)
   3282         return ESR;
   3283     }
   3284     while (true) {
   3285       BlockScopeRAII Scope(Info);
   3286       bool Continue = true;
   3287       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
   3288                                          FS->getCond(), Continue))
   3289         return ESR_Failed;
   3290       if (!Continue)
   3291         break;
   3292 
   3293       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
   3294       if (ESR != ESR_Continue)
   3295         return ESR;
   3296 
   3297       if (FS->getInc()) {
   3298         FullExpressionRAII IncScope(Info);
   3299         if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3300           return ESR_Failed;
   3301       }
   3302     }
   3303     return ESR_Succeeded;
   3304   }
   3305 
   3306   case Stmt::CXXForRangeStmtClass: {
   3307     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
   3308     BlockScopeRAII Scope(Info);
   3309 
   3310     // Initialize the __range variable.
   3311     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
   3312     if (ESR != ESR_Succeeded)
   3313       return ESR;
   3314 
   3315     // Create the __begin and __end iterators.
   3316     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
   3317     if (ESR != ESR_Succeeded)
   3318       return ESR;
   3319 
   3320     while (true) {
   3321       // Condition: __begin != __end.
   3322       {
   3323         bool Continue = true;
   3324         FullExpressionRAII CondExpr(Info);
   3325         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
   3326           return ESR_Failed;
   3327         if (!Continue)
   3328           break;
   3329       }
   3330 
   3331       // User's variable declaration, initialized by *__begin.
   3332       BlockScopeRAII InnerScope(Info);
   3333       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
   3334       if (ESR != ESR_Succeeded)
   3335         return ESR;
   3336 
   3337       // Loop body.
   3338       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
   3339       if (ESR != ESR_Continue)
   3340         return ESR;
   3341 
   3342       // Increment: ++__begin
   3343       if (!EvaluateIgnoredValue(Info, FS->getInc()))
   3344         return ESR_Failed;
   3345     }
   3346 
   3347     return ESR_Succeeded;
   3348   }
   3349 
   3350   case Stmt::SwitchStmtClass:
   3351     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
   3352 
   3353   case Stmt::ContinueStmtClass:
   3354     return ESR_Continue;
   3355 
   3356   case Stmt::BreakStmtClass:
   3357     return ESR_Break;
   3358 
   3359   case Stmt::LabelStmtClass:
   3360     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
   3361 
   3362   case Stmt::AttributedStmtClass:
   3363     // As a general principle, C++11 attributes can be ignored without
   3364     // any semantic impact.
   3365     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
   3366                         Case);
   3367 
   3368   case Stmt::CaseStmtClass:
   3369   case Stmt::DefaultStmtClass:
   3370     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
   3371   }
   3372 }
   3373 
   3374 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
   3375 /// default constructor. If so, we'll fold it whether or not it's marked as
   3376 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
   3377 /// so we need special handling.
   3378 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
   3379                                            const CXXConstructorDecl *CD,
   3380                                            bool IsValueInitialization) {
   3381   if (!CD->isTrivial() || !CD->isDefaultConstructor())
   3382     return false;
   3383 
   3384   // Value-initialization does not call a trivial default constructor, so such a
   3385   // call is a core constant expression whether or not the constructor is
   3386   // constexpr.
   3387   if (!CD->isConstexpr() && !IsValueInitialization) {
   3388     if (Info.getLangOpts().CPlusPlus11) {
   3389       // FIXME: If DiagDecl is an implicitly-declared special member function,
   3390       // we should be much more explicit about why it's not constexpr.
   3391       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
   3392         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
   3393       Info.Note(CD->getLocation(), diag::note_declared_at);
   3394     } else {
   3395       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
   3396     }
   3397   }
   3398   return true;
   3399 }
   3400 
   3401 /// CheckConstexprFunction - Check that a function can be called in a constant
   3402 /// expression.
   3403 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
   3404                                    const FunctionDecl *Declaration,
   3405                                    const FunctionDecl *Definition) {
   3406   // Potential constant expressions can contain calls to declared, but not yet
   3407   // defined, constexpr functions.
   3408   if (Info.CheckingPotentialConstantExpression && !Definition &&
   3409       Declaration->isConstexpr())
   3410     return false;
   3411 
   3412   // Bail out with no diagnostic if the function declaration itself is invalid.
   3413   // We will have produced a relevant diagnostic while parsing it.
   3414   if (Declaration->isInvalidDecl())
   3415     return false;
   3416 
   3417   // Can we evaluate this function call?
   3418   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
   3419     return true;
   3420 
   3421   if (Info.getLangOpts().CPlusPlus11) {
   3422     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
   3423     // FIXME: If DiagDecl is an implicitly-declared special member function, we
   3424     // should be much more explicit about why it's not constexpr.
   3425     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
   3426       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
   3427       << DiagDecl;
   3428     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
   3429   } else {
   3430     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
   3431   }
   3432   return false;
   3433 }
   3434 
   3435 namespace {
   3436 typedef SmallVector<APValue, 8> ArgVector;
   3437 }
   3438 
   3439 /// EvaluateArgs - Evaluate the arguments to a function call.
   3440 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
   3441                          EvalInfo &Info) {
   3442   bool Success = true;
   3443   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
   3444        I != E; ++I) {
   3445     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
   3446       // If we're checking for a potential constant expression, evaluate all
   3447       // initializers even if some of them fail.
   3448       if (!Info.keepEvaluatingAfterFailure())
   3449         return false;
   3450       Success = false;
   3451     }
   3452   }
   3453   return Success;
   3454 }
   3455 
   3456 /// Evaluate a function call.
   3457 static bool HandleFunctionCall(SourceLocation CallLoc,
   3458                                const FunctionDecl *Callee, const LValue *This,
   3459                                ArrayRef<const Expr*> Args, const Stmt *Body,
   3460                                EvalInfo &Info, APValue &Result) {
   3461   ArgVector ArgValues(Args.size());
   3462   if (!EvaluateArgs(Args, ArgValues, Info))
   3463     return false;
   3464 
   3465   if (!Info.CheckCallLimit(CallLoc))
   3466     return false;
   3467 
   3468   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
   3469 
   3470   // For a trivial copy or move assignment, perform an APValue copy. This is
   3471   // essential for unions, where the operations performed by the assignment
   3472   // operator cannot be represented as statements.
   3473   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
   3474   if (MD && MD->isDefaulted() && MD->isTrivial()) {
   3475     assert(This &&
   3476            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
   3477     LValue RHS;
   3478     RHS.setFrom(Info.Ctx, ArgValues[0]);
   3479     APValue RHSValue;
   3480     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   3481                                         RHS, RHSValue))
   3482       return false;
   3483     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
   3484                           RHSValue))
   3485       return false;
   3486     This->moveInto(Result);
   3487     return true;
   3488   }
   3489 
   3490   EvalStmtResult ESR = EvaluateStmt(Result, Info, Body);
   3491   if (ESR == ESR_Succeeded) {
   3492     if (Callee->getResultType()->isVoidType())
   3493       return true;
   3494     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
   3495   }
   3496   return ESR == ESR_Returned;
   3497 }
   3498 
   3499 /// Evaluate a constructor call.
   3500 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
   3501                                   ArrayRef<const Expr*> Args,
   3502                                   const CXXConstructorDecl *Definition,
   3503                                   EvalInfo &Info, APValue &Result) {
   3504   ArgVector ArgValues(Args.size());
   3505   if (!EvaluateArgs(Args, ArgValues, Info))
   3506     return false;
   3507 
   3508   if (!Info.CheckCallLimit(CallLoc))
   3509     return false;
   3510 
   3511   const CXXRecordDecl *RD = Definition->getParent();
   3512   if (RD->getNumVBases()) {
   3513     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
   3514     return false;
   3515   }
   3516 
   3517   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
   3518 
   3519   // If it's a delegating constructor, just delegate.
   3520   if (Definition->isDelegatingConstructor()) {
   3521     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
   3522     if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
   3523       return false;
   3524     return EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
   3525   }
   3526 
   3527   // For a trivial copy or move constructor, perform an APValue copy. This is
   3528   // essential for unions, where the operations performed by the constructor
   3529   // cannot be represented by ctor-initializers.
   3530   if (Definition->isDefaulted() &&
   3531       ((Definition->isCopyConstructor() && Definition->isTrivial()) ||
   3532        (Definition->isMoveConstructor() && Definition->isTrivial()))) {
   3533     LValue RHS;
   3534     RHS.setFrom(Info.Ctx, ArgValues[0]);
   3535     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
   3536                                           RHS, Result);
   3537   }
   3538 
   3539   // Reserve space for the struct members.
   3540   if (!RD->isUnion() && Result.isUninit())
   3541     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   3542                      std::distance(RD->field_begin(), RD->field_end()));
   3543 
   3544   if (RD->isInvalidDecl()) return false;
   3545   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   3546 
   3547   // A scope for temporaries lifetime-extended by reference members.
   3548   BlockScopeRAII LifetimeExtendedScope(Info);
   3549 
   3550   bool Success = true;
   3551   unsigned BasesSeen = 0;
   3552 #ifndef NDEBUG
   3553   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
   3554 #endif
   3555   for (CXXConstructorDecl::init_const_iterator I = Definition->init_begin(),
   3556        E = Definition->init_end(); I != E; ++I) {
   3557     LValue Subobject = This;
   3558     APValue *Value = &Result;
   3559 
   3560     // Determine the subobject to initialize.
   3561     FieldDecl *FD = 0;
   3562     if ((*I)->isBaseInitializer()) {
   3563       QualType BaseType((*I)->getBaseClass(), 0);
   3564 #ifndef NDEBUG
   3565       // Non-virtual base classes are initialized in the order in the class
   3566       // definition. We have already checked for virtual base classes.
   3567       assert(!BaseIt->isVirtual() && "virtual base for literal type");
   3568       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
   3569              "base class initializers not in expected order");
   3570       ++BaseIt;
   3571 #endif
   3572       if (!HandleLValueDirectBase(Info, (*I)->getInit(), Subobject, RD,
   3573                                   BaseType->getAsCXXRecordDecl(), &Layout))
   3574         return false;
   3575       Value = &Result.getStructBase(BasesSeen++);
   3576     } else if ((FD = (*I)->getMember())) {
   3577       if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD, &Layout))
   3578         return false;
   3579       if (RD->isUnion()) {
   3580         Result = APValue(FD);
   3581         Value = &Result.getUnionValue();
   3582       } else {
   3583         Value = &Result.getStructField(FD->getFieldIndex());
   3584       }
   3585     } else if (IndirectFieldDecl *IFD = (*I)->getIndirectMember()) {
   3586       // Walk the indirect field decl's chain to find the object to initialize,
   3587       // and make sure we've initialized every step along it.
   3588       for (IndirectFieldDecl::chain_iterator C = IFD->chain_begin(),
   3589                                              CE = IFD->chain_end();
   3590            C != CE; ++C) {
   3591         FD = cast<FieldDecl>(*C);
   3592         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
   3593         // Switch the union field if it differs. This happens if we had
   3594         // preceding zero-initialization, and we're now initializing a union
   3595         // subobject other than the first.
   3596         // FIXME: In this case, the values of the other subobjects are
   3597         // specified, since zero-initialization sets all padding bits to zero.
   3598         if (Value->isUninit() ||
   3599             (Value->isUnion() && Value->getUnionField() != FD)) {
   3600           if (CD->isUnion())
   3601             *Value = APValue(FD);
   3602           else
   3603             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
   3604                              std::distance(CD->field_begin(), CD->field_end()));
   3605         }
   3606         if (!HandleLValueMember(Info, (*I)->getInit(), Subobject, FD))
   3607           return false;
   3608         if (CD->isUnion())
   3609           Value = &Value->getUnionValue();
   3610         else
   3611           Value = &Value->getStructField(FD->getFieldIndex());
   3612       }
   3613     } else {
   3614       llvm_unreachable("unknown base initializer kind");
   3615     }
   3616 
   3617     FullExpressionRAII InitScope(Info);
   3618     if (!EvaluateInPlace(*Value, Info, Subobject, (*I)->getInit()) ||
   3619         (FD && FD->isBitField() && !truncateBitfieldValue(Info, (*I)->getInit(),
   3620                                                           *Value, FD))) {
   3621       // If we're checking for a potential constant expression, evaluate all
   3622       // initializers even if some of them fail.
   3623       if (!Info.keepEvaluatingAfterFailure())
   3624         return false;
   3625       Success = false;
   3626     }
   3627   }
   3628 
   3629   return Success &&
   3630          EvaluateStmt(Result, Info, Definition->getBody()) != ESR_Failed;
   3631 }
   3632 
   3633 //===----------------------------------------------------------------------===//
   3634 // Generic Evaluation
   3635 //===----------------------------------------------------------------------===//
   3636 namespace {
   3637 
   3638 // FIXME: RetTy is always bool. Remove it.
   3639 template <class Derived, typename RetTy=bool>
   3640 class ExprEvaluatorBase
   3641   : public ConstStmtVisitor<Derived, RetTy> {
   3642 private:
   3643   RetTy DerivedSuccess(const APValue &V, const Expr *E) {
   3644     return static_cast<Derived*>(this)->Success(V, E);
   3645   }
   3646   RetTy DerivedZeroInitialization(const Expr *E) {
   3647     return static_cast<Derived*>(this)->ZeroInitialization(E);
   3648   }
   3649 
   3650   // Check whether a conditional operator with a non-constant condition is a
   3651   // potential constant expression. If neither arm is a potential constant
   3652   // expression, then the conditional operator is not either.
   3653   template<typename ConditionalOperator>
   3654   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
   3655     assert(Info.CheckingPotentialConstantExpression);
   3656 
   3657     // Speculatively evaluate both arms.
   3658     {
   3659       SmallVector<PartialDiagnosticAt, 8> Diag;
   3660       SpeculativeEvaluationRAII Speculate(Info, &Diag);
   3661 
   3662       StmtVisitorTy::Visit(E->getFalseExpr());
   3663       if (Diag.empty())
   3664         return;
   3665 
   3666       Diag.clear();
   3667       StmtVisitorTy::Visit(E->getTrueExpr());
   3668       if (Diag.empty())
   3669         return;
   3670     }
   3671 
   3672     Error(E, diag::note_constexpr_conditional_never_const);
   3673   }
   3674 
   3675 
   3676   template<typename ConditionalOperator>
   3677   bool HandleConditionalOperator(const ConditionalOperator *E) {
   3678     bool BoolResult;
   3679     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
   3680       if (Info.CheckingPotentialConstantExpression)
   3681         CheckPotentialConstantConditional(E);
   3682       return false;
   3683     }
   3684 
   3685     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
   3686     return StmtVisitorTy::Visit(EvalExpr);
   3687   }
   3688 
   3689 protected:
   3690   EvalInfo &Info;
   3691   typedef ConstStmtVisitor<Derived, RetTy> StmtVisitorTy;
   3692   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
   3693 
   3694   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   3695     return Info.CCEDiag(E, D);
   3696   }
   3697 
   3698   RetTy ZeroInitialization(const Expr *E) { return Error(E); }
   3699 
   3700 public:
   3701   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
   3702 
   3703   EvalInfo &getEvalInfo() { return Info; }
   3704 
   3705   /// Report an evaluation error. This should only be called when an error is
   3706   /// first discovered. When propagating an error, just return false.
   3707   bool Error(const Expr *E, diag::kind D) {
   3708     Info.Diag(E, D);
   3709     return false;
   3710   }
   3711   bool Error(const Expr *E) {
   3712     return Error(E, diag::note_invalid_subexpr_in_const_expr);
   3713   }
   3714 
   3715   RetTy VisitStmt(const Stmt *) {
   3716     llvm_unreachable("Expression evaluator should not be called on stmts");
   3717   }
   3718   RetTy VisitExpr(const Expr *E) {
   3719     return Error(E);
   3720   }
   3721 
   3722   RetTy VisitParenExpr(const ParenExpr *E)
   3723     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   3724   RetTy VisitUnaryExtension(const UnaryOperator *E)
   3725     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   3726   RetTy VisitUnaryPlus(const UnaryOperator *E)
   3727     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   3728   RetTy VisitChooseExpr(const ChooseExpr *E)
   3729     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
   3730   RetTy VisitGenericSelectionExpr(const GenericSelectionExpr *E)
   3731     { return StmtVisitorTy::Visit(E->getResultExpr()); }
   3732   RetTy VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
   3733     { return StmtVisitorTy::Visit(E->getReplacement()); }
   3734   RetTy VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
   3735     { return StmtVisitorTy::Visit(E->getExpr()); }
   3736   RetTy VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E)
   3737     { return StmtVisitorTy::Visit(E->getExpr()); }
   3738   // We cannot create any objects for which cleanups are required, so there is
   3739   // nothing to do here; all cleanups must come from unevaluated subexpressions.
   3740   RetTy VisitExprWithCleanups(const ExprWithCleanups *E)
   3741     { return StmtVisitorTy::Visit(E->getSubExpr()); }
   3742 
   3743   RetTy VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
   3744     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
   3745     return static_cast<Derived*>(this)->VisitCastExpr(E);
   3746   }
   3747   RetTy VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
   3748     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
   3749     return static_cast<Derived*>(this)->VisitCastExpr(E);
   3750   }
   3751 
   3752   RetTy VisitBinaryOperator(const BinaryOperator *E) {
   3753     switch (E->getOpcode()) {
   3754     default:
   3755       return Error(E);
   3756 
   3757     case BO_Comma:
   3758       VisitIgnoredValue(E->getLHS());
   3759       return StmtVisitorTy::Visit(E->getRHS());
   3760 
   3761     case BO_PtrMemD:
   3762     case BO_PtrMemI: {
   3763       LValue Obj;
   3764       if (!HandleMemberPointerAccess(Info, E, Obj))
   3765         return false;
   3766       APValue Result;
   3767       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
   3768         return false;
   3769       return DerivedSuccess(Result, E);
   3770     }
   3771     }
   3772   }
   3773 
   3774   RetTy VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
   3775     // Evaluate and cache the common expression. We treat it as a temporary,
   3776     // even though it's not quite the same thing.
   3777     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
   3778                   Info, E->getCommon()))
   3779       return false;
   3780 
   3781     return HandleConditionalOperator(E);
   3782   }
   3783 
   3784   RetTy VisitConditionalOperator(const ConditionalOperator *E) {
   3785     bool IsBcpCall = false;
   3786     // If the condition (ignoring parens) is a __builtin_constant_p call,
   3787     // the result is a constant expression if it can be folded without
   3788     // side-effects. This is an important GNU extension. See GCC PR38377
   3789     // for discussion.
   3790     if (const CallExpr *CallCE =
   3791           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
   3792       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   3793         IsBcpCall = true;
   3794 
   3795     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
   3796     // constant expression; we can't check whether it's potentially foldable.
   3797     if (Info.CheckingPotentialConstantExpression && IsBcpCall)
   3798       return false;
   3799 
   3800     FoldConstant Fold(Info);
   3801 
   3802     if (!HandleConditionalOperator(E))
   3803       return false;
   3804 
   3805     if (IsBcpCall)
   3806       Fold.Fold(Info);
   3807 
   3808     return true;
   3809   }
   3810 
   3811   RetTy VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
   3812     if (APValue *Value = Info.CurrentCall->getTemporary(E))
   3813       return DerivedSuccess(*Value, E);
   3814 
   3815     const Expr *Source = E->getSourceExpr();
   3816     if (!Source)
   3817       return Error(E);
   3818     if (Source == E) { // sanity checking.
   3819       assert(0 && "OpaqueValueExpr recursively refers to itself");
   3820       return Error(E);
   3821     }
   3822     return StmtVisitorTy::Visit(Source);
   3823   }
   3824 
   3825   RetTy VisitCallExpr(const CallExpr *E) {
   3826     const Expr *Callee = E->getCallee()->IgnoreParens();
   3827     QualType CalleeType = Callee->getType();
   3828 
   3829     const FunctionDecl *FD = 0;
   3830     LValue *This = 0, ThisVal;
   3831     ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   3832     bool HasQualifier = false;
   3833 
   3834     // Extract function decl and 'this' pointer from the callee.
   3835     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
   3836       const ValueDecl *Member = 0;
   3837       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
   3838         // Explicit bound member calls, such as x.f() or p->g();
   3839         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
   3840           return false;
   3841         Member = ME->getMemberDecl();
   3842         This = &ThisVal;
   3843         HasQualifier = ME->hasQualifier();
   3844       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
   3845         // Indirect bound member calls ('.*' or '->*').
   3846         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
   3847         if (!Member) return false;
   3848         This = &ThisVal;
   3849       } else
   3850         return Error(Callee);
   3851 
   3852       FD = dyn_cast<FunctionDecl>(Member);
   3853       if (!FD)
   3854         return Error(Callee);
   3855     } else if (CalleeType->isFunctionPointerType()) {
   3856       LValue Call;
   3857       if (!EvaluatePointer(Callee, Call, Info))
   3858         return false;
   3859 
   3860       if (!Call.getLValueOffset().isZero())
   3861         return Error(Callee);
   3862       FD = dyn_cast_or_null<FunctionDecl>(
   3863                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
   3864       if (!FD)
   3865         return Error(Callee);
   3866 
   3867       // Overloaded operator calls to member functions are represented as normal
   3868       // calls with '*this' as the first argument.
   3869       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   3870       if (MD && !MD->isStatic()) {
   3871         // FIXME: When selecting an implicit conversion for an overloaded
   3872         // operator delete, we sometimes try to evaluate calls to conversion
   3873         // operators without a 'this' parameter!
   3874         if (Args.empty())
   3875           return Error(E);
   3876 
   3877         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
   3878           return false;
   3879         This = &ThisVal;
   3880         Args = Args.slice(1);
   3881       }
   3882 
   3883       // Don't call function pointers which have been cast to some other type.
   3884       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
   3885         return Error(E);
   3886     } else
   3887       return Error(E);
   3888 
   3889     if (This && !This->checkSubobject(Info, E, CSK_This))
   3890       return false;
   3891 
   3892     // DR1358 allows virtual constexpr functions in some cases. Don't allow
   3893     // calls to such functions in constant expressions.
   3894     if (This && !HasQualifier &&
   3895         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
   3896       return Error(E, diag::note_constexpr_virtual_call);
   3897 
   3898     const FunctionDecl *Definition = 0;
   3899     Stmt *Body = FD->getBody(Definition);
   3900     APValue Result;
   3901 
   3902     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
   3903         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body,
   3904                             Info, Result))
   3905       return false;
   3906 
   3907     return DerivedSuccess(Result, E);
   3908   }
   3909 
   3910   RetTy VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   3911     return StmtVisitorTy::Visit(E->getInitializer());
   3912   }
   3913   RetTy VisitInitListExpr(const InitListExpr *E) {
   3914     if (E->getNumInits() == 0)
   3915       return DerivedZeroInitialization(E);
   3916     if (E->getNumInits() == 1)
   3917       return StmtVisitorTy::Visit(E->getInit(0));
   3918     return Error(E);
   3919   }
   3920   RetTy VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
   3921     return DerivedZeroInitialization(E);
   3922   }
   3923   RetTy VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
   3924     return DerivedZeroInitialization(E);
   3925   }
   3926   RetTy VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
   3927     return DerivedZeroInitialization(E);
   3928   }
   3929 
   3930   /// A member expression where the object is a prvalue is itself a prvalue.
   3931   RetTy VisitMemberExpr(const MemberExpr *E) {
   3932     assert(!E->isArrow() && "missing call to bound member function?");
   3933 
   3934     APValue Val;
   3935     if (!Evaluate(Val, Info, E->getBase()))
   3936       return false;
   3937 
   3938     QualType BaseTy = E->getBase()->getType();
   3939 
   3940     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
   3941     if (!FD) return Error(E);
   3942     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
   3943     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   3944            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   3945 
   3946     CompleteObject Obj(&Val, BaseTy);
   3947     SubobjectDesignator Designator(BaseTy);
   3948     Designator.addDeclUnchecked(FD);
   3949 
   3950     APValue Result;
   3951     return extractSubobject(Info, E, Obj, Designator, Result) &&
   3952            DerivedSuccess(Result, E);
   3953   }
   3954 
   3955   RetTy VisitCastExpr(const CastExpr *E) {
   3956     switch (E->getCastKind()) {
   3957     default:
   3958       break;
   3959 
   3960     case CK_AtomicToNonAtomic: {
   3961       APValue AtomicVal;
   3962       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
   3963         return false;
   3964       return DerivedSuccess(AtomicVal, E);
   3965     }
   3966 
   3967     case CK_NoOp:
   3968     case CK_UserDefinedConversion:
   3969       return StmtVisitorTy::Visit(E->getSubExpr());
   3970 
   3971     case CK_LValueToRValue: {
   3972       LValue LVal;
   3973       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
   3974         return false;
   3975       APValue RVal;
   3976       // Note, we use the subexpression's type in order to retain cv-qualifiers.
   3977       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
   3978                                           LVal, RVal))
   3979         return false;
   3980       return DerivedSuccess(RVal, E);
   3981     }
   3982     }
   3983 
   3984     return Error(E);
   3985   }
   3986 
   3987   RetTy VisitUnaryPostInc(const UnaryOperator *UO) {
   3988     return VisitUnaryPostIncDec(UO);
   3989   }
   3990   RetTy VisitUnaryPostDec(const UnaryOperator *UO) {
   3991     return VisitUnaryPostIncDec(UO);
   3992   }
   3993   RetTy VisitUnaryPostIncDec(const UnaryOperator *UO) {
   3994     if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
   3995       return Error(UO);
   3996 
   3997     LValue LVal;
   3998     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
   3999       return false;
   4000     APValue RVal;
   4001     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
   4002                       UO->isIncrementOp(), &RVal))
   4003       return false;
   4004     return DerivedSuccess(RVal, UO);
   4005   }
   4006 
   4007   RetTy VisitStmtExpr(const StmtExpr *E) {
   4008     // We will have checked the full-expressions inside the statement expression
   4009     // when they were completed, and don't need to check them again now.
   4010     if (Info.getIntOverflowCheckMode())
   4011       return Error(E);
   4012 
   4013     BlockScopeRAII Scope(Info);
   4014     const CompoundStmt *CS = E->getSubStmt();
   4015     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
   4016                                            BE = CS->body_end();
   4017          /**/; ++BI) {
   4018       if (BI + 1 == BE) {
   4019         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
   4020         if (!FinalExpr) {
   4021           Info.Diag((*BI)->getLocStart(),
   4022                     diag::note_constexpr_stmt_expr_unsupported);
   4023           return false;
   4024         }
   4025         return this->Visit(FinalExpr);
   4026       }
   4027 
   4028       APValue ReturnValue;
   4029       EvalStmtResult ESR = EvaluateStmt(ReturnValue, Info, *BI);
   4030       if (ESR != ESR_Succeeded) {
   4031         // FIXME: If the statement-expression terminated due to 'return',
   4032         // 'break', or 'continue', it would be nice to propagate that to
   4033         // the outer statement evaluation rather than bailing out.
   4034         if (ESR != ESR_Failed)
   4035           Info.Diag((*BI)->getLocStart(),
   4036                     diag::note_constexpr_stmt_expr_unsupported);
   4037         return false;
   4038       }
   4039     }
   4040   }
   4041 
   4042   /// Visit a value which is evaluated, but whose value is ignored.
   4043   void VisitIgnoredValue(const Expr *E) {
   4044     EvaluateIgnoredValue(Info, E);
   4045   }
   4046 };
   4047 
   4048 }
   4049 
   4050 //===----------------------------------------------------------------------===//
   4051 // Common base class for lvalue and temporary evaluation.
   4052 //===----------------------------------------------------------------------===//
   4053 namespace {
   4054 template<class Derived>
   4055 class LValueExprEvaluatorBase
   4056   : public ExprEvaluatorBase<Derived, bool> {
   4057 protected:
   4058   LValue &Result;
   4059   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
   4060   typedef ExprEvaluatorBase<Derived, bool> ExprEvaluatorBaseTy;
   4061 
   4062   bool Success(APValue::LValueBase B) {
   4063     Result.set(B);
   4064     return true;
   4065   }
   4066 
   4067 public:
   4068   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
   4069     ExprEvaluatorBaseTy(Info), Result(Result) {}
   4070 
   4071   bool Success(const APValue &V, const Expr *E) {
   4072     Result.setFrom(this->Info.Ctx, V);
   4073     return true;
   4074   }
   4075 
   4076   bool VisitMemberExpr(const MemberExpr *E) {
   4077     // Handle non-static data members.
   4078     QualType BaseTy;
   4079     if (E->isArrow()) {
   4080       if (!EvaluatePointer(E->getBase(), Result, this->Info))
   4081         return false;
   4082       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
   4083     } else if (E->getBase()->isRValue()) {
   4084       assert(E->getBase()->getType()->isRecordType());
   4085       if (!EvaluateTemporary(E->getBase(), Result, this->Info))
   4086         return false;
   4087       BaseTy = E->getBase()->getType();
   4088     } else {
   4089       if (!this->Visit(E->getBase()))
   4090         return false;
   4091       BaseTy = E->getBase()->getType();
   4092     }
   4093 
   4094     const ValueDecl *MD = E->getMemberDecl();
   4095     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
   4096       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
   4097              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
   4098       (void)BaseTy;
   4099       if (!HandleLValueMember(this->Info, E, Result, FD))
   4100         return false;
   4101     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
   4102       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
   4103         return false;
   4104     } else
   4105       return this->Error(E);
   4106 
   4107     if (MD->getType()->isReferenceType()) {
   4108       APValue RefValue;
   4109       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
   4110                                           RefValue))
   4111         return false;
   4112       return Success(RefValue, E);
   4113     }
   4114     return true;
   4115   }
   4116 
   4117   bool VisitBinaryOperator(const BinaryOperator *E) {
   4118     switch (E->getOpcode()) {
   4119     default:
   4120       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   4121 
   4122     case BO_PtrMemD:
   4123     case BO_PtrMemI:
   4124       return HandleMemberPointerAccess(this->Info, E, Result);
   4125     }
   4126   }
   4127 
   4128   bool VisitCastExpr(const CastExpr *E) {
   4129     switch (E->getCastKind()) {
   4130     default:
   4131       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   4132 
   4133     case CK_DerivedToBase:
   4134     case CK_UncheckedDerivedToBase:
   4135       if (!this->Visit(E->getSubExpr()))
   4136         return false;
   4137 
   4138       // Now figure out the necessary offset to add to the base LV to get from
   4139       // the derived class to the base class.
   4140       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
   4141                                   Result);
   4142     }
   4143   }
   4144 };
   4145 }
   4146 
   4147 //===----------------------------------------------------------------------===//
   4148 // LValue Evaluation
   4149 //
   4150 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
   4151 // function designators (in C), decl references to void objects (in C), and
   4152 // temporaries (if building with -Wno-address-of-temporary).
   4153 //
   4154 // LValue evaluation produces values comprising a base expression of one of the
   4155 // following types:
   4156 // - Declarations
   4157 //  * VarDecl
   4158 //  * FunctionDecl
   4159 // - Literals
   4160 //  * CompoundLiteralExpr in C
   4161 //  * StringLiteral
   4162 //  * CXXTypeidExpr
   4163 //  * PredefinedExpr
   4164 //  * ObjCStringLiteralExpr
   4165 //  * ObjCEncodeExpr
   4166 //  * AddrLabelExpr
   4167 //  * BlockExpr
   4168 //  * CallExpr for a MakeStringConstant builtin
   4169 // - Locals and temporaries
   4170 //  * MaterializeTemporaryExpr
   4171 //  * Any Expr, with a CallIndex indicating the function in which the temporary
   4172 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
   4173 //    from the AST (FIXME).
   4174 //  * A MaterializeTemporaryExpr that has static storage duration, with no
   4175 //    CallIndex, for a lifetime-extended temporary.
   4176 // plus an offset in bytes.
   4177 //===----------------------------------------------------------------------===//
   4178 namespace {
   4179 class LValueExprEvaluator
   4180   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
   4181 public:
   4182   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
   4183     LValueExprEvaluatorBaseTy(Info, Result) {}
   4184 
   4185   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
   4186   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
   4187 
   4188   bool VisitDeclRefExpr(const DeclRefExpr *E);
   4189   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
   4190   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   4191   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
   4192   bool VisitMemberExpr(const MemberExpr *E);
   4193   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
   4194   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
   4195   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
   4196   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
   4197   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
   4198   bool VisitUnaryDeref(const UnaryOperator *E);
   4199   bool VisitUnaryReal(const UnaryOperator *E);
   4200   bool VisitUnaryImag(const UnaryOperator *E);
   4201   bool VisitUnaryPreInc(const UnaryOperator *UO) {
   4202     return VisitUnaryPreIncDec(UO);
   4203   }
   4204   bool VisitUnaryPreDec(const UnaryOperator *UO) {
   4205     return VisitUnaryPreIncDec(UO);
   4206   }
   4207   bool VisitBinAssign(const BinaryOperator *BO);
   4208   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
   4209 
   4210   bool VisitCastExpr(const CastExpr *E) {
   4211     switch (E->getCastKind()) {
   4212     default:
   4213       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   4214 
   4215     case CK_LValueBitCast:
   4216       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   4217       if (!Visit(E->getSubExpr()))
   4218         return false;
   4219       Result.Designator.setInvalid();
   4220       return true;
   4221 
   4222     case CK_BaseToDerived:
   4223       if (!Visit(E->getSubExpr()))
   4224         return false;
   4225       return HandleBaseToDerivedCast(Info, E, Result);
   4226     }
   4227   }
   4228 };
   4229 } // end anonymous namespace
   4230 
   4231 /// Evaluate an expression as an lvalue. This can be legitimately called on
   4232 /// expressions which are not glvalues, in two cases:
   4233 ///  * function designators in C, and
   4234 ///  * "extern void" objects
   4235 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
   4236   assert(E->isGLValue() || E->getType()->isFunctionType() ||
   4237          E->getType()->isVoidType());
   4238   return LValueExprEvaluator(Info, Result).Visit(E);
   4239 }
   4240 
   4241 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
   4242   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
   4243     return Success(FD);
   4244   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   4245     return VisitVarDecl(E, VD);
   4246   return Error(E);
   4247 }
   4248 
   4249 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
   4250   CallStackFrame *Frame = 0;
   4251   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
   4252     Frame = Info.CurrentCall;
   4253 
   4254   if (!VD->getType()->isReferenceType()) {
   4255     if (Frame) {
   4256       Result.set(VD, Frame->Index);
   4257       return true;
   4258     }
   4259     return Success(VD);
   4260   }
   4261 
   4262   APValue *V;
   4263   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
   4264     return false;
   4265   if (V->isUninit()) {
   4266     if (!Info.CheckingPotentialConstantExpression)
   4267       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
   4268     return false;
   4269   }
   4270   return Success(*V, E);
   4271 }
   4272 
   4273 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
   4274     const MaterializeTemporaryExpr *E) {
   4275   // Walk through the expression to find the materialized temporary itself.
   4276   SmallVector<const Expr *, 2> CommaLHSs;
   4277   SmallVector<SubobjectAdjustment, 2> Adjustments;
   4278   const Expr *Inner = E->GetTemporaryExpr()->
   4279       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
   4280 
   4281   // If we passed any comma operators, evaluate their LHSs.
   4282   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
   4283     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
   4284       return false;
   4285 
   4286   // A materialized temporary with static storage duration can appear within the
   4287   // result of a constant expression evaluation, so we need to preserve its
   4288   // value for use outside this evaluation.
   4289   APValue *Value;
   4290   if (E->getStorageDuration() == SD_Static) {
   4291     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
   4292     *Value = APValue();
   4293     Result.set(E);
   4294   } else {
   4295     Value = &Info.CurrentCall->
   4296         createTemporary(E, E->getStorageDuration() == SD_Automatic);
   4297     Result.set(E, Info.CurrentCall->Index);
   4298   }
   4299 
   4300   QualType Type = Inner->getType();
   4301 
   4302   // Materialize the temporary itself.
   4303   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
   4304       (E->getStorageDuration() == SD_Static &&
   4305        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
   4306     *Value = APValue();
   4307     return false;
   4308   }
   4309 
   4310   // Adjust our lvalue to refer to the desired subobject.
   4311   for (unsigned I = Adjustments.size(); I != 0; /**/) {
   4312     --I;
   4313     switch (Adjustments[I].Kind) {
   4314     case SubobjectAdjustment::DerivedToBaseAdjustment:
   4315       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
   4316                                 Type, Result))
   4317         return false;
   4318       Type = Adjustments[I].DerivedToBase.BasePath->getType();
   4319       break;
   4320 
   4321     case SubobjectAdjustment::FieldAdjustment:
   4322       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
   4323         return false;
   4324       Type = Adjustments[I].Field->getType();
   4325       break;
   4326 
   4327     case SubobjectAdjustment::MemberPointerAdjustment:
   4328       if (!HandleMemberPointerAccess(this->Info, Type, Result,
   4329                                      Adjustments[I].Ptr.RHS))
   4330         return false;
   4331       Type = Adjustments[I].Ptr.MPT->getPointeeType();
   4332       break;
   4333     }
   4334   }
   4335 
   4336   return true;
   4337 }
   4338 
   4339 bool
   4340 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
   4341   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
   4342   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
   4343   // only see this when folding in C, so there's no standard to follow here.
   4344   return Success(E);
   4345 }
   4346 
   4347 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
   4348   if (!E->isPotentiallyEvaluated())
   4349     return Success(E);
   4350 
   4351   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
   4352     << E->getExprOperand()->getType()
   4353     << E->getExprOperand()->getSourceRange();
   4354   return false;
   4355 }
   4356 
   4357 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
   4358   return Success(E);
   4359 }
   4360 
   4361 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
   4362   // Handle static data members.
   4363   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
   4364     VisitIgnoredValue(E->getBase());
   4365     return VisitVarDecl(E, VD);
   4366   }
   4367 
   4368   // Handle static member functions.
   4369   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
   4370     if (MD->isStatic()) {
   4371       VisitIgnoredValue(E->getBase());
   4372       return Success(MD);
   4373     }
   4374   }
   4375 
   4376   // Handle non-static data members.
   4377   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
   4378 }
   4379 
   4380 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
   4381   // FIXME: Deal with vectors as array subscript bases.
   4382   if (E->getBase()->getType()->isVectorType())
   4383     return Error(E);
   4384 
   4385   if (!EvaluatePointer(E->getBase(), Result, Info))
   4386     return false;
   4387 
   4388   APSInt Index;
   4389   if (!EvaluateInteger(E->getIdx(), Index, Info))
   4390     return false;
   4391 
   4392   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
   4393                                      getExtValue(Index));
   4394 }
   4395 
   4396 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
   4397   return EvaluatePointer(E->getSubExpr(), Result, Info);
   4398 }
   4399 
   4400 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   4401   if (!Visit(E->getSubExpr()))
   4402     return false;
   4403   // __real is a no-op on scalar lvalues.
   4404   if (E->getSubExpr()->getType()->isAnyComplexType())
   4405     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
   4406   return true;
   4407 }
   4408 
   4409 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   4410   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
   4411          "lvalue __imag__ on scalar?");
   4412   if (!Visit(E->getSubExpr()))
   4413     return false;
   4414   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
   4415   return true;
   4416 }
   4417 
   4418 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
   4419   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
   4420     return Error(UO);
   4421 
   4422   if (!this->Visit(UO->getSubExpr()))
   4423     return false;
   4424 
   4425   return handleIncDec(
   4426       this->Info, UO, Result, UO->getSubExpr()->getType(),
   4427       UO->isIncrementOp(), 0);
   4428 }
   4429 
   4430 bool LValueExprEvaluator::VisitCompoundAssignOperator(
   4431     const CompoundAssignOperator *CAO) {
   4432   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
   4433     return Error(CAO);
   4434 
   4435   APValue RHS;
   4436 
   4437   // The overall lvalue result is the result of evaluating the LHS.
   4438   if (!this->Visit(CAO->getLHS())) {
   4439     if (Info.keepEvaluatingAfterFailure())
   4440       Evaluate(RHS, this->Info, CAO->getRHS());
   4441     return false;
   4442   }
   4443 
   4444   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
   4445     return false;
   4446 
   4447   return handleCompoundAssignment(
   4448       this->Info, CAO,
   4449       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
   4450       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
   4451 }
   4452 
   4453 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
   4454   if (!Info.getLangOpts().CPlusPlus1y && !Info.keepEvaluatingAfterFailure())
   4455     return Error(E);
   4456 
   4457   APValue NewVal;
   4458 
   4459   if (!this->Visit(E->getLHS())) {
   4460     if (Info.keepEvaluatingAfterFailure())
   4461       Evaluate(NewVal, this->Info, E->getRHS());
   4462     return false;
   4463   }
   4464 
   4465   if (!Evaluate(NewVal, this->Info, E->getRHS()))
   4466     return false;
   4467 
   4468   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
   4469                           NewVal);
   4470 }
   4471 
   4472 //===----------------------------------------------------------------------===//
   4473 // Pointer Evaluation
   4474 //===----------------------------------------------------------------------===//
   4475 
   4476 namespace {
   4477 class PointerExprEvaluator
   4478   : public ExprEvaluatorBase<PointerExprEvaluator, bool> {
   4479   LValue &Result;
   4480 
   4481   bool Success(const Expr *E) {
   4482     Result.set(E);
   4483     return true;
   4484   }
   4485 public:
   4486 
   4487   PointerExprEvaluator(EvalInfo &info, LValue &Result)
   4488     : ExprEvaluatorBaseTy(info), Result(Result) {}
   4489 
   4490   bool Success(const APValue &V, const Expr *E) {
   4491     Result.setFrom(Info.Ctx, V);
   4492     return true;
   4493   }
   4494   bool ZeroInitialization(const Expr *E) {
   4495     return Success((Expr*)0);
   4496   }
   4497 
   4498   bool VisitBinaryOperator(const BinaryOperator *E);
   4499   bool VisitCastExpr(const CastExpr* E);
   4500   bool VisitUnaryAddrOf(const UnaryOperator *E);
   4501   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
   4502       { return Success(E); }
   4503   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
   4504       { return Success(E); }
   4505   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
   4506       { return Success(E); }
   4507   bool VisitCallExpr(const CallExpr *E);
   4508   bool VisitBlockExpr(const BlockExpr *E) {
   4509     if (!E->getBlockDecl()->hasCaptures())
   4510       return Success(E);
   4511     return Error(E);
   4512   }
   4513   bool VisitCXXThisExpr(const CXXThisExpr *E) {
   4514     // Can't look at 'this' when checking a potential constant expression.
   4515     if (Info.CheckingPotentialConstantExpression)
   4516       return false;
   4517     if (!Info.CurrentCall->This)
   4518       return Error(E);
   4519     Result = *Info.CurrentCall->This;
   4520     return true;
   4521   }
   4522 
   4523   // FIXME: Missing: @protocol, @selector
   4524 };
   4525 } // end anonymous namespace
   4526 
   4527 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
   4528   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
   4529   return PointerExprEvaluator(Info, Result).Visit(E);
   4530 }
   4531 
   4532 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   4533   if (E->getOpcode() != BO_Add &&
   4534       E->getOpcode() != BO_Sub)
   4535     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   4536 
   4537   const Expr *PExp = E->getLHS();
   4538   const Expr *IExp = E->getRHS();
   4539   if (IExp->getType()->isPointerType())
   4540     std::swap(PExp, IExp);
   4541 
   4542   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
   4543   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
   4544     return false;
   4545 
   4546   llvm::APSInt Offset;
   4547   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
   4548     return false;
   4549 
   4550   int64_t AdditionalOffset = getExtValue(Offset);
   4551   if (E->getOpcode() == BO_Sub)
   4552     AdditionalOffset = -AdditionalOffset;
   4553 
   4554   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
   4555   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
   4556                                      AdditionalOffset);
   4557 }
   4558 
   4559 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   4560   return EvaluateLValue(E->getSubExpr(), Result, Info);
   4561 }
   4562 
   4563 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
   4564   const Expr* SubExpr = E->getSubExpr();
   4565 
   4566   switch (E->getCastKind()) {
   4567   default:
   4568     break;
   4569 
   4570   case CK_BitCast:
   4571   case CK_CPointerToObjCPointerCast:
   4572   case CK_BlockPointerToObjCPointerCast:
   4573   case CK_AnyPointerToBlockPointerCast:
   4574     if (!Visit(SubExpr))
   4575       return false;
   4576     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
   4577     // permitted in constant expressions in C++11. Bitcasts from cv void* are
   4578     // also static_casts, but we disallow them as a resolution to DR1312.
   4579     if (!E->getType()->isVoidPointerType()) {
   4580       Result.Designator.setInvalid();
   4581       if (SubExpr->getType()->isVoidPointerType())
   4582         CCEDiag(E, diag::note_constexpr_invalid_cast)
   4583           << 3 << SubExpr->getType();
   4584       else
   4585         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   4586     }
   4587     return true;
   4588 
   4589   case CK_DerivedToBase:
   4590   case CK_UncheckedDerivedToBase:
   4591     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
   4592       return false;
   4593     if (!Result.Base && Result.Offset.isZero())
   4594       return true;
   4595 
   4596     // Now figure out the necessary offset to add to the base LV to get from
   4597     // the derived class to the base class.
   4598     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
   4599                                   castAs<PointerType>()->getPointeeType(),
   4600                                 Result);
   4601 
   4602   case CK_BaseToDerived:
   4603     if (!Visit(E->getSubExpr()))
   4604       return false;
   4605     if (!Result.Base && Result.Offset.isZero())
   4606       return true;
   4607     return HandleBaseToDerivedCast(Info, E, Result);
   4608 
   4609   case CK_NullToPointer:
   4610     VisitIgnoredValue(E->getSubExpr());
   4611     return ZeroInitialization(E);
   4612 
   4613   case CK_IntegralToPointer: {
   4614     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   4615 
   4616     APValue Value;
   4617     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
   4618       break;
   4619 
   4620     if (Value.isInt()) {
   4621       unsigned Size = Info.Ctx.getTypeSize(E->getType());
   4622       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
   4623       Result.Base = (Expr*)0;
   4624       Result.Offset = CharUnits::fromQuantity(N);
   4625       Result.CallIndex = 0;
   4626       Result.Designator.setInvalid();
   4627       return true;
   4628     } else {
   4629       // Cast is of an lvalue, no need to change value.
   4630       Result.setFrom(Info.Ctx, Value);
   4631       return true;
   4632     }
   4633   }
   4634   case CK_ArrayToPointerDecay:
   4635     if (SubExpr->isGLValue()) {
   4636       if (!EvaluateLValue(SubExpr, Result, Info))
   4637         return false;
   4638     } else {
   4639       Result.set(SubExpr, Info.CurrentCall->Index);
   4640       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
   4641                            Info, Result, SubExpr))
   4642         return false;
   4643     }
   4644     // The result is a pointer to the first element of the array.
   4645     if (const ConstantArrayType *CAT
   4646           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
   4647       Result.addArray(Info, E, CAT);
   4648     else
   4649       Result.Designator.setInvalid();
   4650     return true;
   4651 
   4652   case CK_FunctionToPointerDecay:
   4653     return EvaluateLValue(SubExpr, Result, Info);
   4654   }
   4655 
   4656   return ExprEvaluatorBaseTy::VisitCastExpr(E);
   4657 }
   4658 
   4659 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
   4660   if (IsStringLiteralCall(E))
   4661     return Success(E);
   4662 
   4663   switch (E->isBuiltinCall()) {
   4664   case Builtin::BI__builtin_addressof:
   4665     return EvaluateLValue(E->getArg(0), Result, Info);
   4666 
   4667   default:
   4668     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   4669   }
   4670 }
   4671 
   4672 //===----------------------------------------------------------------------===//
   4673 // Member Pointer Evaluation
   4674 //===----------------------------------------------------------------------===//
   4675 
   4676 namespace {
   4677 class MemberPointerExprEvaluator
   4678   : public ExprEvaluatorBase<MemberPointerExprEvaluator, bool> {
   4679   MemberPtr &Result;
   4680 
   4681   bool Success(const ValueDecl *D) {
   4682     Result = MemberPtr(D);
   4683     return true;
   4684   }
   4685 public:
   4686 
   4687   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
   4688     : ExprEvaluatorBaseTy(Info), Result(Result) {}
   4689 
   4690   bool Success(const APValue &V, const Expr *E) {
   4691     Result.setFrom(V);
   4692     return true;
   4693   }
   4694   bool ZeroInitialization(const Expr *E) {
   4695     return Success((const ValueDecl*)0);
   4696   }
   4697 
   4698   bool VisitCastExpr(const CastExpr *E);
   4699   bool VisitUnaryAddrOf(const UnaryOperator *E);
   4700 };
   4701 } // end anonymous namespace
   4702 
   4703 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
   4704                                   EvalInfo &Info) {
   4705   assert(E->isRValue() && E->getType()->isMemberPointerType());
   4706   return MemberPointerExprEvaluator(Info, Result).Visit(E);
   4707 }
   4708 
   4709 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
   4710   switch (E->getCastKind()) {
   4711   default:
   4712     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   4713 
   4714   case CK_NullToMemberPointer:
   4715     VisitIgnoredValue(E->getSubExpr());
   4716     return ZeroInitialization(E);
   4717 
   4718   case CK_BaseToDerivedMemberPointer: {
   4719     if (!Visit(E->getSubExpr()))
   4720       return false;
   4721     if (E->path_empty())
   4722       return true;
   4723     // Base-to-derived member pointer casts store the path in derived-to-base
   4724     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
   4725     // the wrong end of the derived->base arc, so stagger the path by one class.
   4726     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
   4727     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
   4728          PathI != PathE; ++PathI) {
   4729       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   4730       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
   4731       if (!Result.castToDerived(Derived))
   4732         return Error(E);
   4733     }
   4734     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
   4735     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
   4736       return Error(E);
   4737     return true;
   4738   }
   4739 
   4740   case CK_DerivedToBaseMemberPointer:
   4741     if (!Visit(E->getSubExpr()))
   4742       return false;
   4743     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   4744          PathE = E->path_end(); PathI != PathE; ++PathI) {
   4745       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
   4746       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   4747       if (!Result.castToBase(Base))
   4748         return Error(E);
   4749     }
   4750     return true;
   4751   }
   4752 }
   4753 
   4754 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
   4755   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
   4756   // member can be formed.
   4757   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
   4758 }
   4759 
   4760 //===----------------------------------------------------------------------===//
   4761 // Record Evaluation
   4762 //===----------------------------------------------------------------------===//
   4763 
   4764 namespace {
   4765   class RecordExprEvaluator
   4766   : public ExprEvaluatorBase<RecordExprEvaluator, bool> {
   4767     const LValue &This;
   4768     APValue &Result;
   4769   public:
   4770 
   4771     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
   4772       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
   4773 
   4774     bool Success(const APValue &V, const Expr *E) {
   4775       Result = V;
   4776       return true;
   4777     }
   4778     bool ZeroInitialization(const Expr *E);
   4779 
   4780     bool VisitCastExpr(const CastExpr *E);
   4781     bool VisitInitListExpr(const InitListExpr *E);
   4782     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   4783     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
   4784   };
   4785 }
   4786 
   4787 /// Perform zero-initialization on an object of non-union class type.
   4788 /// C++11 [dcl.init]p5:
   4789 ///  To zero-initialize an object or reference of type T means:
   4790 ///    [...]
   4791 ///    -- if T is a (possibly cv-qualified) non-union class type,
   4792 ///       each non-static data member and each base-class subobject is
   4793 ///       zero-initialized
   4794 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
   4795                                           const RecordDecl *RD,
   4796                                           const LValue &This, APValue &Result) {
   4797   assert(!RD->isUnion() && "Expected non-union class type");
   4798   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
   4799   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
   4800                    std::distance(RD->field_begin(), RD->field_end()));
   4801 
   4802   if (RD->isInvalidDecl()) return false;
   4803   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   4804 
   4805   if (CD) {
   4806     unsigned Index = 0;
   4807     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
   4808            End = CD->bases_end(); I != End; ++I, ++Index) {
   4809       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
   4810       LValue Subobject = This;
   4811       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
   4812         return false;
   4813       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
   4814                                          Result.getStructBase(Index)))
   4815         return false;
   4816     }
   4817   }
   4818 
   4819   for (RecordDecl::field_iterator I = RD->field_begin(), End = RD->field_end();
   4820        I != End; ++I) {
   4821     // -- if T is a reference type, no initialization is performed.
   4822     if (I->getType()->isReferenceType())
   4823       continue;
   4824 
   4825     LValue Subobject = This;
   4826     if (!HandleLValueMember(Info, E, Subobject, *I, &Layout))
   4827       return false;
   4828 
   4829     ImplicitValueInitExpr VIE(I->getType());
   4830     if (!EvaluateInPlace(
   4831           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
   4832       return false;
   4833   }
   4834 
   4835   return true;
   4836 }
   4837 
   4838 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
   4839   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   4840   if (RD->isInvalidDecl()) return false;
   4841   if (RD->isUnion()) {
   4842     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
   4843     // object's first non-static named data member is zero-initialized
   4844     RecordDecl::field_iterator I = RD->field_begin();
   4845     if (I == RD->field_end()) {
   4846       Result = APValue((const FieldDecl*)0);
   4847       return true;
   4848     }
   4849 
   4850     LValue Subobject = This;
   4851     if (!HandleLValueMember(Info, E, Subobject, *I))
   4852       return false;
   4853     Result = APValue(*I);
   4854     ImplicitValueInitExpr VIE(I->getType());
   4855     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
   4856   }
   4857 
   4858   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
   4859     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
   4860     return false;
   4861   }
   4862 
   4863   return HandleClassZeroInitialization(Info, E, RD, This, Result);
   4864 }
   4865 
   4866 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
   4867   switch (E->getCastKind()) {
   4868   default:
   4869     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   4870 
   4871   case CK_ConstructorConversion:
   4872     return Visit(E->getSubExpr());
   4873 
   4874   case CK_DerivedToBase:
   4875   case CK_UncheckedDerivedToBase: {
   4876     APValue DerivedObject;
   4877     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
   4878       return false;
   4879     if (!DerivedObject.isStruct())
   4880       return Error(E->getSubExpr());
   4881 
   4882     // Derived-to-base rvalue conversion: just slice off the derived part.
   4883     APValue *Value = &DerivedObject;
   4884     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
   4885     for (CastExpr::path_const_iterator PathI = E->path_begin(),
   4886          PathE = E->path_end(); PathI != PathE; ++PathI) {
   4887       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
   4888       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
   4889       Value = &Value->getStructBase(getBaseIndex(RD, Base));
   4890       RD = Base;
   4891     }
   4892     Result = *Value;
   4893     return true;
   4894   }
   4895   }
   4896 }
   4897 
   4898 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   4899   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
   4900   if (RD->isInvalidDecl()) return false;
   4901   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
   4902 
   4903   if (RD->isUnion()) {
   4904     const FieldDecl *Field = E->getInitializedFieldInUnion();
   4905     Result = APValue(Field);
   4906     if (!Field)
   4907       return true;
   4908 
   4909     // If the initializer list for a union does not contain any elements, the
   4910     // first element of the union is value-initialized.
   4911     // FIXME: The element should be initialized from an initializer list.
   4912     //        Is this difference ever observable for initializer lists which
   4913     //        we don't build?
   4914     ImplicitValueInitExpr VIE(Field->getType());
   4915     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
   4916 
   4917     LValue Subobject = This;
   4918     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
   4919       return false;
   4920 
   4921     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
   4922     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
   4923                                   isa<CXXDefaultInitExpr>(InitExpr));
   4924 
   4925     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
   4926   }
   4927 
   4928   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
   4929          "initializer list for class with base classes");
   4930   Result = APValue(APValue::UninitStruct(), 0,
   4931                    std::distance(RD->field_begin(), RD->field_end()));
   4932   unsigned ElementNo = 0;
   4933   bool Success = true;
   4934   for (RecordDecl::field_iterator Field = RD->field_begin(),
   4935        FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
   4936     // Anonymous bit-fields are not considered members of the class for
   4937     // purposes of aggregate initialization.
   4938     if (Field->isUnnamedBitfield())
   4939       continue;
   4940 
   4941     LValue Subobject = This;
   4942 
   4943     bool HaveInit = ElementNo < E->getNumInits();
   4944 
   4945     // FIXME: Diagnostics here should point to the end of the initializer
   4946     // list, not the start.
   4947     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
   4948                             Subobject, *Field, &Layout))
   4949       return false;
   4950 
   4951     // Perform an implicit value-initialization for members beyond the end of
   4952     // the initializer list.
   4953     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
   4954     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
   4955 
   4956     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
   4957     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
   4958                                   isa<CXXDefaultInitExpr>(Init));
   4959 
   4960     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
   4961     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
   4962         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
   4963                                                        FieldVal, *Field))) {
   4964       if (!Info.keepEvaluatingAfterFailure())
   4965         return false;
   4966       Success = false;
   4967     }
   4968   }
   4969 
   4970   return Success;
   4971 }
   4972 
   4973 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   4974   const CXXConstructorDecl *FD = E->getConstructor();
   4975   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
   4976 
   4977   bool ZeroInit = E->requiresZeroInitialization();
   4978   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   4979     // If we've already performed zero-initialization, we're already done.
   4980     if (!Result.isUninit())
   4981       return true;
   4982 
   4983     if (ZeroInit)
   4984       return ZeroInitialization(E);
   4985 
   4986     const CXXRecordDecl *RD = FD->getParent();
   4987     if (RD->isUnion())
   4988       Result = APValue((FieldDecl*)0);
   4989     else
   4990       Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
   4991                        std::distance(RD->field_begin(), RD->field_end()));
   4992     return true;
   4993   }
   4994 
   4995   const FunctionDecl *Definition = 0;
   4996   FD->getBody(Definition);
   4997 
   4998   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   4999     return false;
   5000 
   5001   // Avoid materializing a temporary for an elidable copy/move constructor.
   5002   if (E->isElidable() && !ZeroInit)
   5003     if (const MaterializeTemporaryExpr *ME
   5004           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
   5005       return Visit(ME->GetTemporaryExpr());
   5006 
   5007   if (ZeroInit && !ZeroInitialization(E))
   5008     return false;
   5009 
   5010   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   5011   return HandleConstructorCall(E->getExprLoc(), This, Args,
   5012                                cast<CXXConstructorDecl>(Definition), Info,
   5013                                Result);
   5014 }
   5015 
   5016 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
   5017     const CXXStdInitializerListExpr *E) {
   5018   const ConstantArrayType *ArrayType =
   5019       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
   5020 
   5021   LValue Array;
   5022   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
   5023     return false;
   5024 
   5025   // Get a pointer to the first element of the array.
   5026   Array.addArray(Info, E, ArrayType);
   5027 
   5028   // FIXME: Perform the checks on the field types in SemaInit.
   5029   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
   5030   RecordDecl::field_iterator Field = Record->field_begin();
   5031   if (Field == Record->field_end())
   5032     return Error(E);
   5033 
   5034   // Start pointer.
   5035   if (!Field->getType()->isPointerType() ||
   5036       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
   5037                             ArrayType->getElementType()))
   5038     return Error(E);
   5039 
   5040   // FIXME: What if the initializer_list type has base classes, etc?
   5041   Result = APValue(APValue::UninitStruct(), 0, 2);
   5042   Array.moveInto(Result.getStructField(0));
   5043 
   5044   if (++Field == Record->field_end())
   5045     return Error(E);
   5046 
   5047   if (Field->getType()->isPointerType() &&
   5048       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
   5049                            ArrayType->getElementType())) {
   5050     // End pointer.
   5051     if (!HandleLValueArrayAdjustment(Info, E, Array,
   5052                                      ArrayType->getElementType(),
   5053                                      ArrayType->getSize().getZExtValue()))
   5054       return false;
   5055     Array.moveInto(Result.getStructField(1));
   5056   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
   5057     // Length.
   5058     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
   5059   else
   5060     return Error(E);
   5061 
   5062   if (++Field != Record->field_end())
   5063     return Error(E);
   5064 
   5065   return true;
   5066 }
   5067 
   5068 static bool EvaluateRecord(const Expr *E, const LValue &This,
   5069                            APValue &Result, EvalInfo &Info) {
   5070   assert(E->isRValue() && E->getType()->isRecordType() &&
   5071          "can't evaluate expression as a record rvalue");
   5072   return RecordExprEvaluator(Info, This, Result).Visit(E);
   5073 }
   5074 
   5075 //===----------------------------------------------------------------------===//
   5076 // Temporary Evaluation
   5077 //
   5078 // Temporaries are represented in the AST as rvalues, but generally behave like
   5079 // lvalues. The full-object of which the temporary is a subobject is implicitly
   5080 // materialized so that a reference can bind to it.
   5081 //===----------------------------------------------------------------------===//
   5082 namespace {
   5083 class TemporaryExprEvaluator
   5084   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
   5085 public:
   5086   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
   5087     LValueExprEvaluatorBaseTy(Info, Result) {}
   5088 
   5089   /// Visit an expression which constructs the value of this temporary.
   5090   bool VisitConstructExpr(const Expr *E) {
   5091     Result.set(E, Info.CurrentCall->Index);
   5092     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
   5093                            Info, Result, E);
   5094   }
   5095 
   5096   bool VisitCastExpr(const CastExpr *E) {
   5097     switch (E->getCastKind()) {
   5098     default:
   5099       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
   5100 
   5101     case CK_ConstructorConversion:
   5102       return VisitConstructExpr(E->getSubExpr());
   5103     }
   5104   }
   5105   bool VisitInitListExpr(const InitListExpr *E) {
   5106     return VisitConstructExpr(E);
   5107   }
   5108   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
   5109     return VisitConstructExpr(E);
   5110   }
   5111   bool VisitCallExpr(const CallExpr *E) {
   5112     return VisitConstructExpr(E);
   5113   }
   5114 };
   5115 } // end anonymous namespace
   5116 
   5117 /// Evaluate an expression of record type as a temporary.
   5118 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
   5119   assert(E->isRValue() && E->getType()->isRecordType());
   5120   return TemporaryExprEvaluator(Info, Result).Visit(E);
   5121 }
   5122 
   5123 //===----------------------------------------------------------------------===//
   5124 // Vector Evaluation
   5125 //===----------------------------------------------------------------------===//
   5126 
   5127 namespace {
   5128   class VectorExprEvaluator
   5129   : public ExprEvaluatorBase<VectorExprEvaluator, bool> {
   5130     APValue &Result;
   5131   public:
   5132 
   5133     VectorExprEvaluator(EvalInfo &info, APValue &Result)
   5134       : ExprEvaluatorBaseTy(info), Result(Result) {}
   5135 
   5136     bool Success(const ArrayRef<APValue> &V, const Expr *E) {
   5137       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
   5138       // FIXME: remove this APValue copy.
   5139       Result = APValue(V.data(), V.size());
   5140       return true;
   5141     }
   5142     bool Success(const APValue &V, const Expr *E) {
   5143       assert(V.isVector());
   5144       Result = V;
   5145       return true;
   5146     }
   5147     bool ZeroInitialization(const Expr *E);
   5148 
   5149     bool VisitUnaryReal(const UnaryOperator *E)
   5150       { return Visit(E->getSubExpr()); }
   5151     bool VisitCastExpr(const CastExpr* E);
   5152     bool VisitInitListExpr(const InitListExpr *E);
   5153     bool VisitUnaryImag(const UnaryOperator *E);
   5154     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
   5155     //                 binary comparisons, binary and/or/xor,
   5156     //                 shufflevector, ExtVectorElementExpr
   5157   };
   5158 } // end anonymous namespace
   5159 
   5160 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
   5161   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
   5162   return VectorExprEvaluator(Info, Result).Visit(E);
   5163 }
   5164 
   5165 bool VectorExprEvaluator::VisitCastExpr(const CastExpr* E) {
   5166   const VectorType *VTy = E->getType()->castAs<VectorType>();
   5167   unsigned NElts = VTy->getNumElements();
   5168 
   5169   const Expr *SE = E->getSubExpr();
   5170   QualType SETy = SE->getType();
   5171 
   5172   switch (E->getCastKind()) {
   5173   case CK_VectorSplat: {
   5174     APValue Val = APValue();
   5175     if (SETy->isIntegerType()) {
   5176       APSInt IntResult;
   5177       if (!EvaluateInteger(SE, IntResult, Info))
   5178          return false;
   5179       Val = APValue(IntResult);
   5180     } else if (SETy->isRealFloatingType()) {
   5181        APFloat F(0.0);
   5182        if (!EvaluateFloat(SE, F, Info))
   5183          return false;
   5184        Val = APValue(F);
   5185     } else {
   5186       return Error(E);
   5187     }
   5188 
   5189     // Splat and create vector APValue.
   5190     SmallVector<APValue, 4> Elts(NElts, Val);
   5191     return Success(Elts, E);
   5192   }
   5193   case CK_BitCast: {
   5194     // Evaluate the operand into an APInt we can extract from.
   5195     llvm::APInt SValInt;
   5196     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
   5197       return false;
   5198     // Extract the elements
   5199     QualType EltTy = VTy->getElementType();
   5200     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
   5201     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
   5202     SmallVector<APValue, 4> Elts;
   5203     if (EltTy->isRealFloatingType()) {
   5204       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
   5205       unsigned FloatEltSize = EltSize;
   5206       if (&Sem == &APFloat::x87DoubleExtended)
   5207         FloatEltSize = 80;
   5208       for (unsigned i = 0; i < NElts; i++) {
   5209         llvm::APInt Elt;
   5210         if (BigEndian)
   5211           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
   5212         else
   5213           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
   5214         Elts.push_back(APValue(APFloat(Sem, Elt)));
   5215       }
   5216     } else if (EltTy->isIntegerType()) {
   5217       for (unsigned i = 0; i < NElts; i++) {
   5218         llvm::APInt Elt;
   5219         if (BigEndian)
   5220           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
   5221         else
   5222           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
   5223         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
   5224       }
   5225     } else {
   5226       return Error(E);
   5227     }
   5228     return Success(Elts, E);
   5229   }
   5230   default:
   5231     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   5232   }
   5233 }
   5234 
   5235 bool
   5236 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   5237   const VectorType *VT = E->getType()->castAs<VectorType>();
   5238   unsigned NumInits = E->getNumInits();
   5239   unsigned NumElements = VT->getNumElements();
   5240 
   5241   QualType EltTy = VT->getElementType();
   5242   SmallVector<APValue, 4> Elements;
   5243 
   5244   // The number of initializers can be less than the number of
   5245   // vector elements. For OpenCL, this can be due to nested vector
   5246   // initialization. For GCC compatibility, missing trailing elements
   5247   // should be initialized with zeroes.
   5248   unsigned CountInits = 0, CountElts = 0;
   5249   while (CountElts < NumElements) {
   5250     // Handle nested vector initialization.
   5251     if (CountInits < NumInits
   5252         && E->getInit(CountInits)->getType()->isExtVectorType()) {
   5253       APValue v;
   5254       if (!EvaluateVector(E->getInit(CountInits), v, Info))
   5255         return Error(E);
   5256       unsigned vlen = v.getVectorLength();
   5257       for (unsigned j = 0; j < vlen; j++)
   5258         Elements.push_back(v.getVectorElt(j));
   5259       CountElts += vlen;
   5260     } else if (EltTy->isIntegerType()) {
   5261       llvm::APSInt sInt(32);
   5262       if (CountInits < NumInits) {
   5263         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
   5264           return false;
   5265       } else // trailing integer zero.
   5266         sInt = Info.Ctx.MakeIntValue(0, EltTy);
   5267       Elements.push_back(APValue(sInt));
   5268       CountElts++;
   5269     } else {
   5270       llvm::APFloat f(0.0);
   5271       if (CountInits < NumInits) {
   5272         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
   5273           return false;
   5274       } else // trailing float zero.
   5275         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
   5276       Elements.push_back(APValue(f));
   5277       CountElts++;
   5278     }
   5279     CountInits++;
   5280   }
   5281   return Success(Elements, E);
   5282 }
   5283 
   5284 bool
   5285 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
   5286   const VectorType *VT = E->getType()->getAs<VectorType>();
   5287   QualType EltTy = VT->getElementType();
   5288   APValue ZeroElement;
   5289   if (EltTy->isIntegerType())
   5290     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
   5291   else
   5292     ZeroElement =
   5293         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
   5294 
   5295   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
   5296   return Success(Elements, E);
   5297 }
   5298 
   5299 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   5300   VisitIgnoredValue(E->getSubExpr());
   5301   return ZeroInitialization(E);
   5302 }
   5303 
   5304 //===----------------------------------------------------------------------===//
   5305 // Array Evaluation
   5306 //===----------------------------------------------------------------------===//
   5307 
   5308 namespace {
   5309   class ArrayExprEvaluator
   5310   : public ExprEvaluatorBase<ArrayExprEvaluator, bool> {
   5311     const LValue &This;
   5312     APValue &Result;
   5313   public:
   5314 
   5315     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
   5316       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
   5317 
   5318     bool Success(const APValue &V, const Expr *E) {
   5319       assert((V.isArray() || V.isLValue()) &&
   5320              "expected array or string literal");
   5321       Result = V;
   5322       return true;
   5323     }
   5324 
   5325     bool ZeroInitialization(const Expr *E) {
   5326       const ConstantArrayType *CAT =
   5327           Info.Ctx.getAsConstantArrayType(E->getType());
   5328       if (!CAT)
   5329         return Error(E);
   5330 
   5331       Result = APValue(APValue::UninitArray(), 0,
   5332                        CAT->getSize().getZExtValue());
   5333       if (!Result.hasArrayFiller()) return true;
   5334 
   5335       // Zero-initialize all elements.
   5336       LValue Subobject = This;
   5337       Subobject.addArray(Info, E, CAT);
   5338       ImplicitValueInitExpr VIE(CAT->getElementType());
   5339       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
   5340     }
   5341 
   5342     bool VisitInitListExpr(const InitListExpr *E);
   5343     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
   5344     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
   5345                                const LValue &Subobject,
   5346                                APValue *Value, QualType Type);
   5347   };
   5348 } // end anonymous namespace
   5349 
   5350 static bool EvaluateArray(const Expr *E, const LValue &This,
   5351                           APValue &Result, EvalInfo &Info) {
   5352   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
   5353   return ArrayExprEvaluator(Info, This, Result).Visit(E);
   5354 }
   5355 
   5356 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   5357   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
   5358   if (!CAT)
   5359     return Error(E);
   5360 
   5361   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
   5362   // an appropriately-typed string literal enclosed in braces.
   5363   if (E->isStringLiteralInit()) {
   5364     LValue LV;
   5365     if (!EvaluateLValue(E->getInit(0), LV, Info))
   5366       return false;
   5367     APValue Val;
   5368     LV.moveInto(Val);
   5369     return Success(Val, E);
   5370   }
   5371 
   5372   bool Success = true;
   5373 
   5374   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
   5375          "zero-initialized array shouldn't have any initialized elts");
   5376   APValue Filler;
   5377   if (Result.isArray() && Result.hasArrayFiller())
   5378     Filler = Result.getArrayFiller();
   5379 
   5380   unsigned NumEltsToInit = E->getNumInits();
   5381   unsigned NumElts = CAT->getSize().getZExtValue();
   5382   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : 0;
   5383 
   5384   // If the initializer might depend on the array index, run it for each
   5385   // array element. For now, just whitelist non-class value-initialization.
   5386   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
   5387     NumEltsToInit = NumElts;
   5388 
   5389   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
   5390 
   5391   // If the array was previously zero-initialized, preserve the
   5392   // zero-initialized values.
   5393   if (!Filler.isUninit()) {
   5394     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
   5395       Result.getArrayInitializedElt(I) = Filler;
   5396     if (Result.hasArrayFiller())
   5397       Result.getArrayFiller() = Filler;
   5398   }
   5399 
   5400   LValue Subobject = This;
   5401   Subobject.addArray(Info, E, CAT);
   5402   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
   5403     const Expr *Init =
   5404         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
   5405     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
   5406                          Info, Subobject, Init) ||
   5407         !HandleLValueArrayAdjustment(Info, Init, Subobject,
   5408                                      CAT->getElementType(), 1)) {
   5409       if (!Info.keepEvaluatingAfterFailure())
   5410         return false;
   5411       Success = false;
   5412     }
   5413   }
   5414 
   5415   if (!Result.hasArrayFiller())
   5416     return Success;
   5417 
   5418   // If we get here, we have a trivial filler, which we can just evaluate
   5419   // once and splat over the rest of the array elements.
   5420   assert(FillerExpr && "no array filler for incomplete init list");
   5421   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
   5422                          FillerExpr) && Success;
   5423 }
   5424 
   5425 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
   5426   return VisitCXXConstructExpr(E, This, &Result, E->getType());
   5427 }
   5428 
   5429 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
   5430                                                const LValue &Subobject,
   5431                                                APValue *Value,
   5432                                                QualType Type) {
   5433   bool HadZeroInit = !Value->isUninit();
   5434 
   5435   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
   5436     unsigned N = CAT->getSize().getZExtValue();
   5437 
   5438     // Preserve the array filler if we had prior zero-initialization.
   5439     APValue Filler =
   5440       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
   5441                                              : APValue();
   5442 
   5443     *Value = APValue(APValue::UninitArray(), N, N);
   5444 
   5445     if (HadZeroInit)
   5446       for (unsigned I = 0; I != N; ++I)
   5447         Value->getArrayInitializedElt(I) = Filler;
   5448 
   5449     // Initialize the elements.
   5450     LValue ArrayElt = Subobject;
   5451     ArrayElt.addArray(Info, E, CAT);
   5452     for (unsigned I = 0; I != N; ++I)
   5453       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
   5454                                  CAT->getElementType()) ||
   5455           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
   5456                                        CAT->getElementType(), 1))
   5457         return false;
   5458 
   5459     return true;
   5460   }
   5461 
   5462   if (!Type->isRecordType())
   5463     return Error(E);
   5464 
   5465   const CXXConstructorDecl *FD = E->getConstructor();
   5466 
   5467   bool ZeroInit = E->requiresZeroInitialization();
   5468   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
   5469     if (HadZeroInit)
   5470       return true;
   5471 
   5472     if (ZeroInit) {
   5473       ImplicitValueInitExpr VIE(Type);
   5474       return EvaluateInPlace(*Value, Info, Subobject, &VIE);
   5475     }
   5476 
   5477     const CXXRecordDecl *RD = FD->getParent();
   5478     if (RD->isUnion())
   5479       *Value = APValue((FieldDecl*)0);
   5480     else
   5481       *Value =
   5482           APValue(APValue::UninitStruct(), RD->getNumBases(),
   5483                   std::distance(RD->field_begin(), RD->field_end()));
   5484     return true;
   5485   }
   5486 
   5487   const FunctionDecl *Definition = 0;
   5488   FD->getBody(Definition);
   5489 
   5490   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
   5491     return false;
   5492 
   5493   if (ZeroInit && !HadZeroInit) {
   5494     ImplicitValueInitExpr VIE(Type);
   5495     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
   5496       return false;
   5497   }
   5498 
   5499   ArrayRef<const Expr *> Args(E->getArgs(), E->getNumArgs());
   5500   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
   5501                                cast<CXXConstructorDecl>(Definition),
   5502                                Info, *Value);
   5503 }
   5504 
   5505 //===----------------------------------------------------------------------===//
   5506 // Integer Evaluation
   5507 //
   5508 // As a GNU extension, we support casting pointers to sufficiently-wide integer
   5509 // types and back in constant folding. Integer values are thus represented
   5510 // either as an integer-valued APValue, or as an lvalue-valued APValue.
   5511 //===----------------------------------------------------------------------===//
   5512 
   5513 namespace {
   5514 class IntExprEvaluator
   5515   : public ExprEvaluatorBase<IntExprEvaluator, bool> {
   5516   APValue &Result;
   5517 public:
   5518   IntExprEvaluator(EvalInfo &info, APValue &result)
   5519     : ExprEvaluatorBaseTy(info), Result(result) {}
   5520 
   5521   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
   5522     assert(E->getType()->isIntegralOrEnumerationType() &&
   5523            "Invalid evaluation result.");
   5524     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
   5525            "Invalid evaluation result.");
   5526     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   5527            "Invalid evaluation result.");
   5528     Result = APValue(SI);
   5529     return true;
   5530   }
   5531   bool Success(const llvm::APSInt &SI, const Expr *E) {
   5532     return Success(SI, E, Result);
   5533   }
   5534 
   5535   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
   5536     assert(E->getType()->isIntegralOrEnumerationType() &&
   5537            "Invalid evaluation result.");
   5538     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
   5539            "Invalid evaluation result.");
   5540     Result = APValue(APSInt(I));
   5541     Result.getInt().setIsUnsigned(
   5542                             E->getType()->isUnsignedIntegerOrEnumerationType());
   5543     return true;
   5544   }
   5545   bool Success(const llvm::APInt &I, const Expr *E) {
   5546     return Success(I, E, Result);
   5547   }
   5548 
   5549   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   5550     assert(E->getType()->isIntegralOrEnumerationType() &&
   5551            "Invalid evaluation result.");
   5552     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
   5553     return true;
   5554   }
   5555   bool Success(uint64_t Value, const Expr *E) {
   5556     return Success(Value, E, Result);
   5557   }
   5558 
   5559   bool Success(CharUnits Size, const Expr *E) {
   5560     return Success(Size.getQuantity(), E);
   5561   }
   5562 
   5563   bool Success(const APValue &V, const Expr *E) {
   5564     if (V.isLValue() || V.isAddrLabelDiff()) {
   5565       Result = V;
   5566       return true;
   5567     }
   5568     return Success(V.getInt(), E);
   5569   }
   5570 
   5571   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
   5572 
   5573   //===--------------------------------------------------------------------===//
   5574   //                            Visitor Methods
   5575   //===--------------------------------------------------------------------===//
   5576 
   5577   bool VisitIntegerLiteral(const IntegerLiteral *E) {
   5578     return Success(E->getValue(), E);
   5579   }
   5580   bool VisitCharacterLiteral(const CharacterLiteral *E) {
   5581     return Success(E->getValue(), E);
   5582   }
   5583 
   5584   bool CheckReferencedDecl(const Expr *E, const Decl *D);
   5585   bool VisitDeclRefExpr(const DeclRefExpr *E) {
   5586     if (CheckReferencedDecl(E, E->getDecl()))
   5587       return true;
   5588 
   5589     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
   5590   }
   5591   bool VisitMemberExpr(const MemberExpr *E) {
   5592     if (CheckReferencedDecl(E, E->getMemberDecl())) {
   5593       VisitIgnoredValue(E->getBase());
   5594       return true;
   5595     }
   5596 
   5597     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
   5598   }
   5599 
   5600   bool VisitCallExpr(const CallExpr *E);
   5601   bool VisitBinaryOperator(const BinaryOperator *E);
   5602   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
   5603   bool VisitUnaryOperator(const UnaryOperator *E);
   5604 
   5605   bool VisitCastExpr(const CastExpr* E);
   5606   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
   5607 
   5608   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
   5609     return Success(E->getValue(), E);
   5610   }
   5611 
   5612   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
   5613     return Success(E->getValue(), E);
   5614   }
   5615 
   5616   // Note, GNU defines __null as an integer, not a pointer.
   5617   bool VisitGNUNullExpr(const GNUNullExpr *E) {
   5618     return ZeroInitialization(E);
   5619   }
   5620 
   5621   bool VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
   5622     return Success(E->getValue(), E);
   5623   }
   5624 
   5625   bool VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
   5626     return Success(E->getValue(), E);
   5627   }
   5628 
   5629   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
   5630     return Success(E->getValue(), E);
   5631   }
   5632 
   5633   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
   5634     return Success(E->getValue(), E);
   5635   }
   5636 
   5637   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
   5638     return Success(E->getValue(), E);
   5639   }
   5640 
   5641   bool VisitUnaryReal(const UnaryOperator *E);
   5642   bool VisitUnaryImag(const UnaryOperator *E);
   5643 
   5644   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
   5645   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
   5646 
   5647 private:
   5648   CharUnits GetAlignOfExpr(const Expr *E);
   5649   CharUnits GetAlignOfType(QualType T);
   5650   static QualType GetObjectType(APValue::LValueBase B);
   5651   bool TryEvaluateBuiltinObjectSize(const CallExpr *E);
   5652   // FIXME: Missing: array subscript of vector, member of vector
   5653 };
   5654 } // end anonymous namespace
   5655 
   5656 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
   5657 /// produce either the integer value or a pointer.
   5658 ///
   5659 /// GCC has a heinous extension which folds casts between pointer types and
   5660 /// pointer-sized integral types. We support this by allowing the evaluation of
   5661 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
   5662 /// Some simple arithmetic on such values is supported (they are treated much
   5663 /// like char*).
   5664 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
   5665                                     EvalInfo &Info) {
   5666   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
   5667   return IntExprEvaluator(Info, Result).Visit(E);
   5668 }
   5669 
   5670 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
   5671   APValue Val;
   5672   if (!EvaluateIntegerOrLValue(E, Val, Info))
   5673     return false;
   5674   if (!Val.isInt()) {
   5675     // FIXME: It would be better to produce the diagnostic for casting
   5676     //        a pointer to an integer.
   5677     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   5678     return false;
   5679   }
   5680   Result = Val.getInt();
   5681   return true;
   5682 }
   5683 
   5684 /// Check whether the given declaration can be directly converted to an integral
   5685 /// rvalue. If not, no diagnostic is produced; there are other things we can
   5686 /// try.
   5687 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
   5688   // Enums are integer constant exprs.
   5689   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
   5690     // Check for signedness/width mismatches between E type and ECD value.
   5691     bool SameSign = (ECD->getInitVal().isSigned()
   5692                      == E->getType()->isSignedIntegerOrEnumerationType());
   5693     bool SameWidth = (ECD->getInitVal().getBitWidth()
   5694                       == Info.Ctx.getIntWidth(E->getType()));
   5695     if (SameSign && SameWidth)
   5696       return Success(ECD->getInitVal(), E);
   5697     else {
   5698       // Get rid of mismatch (otherwise Success assertions will fail)
   5699       // by computing a new value matching the type of E.
   5700       llvm::APSInt Val = ECD->getInitVal();
   5701       if (!SameSign)
   5702         Val.setIsSigned(!ECD->getInitVal().isSigned());
   5703       if (!SameWidth)
   5704         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
   5705       return Success(Val, E);
   5706     }
   5707   }
   5708   return false;
   5709 }
   5710 
   5711 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
   5712 /// as GCC.
   5713 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
   5714   // The following enum mimics the values returned by GCC.
   5715   // FIXME: Does GCC differ between lvalue and rvalue references here?
   5716   enum gcc_type_class {
   5717     no_type_class = -1,
   5718     void_type_class, integer_type_class, char_type_class,
   5719     enumeral_type_class, boolean_type_class,
   5720     pointer_type_class, reference_type_class, offset_type_class,
   5721     real_type_class, complex_type_class,
   5722     function_type_class, method_type_class,
   5723     record_type_class, union_type_class,
   5724     array_type_class, string_type_class,
   5725     lang_type_class
   5726   };
   5727 
   5728   // If no argument was supplied, default to "no_type_class". This isn't
   5729   // ideal, however it is what gcc does.
   5730   if (E->getNumArgs() == 0)
   5731     return no_type_class;
   5732 
   5733   QualType ArgTy = E->getArg(0)->getType();
   5734   if (ArgTy->isVoidType())
   5735     return void_type_class;
   5736   else if (ArgTy->isEnumeralType())
   5737     return enumeral_type_class;
   5738   else if (ArgTy->isBooleanType())
   5739     return boolean_type_class;
   5740   else if (ArgTy->isCharType())
   5741     return string_type_class; // gcc doesn't appear to use char_type_class
   5742   else if (ArgTy->isIntegerType())
   5743     return integer_type_class;
   5744   else if (ArgTy->isPointerType())
   5745     return pointer_type_class;
   5746   else if (ArgTy->isReferenceType())
   5747     return reference_type_class;
   5748   else if (ArgTy->isRealType())
   5749     return real_type_class;
   5750   else if (ArgTy->isComplexType())
   5751     return complex_type_class;
   5752   else if (ArgTy->isFunctionType())
   5753     return function_type_class;
   5754   else if (ArgTy->isStructureOrClassType())
   5755     return record_type_class;
   5756   else if (ArgTy->isUnionType())
   5757     return union_type_class;
   5758   else if (ArgTy->isArrayType())
   5759     return array_type_class;
   5760   else if (ArgTy->isUnionType())
   5761     return union_type_class;
   5762   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
   5763     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
   5764 }
   5765 
   5766 /// EvaluateBuiltinConstantPForLValue - Determine the result of
   5767 /// __builtin_constant_p when applied to the given lvalue.
   5768 ///
   5769 /// An lvalue is only "constant" if it is a pointer or reference to the first
   5770 /// character of a string literal.
   5771 template<typename LValue>
   5772 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
   5773   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
   5774   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
   5775 }
   5776 
   5777 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
   5778 /// GCC as we can manage.
   5779 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
   5780   QualType ArgType = Arg->getType();
   5781 
   5782   // __builtin_constant_p always has one operand. The rules which gcc follows
   5783   // are not precisely documented, but are as follows:
   5784   //
   5785   //  - If the operand is of integral, floating, complex or enumeration type,
   5786   //    and can be folded to a known value of that type, it returns 1.
   5787   //  - If the operand and can be folded to a pointer to the first character
   5788   //    of a string literal (or such a pointer cast to an integral type), it
   5789   //    returns 1.
   5790   //
   5791   // Otherwise, it returns 0.
   5792   //
   5793   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
   5794   // its support for this does not currently work.
   5795   if (ArgType->isIntegralOrEnumerationType()) {
   5796     Expr::EvalResult Result;
   5797     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
   5798       return false;
   5799 
   5800     APValue &V = Result.Val;
   5801     if (V.getKind() == APValue::Int)
   5802       return true;
   5803 
   5804     return EvaluateBuiltinConstantPForLValue(V);
   5805   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
   5806     return Arg->isEvaluatable(Ctx);
   5807   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
   5808     LValue LV;
   5809     Expr::EvalStatus Status;
   5810     EvalInfo Info(Ctx, Status);
   5811     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
   5812                           : EvaluatePointer(Arg, LV, Info)) &&
   5813         !Status.HasSideEffects)
   5814       return EvaluateBuiltinConstantPForLValue(LV);
   5815   }
   5816 
   5817   // Anything else isn't considered to be sufficiently constant.
   5818   return false;
   5819 }
   5820 
   5821 /// Retrieves the "underlying object type" of the given expression,
   5822 /// as used by __builtin_object_size.
   5823 QualType IntExprEvaluator::GetObjectType(APValue::LValueBase B) {
   5824   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
   5825     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
   5826       return VD->getType();
   5827   } else if (const Expr *E = B.get<const Expr*>()) {
   5828     if (isa<CompoundLiteralExpr>(E))
   5829       return E->getType();
   5830   }
   5831 
   5832   return QualType();
   5833 }
   5834 
   5835 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E) {
   5836   LValue Base;
   5837 
   5838   {
   5839     // The operand of __builtin_object_size is never evaluated for side-effects.
   5840     // If there are any, but we can determine the pointed-to object anyway, then
   5841     // ignore the side-effects.
   5842     SpeculativeEvaluationRAII SpeculativeEval(Info);
   5843     if (!EvaluatePointer(E->getArg(0), Base, Info))
   5844       return false;
   5845   }
   5846 
   5847   // If we can prove the base is null, lower to zero now.
   5848   if (!Base.getLValueBase()) return Success(0, E);
   5849 
   5850   QualType T = GetObjectType(Base.getLValueBase());
   5851   if (T.isNull() ||
   5852       T->isIncompleteType() ||
   5853       T->isFunctionType() ||
   5854       T->isVariablyModifiedType() ||
   5855       T->isDependentType())
   5856     return Error(E);
   5857 
   5858   CharUnits Size = Info.Ctx.getTypeSizeInChars(T);
   5859   CharUnits Offset = Base.getLValueOffset();
   5860 
   5861   if (!Offset.isNegative() && Offset <= Size)
   5862     Size -= Offset;
   5863   else
   5864     Size = CharUnits::Zero();
   5865   return Success(Size, E);
   5866 }
   5867 
   5868 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
   5869   switch (unsigned BuiltinOp = E->isBuiltinCall()) {
   5870   default:
   5871     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   5872 
   5873   case Builtin::BI__builtin_object_size: {
   5874     if (TryEvaluateBuiltinObjectSize(E))
   5875       return true;
   5876 
   5877     // If evaluating the argument has side-effects, we can't determine the size
   5878     // of the object, and so we lower it to unknown now. CodeGen relies on us to
   5879     // handle all cases where the expression has side-effects.
   5880     if (E->getArg(0)->HasSideEffects(Info.Ctx)) {
   5881       if (E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue() <= 1)
   5882         return Success(-1ULL, E);
   5883       return Success(0, E);
   5884     }
   5885 
   5886     // Expression had no side effects, but we couldn't statically determine the
   5887     // size of the referenced object.
   5888     return Error(E);
   5889   }
   5890 
   5891   case Builtin::BI__builtin_bswap16:
   5892   case Builtin::BI__builtin_bswap32:
   5893   case Builtin::BI__builtin_bswap64: {
   5894     APSInt Val;
   5895     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5896       return false;
   5897 
   5898     return Success(Val.byteSwap(), E);
   5899   }
   5900 
   5901   case Builtin::BI__builtin_classify_type:
   5902     return Success(EvaluateBuiltinClassifyType(E), E);
   5903 
   5904   // FIXME: BI__builtin_clrsb
   5905   // FIXME: BI__builtin_clrsbl
   5906   // FIXME: BI__builtin_clrsbll
   5907 
   5908   case Builtin::BI__builtin_clz:
   5909   case Builtin::BI__builtin_clzl:
   5910   case Builtin::BI__builtin_clzll: {
   5911     APSInt Val;
   5912     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5913       return false;
   5914     if (!Val)
   5915       return Error(E);
   5916 
   5917     return Success(Val.countLeadingZeros(), E);
   5918   }
   5919 
   5920   case Builtin::BI__builtin_constant_p:
   5921     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
   5922 
   5923   case Builtin::BI__builtin_ctz:
   5924   case Builtin::BI__builtin_ctzl:
   5925   case Builtin::BI__builtin_ctzll: {
   5926     APSInt Val;
   5927     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5928       return false;
   5929     if (!Val)
   5930       return Error(E);
   5931 
   5932     return Success(Val.countTrailingZeros(), E);
   5933   }
   5934 
   5935   case Builtin::BI__builtin_eh_return_data_regno: {
   5936     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
   5937     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
   5938     return Success(Operand, E);
   5939   }
   5940 
   5941   case Builtin::BI__builtin_expect:
   5942     return Visit(E->getArg(0));
   5943 
   5944   case Builtin::BI__builtin_ffs:
   5945   case Builtin::BI__builtin_ffsl:
   5946   case Builtin::BI__builtin_ffsll: {
   5947     APSInt Val;
   5948     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5949       return false;
   5950 
   5951     unsigned N = Val.countTrailingZeros();
   5952     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
   5953   }
   5954 
   5955   case Builtin::BI__builtin_fpclassify: {
   5956     APFloat Val(0.0);
   5957     if (!EvaluateFloat(E->getArg(5), Val, Info))
   5958       return false;
   5959     unsigned Arg;
   5960     switch (Val.getCategory()) {
   5961     case APFloat::fcNaN: Arg = 0; break;
   5962     case APFloat::fcInfinity: Arg = 1; break;
   5963     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
   5964     case APFloat::fcZero: Arg = 4; break;
   5965     }
   5966     return Visit(E->getArg(Arg));
   5967   }
   5968 
   5969   case Builtin::BI__builtin_isinf_sign: {
   5970     APFloat Val(0.0);
   5971     return EvaluateFloat(E->getArg(0), Val, Info) &&
   5972            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
   5973   }
   5974 
   5975   case Builtin::BI__builtin_parity:
   5976   case Builtin::BI__builtin_parityl:
   5977   case Builtin::BI__builtin_parityll: {
   5978     APSInt Val;
   5979     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5980       return false;
   5981 
   5982     return Success(Val.countPopulation() % 2, E);
   5983   }
   5984 
   5985   case Builtin::BI__builtin_popcount:
   5986   case Builtin::BI__builtin_popcountl:
   5987   case Builtin::BI__builtin_popcountll: {
   5988     APSInt Val;
   5989     if (!EvaluateInteger(E->getArg(0), Val, Info))
   5990       return false;
   5991 
   5992     return Success(Val.countPopulation(), E);
   5993   }
   5994 
   5995   case Builtin::BIstrlen:
   5996     // A call to strlen is not a constant expression.
   5997     if (Info.getLangOpts().CPlusPlus11)
   5998       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
   5999         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
   6000     else
   6001       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
   6002     // Fall through.
   6003   case Builtin::BI__builtin_strlen:
   6004     // As an extension, we support strlen() and __builtin_strlen() as constant
   6005     // expressions when the argument is a string literal.
   6006     if (const StringLiteral *S
   6007                = dyn_cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts())) {
   6008       // The string literal may have embedded null characters. Find the first
   6009       // one and truncate there.
   6010       StringRef Str = S->getString();
   6011       StringRef::size_type Pos = Str.find(0);
   6012       if (Pos != StringRef::npos)
   6013         Str = Str.substr(0, Pos);
   6014 
   6015       return Success(Str.size(), E);
   6016     }
   6017 
   6018     return Error(E);
   6019 
   6020   case Builtin::BI__atomic_always_lock_free:
   6021   case Builtin::BI__atomic_is_lock_free:
   6022   case Builtin::BI__c11_atomic_is_lock_free: {
   6023     APSInt SizeVal;
   6024     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
   6025       return false;
   6026 
   6027     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
   6028     // of two less than the maximum inline atomic width, we know it is
   6029     // lock-free.  If the size isn't a power of two, or greater than the
   6030     // maximum alignment where we promote atomics, we know it is not lock-free
   6031     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
   6032     // the answer can only be determined at runtime; for example, 16-byte
   6033     // atomics have lock-free implementations on some, but not all,
   6034     // x86-64 processors.
   6035 
   6036     // Check power-of-two.
   6037     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
   6038     if (Size.isPowerOfTwo()) {
   6039       // Check against inlining width.
   6040       unsigned InlineWidthBits =
   6041           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
   6042       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
   6043         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
   6044             Size == CharUnits::One() ||
   6045             E->getArg(1)->isNullPointerConstant(Info.Ctx,
   6046                                                 Expr::NPC_NeverValueDependent))
   6047           // OK, we will inline appropriately-aligned operations of this size,
   6048           // and _Atomic(T) is appropriately-aligned.
   6049           return Success(1, E);
   6050 
   6051         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
   6052           castAs<PointerType>()->getPointeeType();
   6053         if (!PointeeType->isIncompleteType() &&
   6054             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
   6055           // OK, we will inline operations on this object.
   6056           return Success(1, E);
   6057         }
   6058       }
   6059     }
   6060 
   6061     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
   6062         Success(0, E) : Error(E);
   6063   }
   6064   }
   6065 }
   6066 
   6067 static bool HasSameBase(const LValue &A, const LValue &B) {
   6068   if (!A.getLValueBase())
   6069     return !B.getLValueBase();
   6070   if (!B.getLValueBase())
   6071     return false;
   6072 
   6073   if (A.getLValueBase().getOpaqueValue() !=
   6074       B.getLValueBase().getOpaqueValue()) {
   6075     const Decl *ADecl = GetLValueBaseDecl(A);
   6076     if (!ADecl)
   6077       return false;
   6078     const Decl *BDecl = GetLValueBaseDecl(B);
   6079     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
   6080       return false;
   6081   }
   6082 
   6083   return IsGlobalLValue(A.getLValueBase()) ||
   6084          A.getLValueCallIndex() == B.getLValueCallIndex();
   6085 }
   6086 
   6087 namespace {
   6088 
   6089 /// \brief Data recursive integer evaluator of certain binary operators.
   6090 ///
   6091 /// We use a data recursive algorithm for binary operators so that we are able
   6092 /// to handle extreme cases of chained binary operators without causing stack
   6093 /// overflow.
   6094 class DataRecursiveIntBinOpEvaluator {
   6095   struct EvalResult {
   6096     APValue Val;
   6097     bool Failed;
   6098 
   6099     EvalResult() : Failed(false) { }
   6100 
   6101     void swap(EvalResult &RHS) {
   6102       Val.swap(RHS.Val);
   6103       Failed = RHS.Failed;
   6104       RHS.Failed = false;
   6105     }
   6106   };
   6107 
   6108   struct Job {
   6109     const Expr *E;
   6110     EvalResult LHSResult; // meaningful only for binary operator expression.
   6111     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
   6112 
   6113     Job() : StoredInfo(0) { }
   6114     void startSpeculativeEval(EvalInfo &Info) {
   6115       OldEvalStatus = Info.EvalStatus;
   6116       Info.EvalStatus.Diag = 0;
   6117       StoredInfo = &Info;
   6118     }
   6119     ~Job() {
   6120       if (StoredInfo) {
   6121         StoredInfo->EvalStatus = OldEvalStatus;
   6122       }
   6123     }
   6124   private:
   6125     EvalInfo *StoredInfo; // non-null if status changed.
   6126     Expr::EvalStatus OldEvalStatus;
   6127   };
   6128 
   6129   SmallVector<Job, 16> Queue;
   6130 
   6131   IntExprEvaluator &IntEval;
   6132   EvalInfo &Info;
   6133   APValue &FinalResult;
   6134 
   6135 public:
   6136   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
   6137     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
   6138 
   6139   /// \brief True if \param E is a binary operator that we are going to handle
   6140   /// data recursively.
   6141   /// We handle binary operators that are comma, logical, or that have operands
   6142   /// with integral or enumeration type.
   6143   static bool shouldEnqueue(const BinaryOperator *E) {
   6144     return E->getOpcode() == BO_Comma ||
   6145            E->isLogicalOp() ||
   6146            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   6147             E->getRHS()->getType()->isIntegralOrEnumerationType());
   6148   }
   6149 
   6150   bool Traverse(const BinaryOperator *E) {
   6151     enqueue(E);
   6152     EvalResult PrevResult;
   6153     while (!Queue.empty())
   6154       process(PrevResult);
   6155 
   6156     if (PrevResult.Failed) return false;
   6157 
   6158     FinalResult.swap(PrevResult.Val);
   6159     return true;
   6160   }
   6161 
   6162 private:
   6163   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
   6164     return IntEval.Success(Value, E, Result);
   6165   }
   6166   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
   6167     return IntEval.Success(Value, E, Result);
   6168   }
   6169   bool Error(const Expr *E) {
   6170     return IntEval.Error(E);
   6171   }
   6172   bool Error(const Expr *E, diag::kind D) {
   6173     return IntEval.Error(E, D);
   6174   }
   6175 
   6176   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
   6177     return Info.CCEDiag(E, D);
   6178   }
   6179 
   6180   // \brief Returns true if visiting the RHS is necessary, false otherwise.
   6181   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   6182                          bool &SuppressRHSDiags);
   6183 
   6184   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   6185                   const BinaryOperator *E, APValue &Result);
   6186 
   6187   void EvaluateExpr(const Expr *E, EvalResult &Result) {
   6188     Result.Failed = !Evaluate(Result.Val, Info, E);
   6189     if (Result.Failed)
   6190       Result.Val = APValue();
   6191   }
   6192 
   6193   void process(EvalResult &Result);
   6194 
   6195   void enqueue(const Expr *E) {
   6196     E = E->IgnoreParens();
   6197     Queue.resize(Queue.size()+1);
   6198     Queue.back().E = E;
   6199     Queue.back().Kind = Job::AnyExprKind;
   6200   }
   6201 };
   6202 
   6203 }
   6204 
   6205 bool DataRecursiveIntBinOpEvaluator::
   6206        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
   6207                          bool &SuppressRHSDiags) {
   6208   if (E->getOpcode() == BO_Comma) {
   6209     // Ignore LHS but note if we could not evaluate it.
   6210     if (LHSResult.Failed)
   6211       Info.EvalStatus.HasSideEffects = true;
   6212     return true;
   6213   }
   6214 
   6215   if (E->isLogicalOp()) {
   6216     bool lhsResult;
   6217     if (HandleConversionToBool(LHSResult.Val, lhsResult)) {
   6218       // We were able to evaluate the LHS, see if we can get away with not
   6219       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
   6220       if (lhsResult == (E->getOpcode() == BO_LOr)) {
   6221         Success(lhsResult, E, LHSResult.Val);
   6222         return false; // Ignore RHS
   6223       }
   6224     } else {
   6225       // Since we weren't able to evaluate the left hand side, it
   6226       // must have had side effects.
   6227       Info.EvalStatus.HasSideEffects = true;
   6228 
   6229       // We can't evaluate the LHS; however, sometimes the result
   6230       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   6231       // Don't ignore RHS and suppress diagnostics from this arm.
   6232       SuppressRHSDiags = true;
   6233     }
   6234 
   6235     return true;
   6236   }
   6237 
   6238   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   6239          E->getRHS()->getType()->isIntegralOrEnumerationType());
   6240 
   6241   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
   6242     return false; // Ignore RHS;
   6243 
   6244   return true;
   6245 }
   6246 
   6247 bool DataRecursiveIntBinOpEvaluator::
   6248        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
   6249                   const BinaryOperator *E, APValue &Result) {
   6250   if (E->getOpcode() == BO_Comma) {
   6251     if (RHSResult.Failed)
   6252       return false;
   6253     Result = RHSResult.Val;
   6254     return true;
   6255   }
   6256 
   6257   if (E->isLogicalOp()) {
   6258     bool lhsResult, rhsResult;
   6259     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
   6260     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
   6261 
   6262     if (LHSIsOK) {
   6263       if (RHSIsOK) {
   6264         if (E->getOpcode() == BO_LOr)
   6265           return Success(lhsResult || rhsResult, E, Result);
   6266         else
   6267           return Success(lhsResult && rhsResult, E, Result);
   6268       }
   6269     } else {
   6270       if (RHSIsOK) {
   6271         // We can't evaluate the LHS; however, sometimes the result
   6272         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
   6273         if (rhsResult == (E->getOpcode() == BO_LOr))
   6274           return Success(rhsResult, E, Result);
   6275       }
   6276     }
   6277 
   6278     return false;
   6279   }
   6280 
   6281   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
   6282          E->getRHS()->getType()->isIntegralOrEnumerationType());
   6283 
   6284   if (LHSResult.Failed || RHSResult.Failed)
   6285     return false;
   6286 
   6287   const APValue &LHSVal = LHSResult.Val;
   6288   const APValue &RHSVal = RHSResult.Val;
   6289 
   6290   // Handle cases like (unsigned long)&a + 4.
   6291   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
   6292     Result = LHSVal;
   6293     CharUnits AdditionalOffset = CharUnits::fromQuantity(
   6294                                                          RHSVal.getInt().getZExtValue());
   6295     if (E->getOpcode() == BO_Add)
   6296       Result.getLValueOffset() += AdditionalOffset;
   6297     else
   6298       Result.getLValueOffset() -= AdditionalOffset;
   6299     return true;
   6300   }
   6301 
   6302   // Handle cases like 4 + (unsigned long)&a
   6303   if (E->getOpcode() == BO_Add &&
   6304       RHSVal.isLValue() && LHSVal.isInt()) {
   6305     Result = RHSVal;
   6306     Result.getLValueOffset() += CharUnits::fromQuantity(
   6307                                                         LHSVal.getInt().getZExtValue());
   6308     return true;
   6309   }
   6310 
   6311   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
   6312     // Handle (intptr_t)&&A - (intptr_t)&&B.
   6313     if (!LHSVal.getLValueOffset().isZero() ||
   6314         !RHSVal.getLValueOffset().isZero())
   6315       return false;
   6316     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
   6317     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
   6318     if (!LHSExpr || !RHSExpr)
   6319       return false;
   6320     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   6321     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   6322     if (!LHSAddrExpr || !RHSAddrExpr)
   6323       return false;
   6324     // Make sure both labels come from the same function.
   6325     if (LHSAddrExpr->getLabel()->getDeclContext() !=
   6326         RHSAddrExpr->getLabel()->getDeclContext())
   6327       return false;
   6328     Result = APValue(LHSAddrExpr, RHSAddrExpr);
   6329     return true;
   6330   }
   6331 
   6332   // All the remaining cases expect both operands to be an integer
   6333   if (!LHSVal.isInt() || !RHSVal.isInt())
   6334     return Error(E);
   6335 
   6336   // Set up the width and signedness manually, in case it can't be deduced
   6337   // from the operation we're performing.
   6338   // FIXME: Don't do this in the cases where we can deduce it.
   6339   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
   6340                E->getType()->isUnsignedIntegerOrEnumerationType());
   6341   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
   6342                          RHSVal.getInt(), Value))
   6343     return false;
   6344   return Success(Value, E, Result);
   6345 }
   6346 
   6347 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
   6348   Job &job = Queue.back();
   6349 
   6350   switch (job.Kind) {
   6351     case Job::AnyExprKind: {
   6352       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
   6353         if (shouldEnqueue(Bop)) {
   6354           job.Kind = Job::BinOpKind;
   6355           enqueue(Bop->getLHS());
   6356           return;
   6357         }
   6358       }
   6359 
   6360       EvaluateExpr(job.E, Result);
   6361       Queue.pop_back();
   6362       return;
   6363     }
   6364 
   6365     case Job::BinOpKind: {
   6366       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   6367       bool SuppressRHSDiags = false;
   6368       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
   6369         Queue.pop_back();
   6370         return;
   6371       }
   6372       if (SuppressRHSDiags)
   6373         job.startSpeculativeEval(Info);
   6374       job.LHSResult.swap(Result);
   6375       job.Kind = Job::BinOpVisitedLHSKind;
   6376       enqueue(Bop->getRHS());
   6377       return;
   6378     }
   6379 
   6380     case Job::BinOpVisitedLHSKind: {
   6381       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
   6382       EvalResult RHS;
   6383       RHS.swap(Result);
   6384       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
   6385       Queue.pop_back();
   6386       return;
   6387     }
   6388   }
   6389 
   6390   llvm_unreachable("Invalid Job::Kind!");
   6391 }
   6392 
   6393 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   6394   if (E->isAssignmentOp())
   6395     return Error(E);
   6396 
   6397   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
   6398     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
   6399 
   6400   QualType LHSTy = E->getLHS()->getType();
   6401   QualType RHSTy = E->getRHS()->getType();
   6402 
   6403   if (LHSTy->isAnyComplexType()) {
   6404     assert(RHSTy->isAnyComplexType() && "Invalid comparison");
   6405     ComplexValue LHS, RHS;
   6406 
   6407     bool LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
   6408     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   6409       return false;
   6410 
   6411     if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   6412       return false;
   6413 
   6414     if (LHS.isComplexFloat()) {
   6415       APFloat::cmpResult CR_r =
   6416         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
   6417       APFloat::cmpResult CR_i =
   6418         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
   6419 
   6420       if (E->getOpcode() == BO_EQ)
   6421         return Success((CR_r == APFloat::cmpEqual &&
   6422                         CR_i == APFloat::cmpEqual), E);
   6423       else {
   6424         assert(E->getOpcode() == BO_NE &&
   6425                "Invalid complex comparison.");
   6426         return Success(((CR_r == APFloat::cmpGreaterThan ||
   6427                          CR_r == APFloat::cmpLessThan ||
   6428                          CR_r == APFloat::cmpUnordered) ||
   6429                         (CR_i == APFloat::cmpGreaterThan ||
   6430                          CR_i == APFloat::cmpLessThan ||
   6431                          CR_i == APFloat::cmpUnordered)), E);
   6432       }
   6433     } else {
   6434       if (E->getOpcode() == BO_EQ)
   6435         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
   6436                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
   6437       else {
   6438         assert(E->getOpcode() == BO_NE &&
   6439                "Invalid compex comparison.");
   6440         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
   6441                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
   6442       }
   6443     }
   6444   }
   6445 
   6446   if (LHSTy->isRealFloatingType() &&
   6447       RHSTy->isRealFloatingType()) {
   6448     APFloat RHS(0.0), LHS(0.0);
   6449 
   6450     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
   6451     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   6452       return false;
   6453 
   6454     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
   6455       return false;
   6456 
   6457     APFloat::cmpResult CR = LHS.compare(RHS);
   6458 
   6459     switch (E->getOpcode()) {
   6460     default:
   6461       llvm_unreachable("Invalid binary operator!");
   6462     case BO_LT:
   6463       return Success(CR == APFloat::cmpLessThan, E);
   6464     case BO_GT:
   6465       return Success(CR == APFloat::cmpGreaterThan, E);
   6466     case BO_LE:
   6467       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
   6468     case BO_GE:
   6469       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
   6470                      E);
   6471     case BO_EQ:
   6472       return Success(CR == APFloat::cmpEqual, E);
   6473     case BO_NE:
   6474       return Success(CR == APFloat::cmpGreaterThan
   6475                      || CR == APFloat::cmpLessThan
   6476                      || CR == APFloat::cmpUnordered, E);
   6477     }
   6478   }
   6479 
   6480   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
   6481     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
   6482       LValue LHSValue, RHSValue;
   6483 
   6484       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
   6485       if (!LHSOK && Info.keepEvaluatingAfterFailure())
   6486         return false;
   6487 
   6488       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   6489         return false;
   6490 
   6491       // Reject differing bases from the normal codepath; we special-case
   6492       // comparisons to null.
   6493       if (!HasSameBase(LHSValue, RHSValue)) {
   6494         if (E->getOpcode() == BO_Sub) {
   6495           // Handle &&A - &&B.
   6496           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
   6497             return false;
   6498           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
   6499           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
   6500           if (!LHSExpr || !RHSExpr)
   6501             return false;
   6502           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
   6503           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
   6504           if (!LHSAddrExpr || !RHSAddrExpr)
   6505             return false;
   6506           // Make sure both labels come from the same function.
   6507           if (LHSAddrExpr->getLabel()->getDeclContext() !=
   6508               RHSAddrExpr->getLabel()->getDeclContext())
   6509             return false;
   6510           Result = APValue(LHSAddrExpr, RHSAddrExpr);
   6511           return true;
   6512         }
   6513         // Inequalities and subtractions between unrelated pointers have
   6514         // unspecified or undefined behavior.
   6515         if (!E->isEqualityOp())
   6516           return Error(E);
   6517         // A constant address may compare equal to the address of a symbol.
   6518         // The one exception is that address of an object cannot compare equal
   6519         // to a null pointer constant.
   6520         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
   6521             (!RHSValue.Base && !RHSValue.Offset.isZero()))
   6522           return Error(E);
   6523         // It's implementation-defined whether distinct literals will have
   6524         // distinct addresses. In clang, the result of such a comparison is
   6525         // unspecified, so it is not a constant expression. However, we do know
   6526         // that the address of a literal will be non-null.
   6527         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
   6528             LHSValue.Base && RHSValue.Base)
   6529           return Error(E);
   6530         // We can't tell whether weak symbols will end up pointing to the same
   6531         // object.
   6532         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
   6533           return Error(E);
   6534         // Pointers with different bases cannot represent the same object.
   6535         // (Note that clang defaults to -fmerge-all-constants, which can
   6536         // lead to inconsistent results for comparisons involving the address
   6537         // of a constant; this generally doesn't matter in practice.)
   6538         return Success(E->getOpcode() == BO_NE, E);
   6539       }
   6540 
   6541       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
   6542       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
   6543 
   6544       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
   6545       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
   6546 
   6547       if (E->getOpcode() == BO_Sub) {
   6548         // C++11 [expr.add]p6:
   6549         //   Unless both pointers point to elements of the same array object, or
   6550         //   one past the last element of the array object, the behavior is
   6551         //   undefined.
   6552         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   6553             !AreElementsOfSameArray(getType(LHSValue.Base),
   6554                                     LHSDesignator, RHSDesignator))
   6555           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
   6556 
   6557         QualType Type = E->getLHS()->getType();
   6558         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
   6559 
   6560         CharUnits ElementSize;
   6561         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
   6562           return false;
   6563 
   6564         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
   6565         // and produce incorrect results when it overflows. Such behavior
   6566         // appears to be non-conforming, but is common, so perhaps we should
   6567         // assume the standard intended for such cases to be undefined behavior
   6568         // and check for them.
   6569 
   6570         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
   6571         // overflow in the final conversion to ptrdiff_t.
   6572         APSInt LHS(
   6573           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
   6574         APSInt RHS(
   6575           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
   6576         APSInt ElemSize(
   6577           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
   6578         APSInt TrueResult = (LHS - RHS) / ElemSize;
   6579         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
   6580 
   6581         if (Result.extend(65) != TrueResult)
   6582           HandleOverflow(Info, E, TrueResult, E->getType());
   6583         return Success(Result, E);
   6584       }
   6585 
   6586       // C++11 [expr.rel]p3:
   6587       //   Pointers to void (after pointer conversions) can be compared, with a
   6588       //   result defined as follows: If both pointers represent the same
   6589       //   address or are both the null pointer value, the result is true if the
   6590       //   operator is <= or >= and false otherwise; otherwise the result is
   6591       //   unspecified.
   6592       // We interpret this as applying to pointers to *cv* void.
   6593       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
   6594           E->isRelationalOp())
   6595         CCEDiag(E, diag::note_constexpr_void_comparison);
   6596 
   6597       // C++11 [expr.rel]p2:
   6598       // - If two pointers point to non-static data members of the same object,
   6599       //   or to subobjects or array elements fo such members, recursively, the
   6600       //   pointer to the later declared member compares greater provided the
   6601       //   two members have the same access control and provided their class is
   6602       //   not a union.
   6603       //   [...]
   6604       // - Otherwise pointer comparisons are unspecified.
   6605       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
   6606           E->isRelationalOp()) {
   6607         bool WasArrayIndex;
   6608         unsigned Mismatch =
   6609           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
   6610                                  RHSDesignator, WasArrayIndex);
   6611         // At the point where the designators diverge, the comparison has a
   6612         // specified value if:
   6613         //  - we are comparing array indices
   6614         //  - we are comparing fields of a union, or fields with the same access
   6615         // Otherwise, the result is unspecified and thus the comparison is not a
   6616         // constant expression.
   6617         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
   6618             Mismatch < RHSDesignator.Entries.size()) {
   6619           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
   6620           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
   6621           if (!LF && !RF)
   6622             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
   6623           else if (!LF)
   6624             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   6625               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
   6626               << RF->getParent() << RF;
   6627           else if (!RF)
   6628             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
   6629               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
   6630               << LF->getParent() << LF;
   6631           else if (!LF->getParent()->isUnion() &&
   6632                    LF->getAccess() != RF->getAccess())
   6633             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
   6634               << LF << LF->getAccess() << RF << RF->getAccess()
   6635               << LF->getParent();
   6636         }
   6637       }
   6638 
   6639       // The comparison here must be unsigned, and performed with the same
   6640       // width as the pointer.
   6641       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
   6642       uint64_t CompareLHS = LHSOffset.getQuantity();
   6643       uint64_t CompareRHS = RHSOffset.getQuantity();
   6644       assert(PtrSize <= 64 && "Unexpected pointer width");
   6645       uint64_t Mask = ~0ULL >> (64 - PtrSize);
   6646       CompareLHS &= Mask;
   6647       CompareRHS &= Mask;
   6648 
   6649       // If there is a base and this is a relational operator, we can only
   6650       // compare pointers within the object in question; otherwise, the result
   6651       // depends on where the object is located in memory.
   6652       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
   6653         QualType BaseTy = getType(LHSValue.Base);
   6654         if (BaseTy->isIncompleteType())
   6655           return Error(E);
   6656         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
   6657         uint64_t OffsetLimit = Size.getQuantity();
   6658         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
   6659           return Error(E);
   6660       }
   6661 
   6662       switch (E->getOpcode()) {
   6663       default: llvm_unreachable("missing comparison operator");
   6664       case BO_LT: return Success(CompareLHS < CompareRHS, E);
   6665       case BO_GT: return Success(CompareLHS > CompareRHS, E);
   6666       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
   6667       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
   6668       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
   6669       case BO_NE: return Success(CompareLHS != CompareRHS, E);
   6670       }
   6671     }
   6672   }
   6673 
   6674   if (LHSTy->isMemberPointerType()) {
   6675     assert(E->isEqualityOp() && "unexpected member pointer operation");
   6676     assert(RHSTy->isMemberPointerType() && "invalid comparison");
   6677 
   6678     MemberPtr LHSValue, RHSValue;
   6679 
   6680     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
   6681     if (!LHSOK && Info.keepEvaluatingAfterFailure())
   6682       return false;
   6683 
   6684     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
   6685       return false;
   6686 
   6687     // C++11 [expr.eq]p2:
   6688     //   If both operands are null, they compare equal. Otherwise if only one is
   6689     //   null, they compare unequal.
   6690     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
   6691       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
   6692       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   6693     }
   6694 
   6695     //   Otherwise if either is a pointer to a virtual member function, the
   6696     //   result is unspecified.
   6697     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
   6698       if (MD->isVirtual())
   6699         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   6700     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
   6701       if (MD->isVirtual())
   6702         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
   6703 
   6704     //   Otherwise they compare equal if and only if they would refer to the
   6705     //   same member of the same most derived object or the same subobject if
   6706     //   they were dereferenced with a hypothetical object of the associated
   6707     //   class type.
   6708     bool Equal = LHSValue == RHSValue;
   6709     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
   6710   }
   6711 
   6712   if (LHSTy->isNullPtrType()) {
   6713     assert(E->isComparisonOp() && "unexpected nullptr operation");
   6714     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
   6715     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
   6716     // are compared, the result is true of the operator is <=, >= or ==, and
   6717     // false otherwise.
   6718     BinaryOperator::Opcode Opcode = E->getOpcode();
   6719     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
   6720   }
   6721 
   6722   assert((!LHSTy->isIntegralOrEnumerationType() ||
   6723           !RHSTy->isIntegralOrEnumerationType()) &&
   6724          "DataRecursiveIntBinOpEvaluator should have handled integral types");
   6725   // We can't continue from here for non-integral types.
   6726   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   6727 }
   6728 
   6729 CharUnits IntExprEvaluator::GetAlignOfType(QualType T) {
   6730   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   6731   //   result shall be the alignment of the referenced type."
   6732   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
   6733     T = Ref->getPointeeType();
   6734 
   6735   // __alignof is defined to return the preferred alignment.
   6736   return Info.Ctx.toCharUnitsFromBits(
   6737     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
   6738 }
   6739 
   6740 CharUnits IntExprEvaluator::GetAlignOfExpr(const Expr *E) {
   6741   E = E->IgnoreParens();
   6742 
   6743   // The kinds of expressions that we have special-case logic here for
   6744   // should be kept up to date with the special checks for those
   6745   // expressions in Sema.
   6746 
   6747   // alignof decl is always accepted, even if it doesn't make sense: we default
   6748   // to 1 in those cases.
   6749   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   6750     return Info.Ctx.getDeclAlign(DRE->getDecl(),
   6751                                  /*RefAsPointee*/true);
   6752 
   6753   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
   6754     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
   6755                                  /*RefAsPointee*/true);
   6756 
   6757   return GetAlignOfType(E->getType());
   6758 }
   6759 
   6760 
   6761 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
   6762 /// a result as the expression's type.
   6763 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
   6764                                     const UnaryExprOrTypeTraitExpr *E) {
   6765   switch(E->getKind()) {
   6766   case UETT_AlignOf: {
   6767     if (E->isArgumentType())
   6768       return Success(GetAlignOfType(E->getArgumentType()), E);
   6769     else
   6770       return Success(GetAlignOfExpr(E->getArgumentExpr()), E);
   6771   }
   6772 
   6773   case UETT_VecStep: {
   6774     QualType Ty = E->getTypeOfArgument();
   6775 
   6776     if (Ty->isVectorType()) {
   6777       unsigned n = Ty->castAs<VectorType>()->getNumElements();
   6778 
   6779       // The vec_step built-in functions that take a 3-component
   6780       // vector return 4. (OpenCL 1.1 spec 6.11.12)
   6781       if (n == 3)
   6782         n = 4;
   6783 
   6784       return Success(n, E);
   6785     } else
   6786       return Success(1, E);
   6787   }
   6788 
   6789   case UETT_SizeOf: {
   6790     QualType SrcTy = E->getTypeOfArgument();
   6791     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   6792     //   the result is the size of the referenced type."
   6793     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
   6794       SrcTy = Ref->getPointeeType();
   6795 
   6796     CharUnits Sizeof;
   6797     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
   6798       return false;
   6799     return Success(Sizeof, E);
   6800   }
   6801   }
   6802 
   6803   llvm_unreachable("unknown expr/type trait");
   6804 }
   6805 
   6806 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
   6807   CharUnits Result;
   6808   unsigned n = OOE->getNumComponents();
   6809   if (n == 0)
   6810     return Error(OOE);
   6811   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
   6812   for (unsigned i = 0; i != n; ++i) {
   6813     OffsetOfExpr::OffsetOfNode ON = OOE->getComponent(i);
   6814     switch (ON.getKind()) {
   6815     case OffsetOfExpr::OffsetOfNode::Array: {
   6816       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
   6817       APSInt IdxResult;
   6818       if (!EvaluateInteger(Idx, IdxResult, Info))
   6819         return false;
   6820       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
   6821       if (!AT)
   6822         return Error(OOE);
   6823       CurrentType = AT->getElementType();
   6824       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
   6825       Result += IdxResult.getSExtValue() * ElementSize;
   6826       break;
   6827     }
   6828 
   6829     case OffsetOfExpr::OffsetOfNode::Field: {
   6830       FieldDecl *MemberDecl = ON.getField();
   6831       const RecordType *RT = CurrentType->getAs<RecordType>();
   6832       if (!RT)
   6833         return Error(OOE);
   6834       RecordDecl *RD = RT->getDecl();
   6835       if (RD->isInvalidDecl()) return false;
   6836       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   6837       unsigned i = MemberDecl->getFieldIndex();
   6838       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   6839       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
   6840       CurrentType = MemberDecl->getType().getNonReferenceType();
   6841       break;
   6842     }
   6843 
   6844     case OffsetOfExpr::OffsetOfNode::Identifier:
   6845       llvm_unreachable("dependent __builtin_offsetof");
   6846 
   6847     case OffsetOfExpr::OffsetOfNode::Base: {
   6848       CXXBaseSpecifier *BaseSpec = ON.getBase();
   6849       if (BaseSpec->isVirtual())
   6850         return Error(OOE);
   6851 
   6852       // Find the layout of the class whose base we are looking into.
   6853       const RecordType *RT = CurrentType->getAs<RecordType>();
   6854       if (!RT)
   6855         return Error(OOE);
   6856       RecordDecl *RD = RT->getDecl();
   6857       if (RD->isInvalidDecl()) return false;
   6858       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
   6859 
   6860       // Find the base class itself.
   6861       CurrentType = BaseSpec->getType();
   6862       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   6863       if (!BaseRT)
   6864         return Error(OOE);
   6865 
   6866       // Add the offset to the base.
   6867       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
   6868       break;
   6869     }
   6870     }
   6871   }
   6872   return Success(Result, OOE);
   6873 }
   6874 
   6875 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   6876   switch (E->getOpcode()) {
   6877   default:
   6878     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
   6879     // See C99 6.6p3.
   6880     return Error(E);
   6881   case UO_Extension:
   6882     // FIXME: Should extension allow i-c-e extension expressions in its scope?
   6883     // If so, we could clear the diagnostic ID.
   6884     return Visit(E->getSubExpr());
   6885   case UO_Plus:
   6886     // The result is just the value.
   6887     return Visit(E->getSubExpr());
   6888   case UO_Minus: {
   6889     if (!Visit(E->getSubExpr()))
   6890       return false;
   6891     if (!Result.isInt()) return Error(E);
   6892     const APSInt &Value = Result.getInt();
   6893     if (Value.isSigned() && Value.isMinSignedValue())
   6894       HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
   6895                      E->getType());
   6896     return Success(-Value, E);
   6897   }
   6898   case UO_Not: {
   6899     if (!Visit(E->getSubExpr()))
   6900       return false;
   6901     if (!Result.isInt()) return Error(E);
   6902     return Success(~Result.getInt(), E);
   6903   }
   6904   case UO_LNot: {
   6905     bool bres;
   6906     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
   6907       return false;
   6908     return Success(!bres, E);
   6909   }
   6910   }
   6911 }
   6912 
   6913 /// HandleCast - This is used to evaluate implicit or explicit casts where the
   6914 /// result type is integer.
   6915 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
   6916   const Expr *SubExpr = E->getSubExpr();
   6917   QualType DestType = E->getType();
   6918   QualType SrcType = SubExpr->getType();
   6919 
   6920   switch (E->getCastKind()) {
   6921   case CK_BaseToDerived:
   6922   case CK_DerivedToBase:
   6923   case CK_UncheckedDerivedToBase:
   6924   case CK_Dynamic:
   6925   case CK_ToUnion:
   6926   case CK_ArrayToPointerDecay:
   6927   case CK_FunctionToPointerDecay:
   6928   case CK_NullToPointer:
   6929   case CK_NullToMemberPointer:
   6930   case CK_BaseToDerivedMemberPointer:
   6931   case CK_DerivedToBaseMemberPointer:
   6932   case CK_ReinterpretMemberPointer:
   6933   case CK_ConstructorConversion:
   6934   case CK_IntegralToPointer:
   6935   case CK_ToVoid:
   6936   case CK_VectorSplat:
   6937   case CK_IntegralToFloating:
   6938   case CK_FloatingCast:
   6939   case CK_CPointerToObjCPointerCast:
   6940   case CK_BlockPointerToObjCPointerCast:
   6941   case CK_AnyPointerToBlockPointerCast:
   6942   case CK_ObjCObjectLValueCast:
   6943   case CK_FloatingRealToComplex:
   6944   case CK_FloatingComplexToReal:
   6945   case CK_FloatingComplexCast:
   6946   case CK_FloatingComplexToIntegralComplex:
   6947   case CK_IntegralRealToComplex:
   6948   case CK_IntegralComplexCast:
   6949   case CK_IntegralComplexToFloatingComplex:
   6950   case CK_BuiltinFnToFnPtr:
   6951   case CK_ZeroToOCLEvent:
   6952   case CK_NonAtomicToAtomic:
   6953     llvm_unreachable("invalid cast kind for integral value");
   6954 
   6955   case CK_BitCast:
   6956   case CK_Dependent:
   6957   case CK_LValueBitCast:
   6958   case CK_ARCProduceObject:
   6959   case CK_ARCConsumeObject:
   6960   case CK_ARCReclaimReturnedObject:
   6961   case CK_ARCExtendBlockObject:
   6962   case CK_CopyAndAutoreleaseBlockObject:
   6963     return Error(E);
   6964 
   6965   case CK_UserDefinedConversion:
   6966   case CK_LValueToRValue:
   6967   case CK_AtomicToNonAtomic:
   6968   case CK_NoOp:
   6969     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   6970 
   6971   case CK_MemberPointerToBoolean:
   6972   case CK_PointerToBoolean:
   6973   case CK_IntegralToBoolean:
   6974   case CK_FloatingToBoolean:
   6975   case CK_FloatingComplexToBoolean:
   6976   case CK_IntegralComplexToBoolean: {
   6977     bool BoolResult;
   6978     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
   6979       return false;
   6980     return Success(BoolResult, E);
   6981   }
   6982 
   6983   case CK_IntegralCast: {
   6984     if (!Visit(SubExpr))
   6985       return false;
   6986 
   6987     if (!Result.isInt()) {
   6988       // Allow casts of address-of-label differences if they are no-ops
   6989       // or narrowing.  (The narrowing case isn't actually guaranteed to
   6990       // be constant-evaluatable except in some narrow cases which are hard
   6991       // to detect here.  We let it through on the assumption the user knows
   6992       // what they are doing.)
   6993       if (Result.isAddrLabelDiff())
   6994         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
   6995       // Only allow casts of lvalues if they are lossless.
   6996       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
   6997     }
   6998 
   6999     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
   7000                                       Result.getInt()), E);
   7001   }
   7002 
   7003   case CK_PointerToIntegral: {
   7004     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
   7005 
   7006     LValue LV;
   7007     if (!EvaluatePointer(SubExpr, LV, Info))
   7008       return false;
   7009 
   7010     if (LV.getLValueBase()) {
   7011       // Only allow based lvalue casts if they are lossless.
   7012       // FIXME: Allow a larger integer size than the pointer size, and allow
   7013       // narrowing back down to pointer width in subsequent integral casts.
   7014       // FIXME: Check integer type's active bits, not its type size.
   7015       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
   7016         return Error(E);
   7017 
   7018       LV.Designator.setInvalid();
   7019       LV.moveInto(Result);
   7020       return true;
   7021     }
   7022 
   7023     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
   7024                                          SrcType);
   7025     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
   7026   }
   7027 
   7028   case CK_IntegralComplexToReal: {
   7029     ComplexValue C;
   7030     if (!EvaluateComplex(SubExpr, C, Info))
   7031       return false;
   7032     return Success(C.getComplexIntReal(), E);
   7033   }
   7034 
   7035   case CK_FloatingToIntegral: {
   7036     APFloat F(0.0);
   7037     if (!EvaluateFloat(SubExpr, F, Info))
   7038       return false;
   7039 
   7040     APSInt Value;
   7041     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
   7042       return false;
   7043     return Success(Value, E);
   7044   }
   7045   }
   7046 
   7047   llvm_unreachable("unknown cast resulting in integral value");
   7048 }
   7049 
   7050 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   7051   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   7052     ComplexValue LV;
   7053     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   7054       return false;
   7055     if (!LV.isComplexInt())
   7056       return Error(E);
   7057     return Success(LV.getComplexIntReal(), E);
   7058   }
   7059 
   7060   return Visit(E->getSubExpr());
   7061 }
   7062 
   7063 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   7064   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
   7065     ComplexValue LV;
   7066     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
   7067       return false;
   7068     if (!LV.isComplexInt())
   7069       return Error(E);
   7070     return Success(LV.getComplexIntImag(), E);
   7071   }
   7072 
   7073   VisitIgnoredValue(E->getSubExpr());
   7074   return Success(0, E);
   7075 }
   7076 
   7077 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
   7078   return Success(E->getPackLength(), E);
   7079 }
   7080 
   7081 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
   7082   return Success(E->getValue(), E);
   7083 }
   7084 
   7085 //===----------------------------------------------------------------------===//
   7086 // Float Evaluation
   7087 //===----------------------------------------------------------------------===//
   7088 
   7089 namespace {
   7090 class FloatExprEvaluator
   7091   : public ExprEvaluatorBase<FloatExprEvaluator, bool> {
   7092   APFloat &Result;
   7093 public:
   7094   FloatExprEvaluator(EvalInfo &info, APFloat &result)
   7095     : ExprEvaluatorBaseTy(info), Result(result) {}
   7096 
   7097   bool Success(const APValue &V, const Expr *e) {
   7098     Result = V.getFloat();
   7099     return true;
   7100   }
   7101 
   7102   bool ZeroInitialization(const Expr *E) {
   7103     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
   7104     return true;
   7105   }
   7106 
   7107   bool VisitCallExpr(const CallExpr *E);
   7108 
   7109   bool VisitUnaryOperator(const UnaryOperator *E);
   7110   bool VisitBinaryOperator(const BinaryOperator *E);
   7111   bool VisitFloatingLiteral(const FloatingLiteral *E);
   7112   bool VisitCastExpr(const CastExpr *E);
   7113 
   7114   bool VisitUnaryReal(const UnaryOperator *E);
   7115   bool VisitUnaryImag(const UnaryOperator *E);
   7116 
   7117   // FIXME: Missing: array subscript of vector, member of vector
   7118 };
   7119 } // end anonymous namespace
   7120 
   7121 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
   7122   assert(E->isRValue() && E->getType()->isRealFloatingType());
   7123   return FloatExprEvaluator(Info, Result).Visit(E);
   7124 }
   7125 
   7126 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
   7127                                   QualType ResultTy,
   7128                                   const Expr *Arg,
   7129                                   bool SNaN,
   7130                                   llvm::APFloat &Result) {
   7131   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
   7132   if (!S) return false;
   7133 
   7134   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
   7135 
   7136   llvm::APInt fill;
   7137 
   7138   // Treat empty strings as if they were zero.
   7139   if (S->getString().empty())
   7140     fill = llvm::APInt(32, 0);
   7141   else if (S->getString().getAsInteger(0, fill))
   7142     return false;
   7143 
   7144   if (SNaN)
   7145     Result = llvm::APFloat::getSNaN(Sem, false, &fill);
   7146   else
   7147     Result = llvm::APFloat::getQNaN(Sem, false, &fill);
   7148   return true;
   7149 }
   7150 
   7151 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
   7152   switch (E->isBuiltinCall()) {
   7153   default:
   7154     return ExprEvaluatorBaseTy::VisitCallExpr(E);
   7155 
   7156   case Builtin::BI__builtin_huge_val:
   7157   case Builtin::BI__builtin_huge_valf:
   7158   case Builtin::BI__builtin_huge_vall:
   7159   case Builtin::BI__builtin_inf:
   7160   case Builtin::BI__builtin_inff:
   7161   case Builtin::BI__builtin_infl: {
   7162     const llvm::fltSemantics &Sem =
   7163       Info.Ctx.getFloatTypeSemantics(E->getType());
   7164     Result = llvm::APFloat::getInf(Sem);
   7165     return true;
   7166   }
   7167 
   7168   case Builtin::BI__builtin_nans:
   7169   case Builtin::BI__builtin_nansf:
   7170   case Builtin::BI__builtin_nansl:
   7171     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   7172                                true, Result))
   7173       return Error(E);
   7174     return true;
   7175 
   7176   case Builtin::BI__builtin_nan:
   7177   case Builtin::BI__builtin_nanf:
   7178   case Builtin::BI__builtin_nanl:
   7179     // If this is __builtin_nan() turn this into a nan, otherwise we
   7180     // can't constant fold it.
   7181     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
   7182                                false, Result))
   7183       return Error(E);
   7184     return true;
   7185 
   7186   case Builtin::BI__builtin_fabs:
   7187   case Builtin::BI__builtin_fabsf:
   7188   case Builtin::BI__builtin_fabsl:
   7189     if (!EvaluateFloat(E->getArg(0), Result, Info))
   7190       return false;
   7191 
   7192     if (Result.isNegative())
   7193       Result.changeSign();
   7194     return true;
   7195 
   7196   // FIXME: Builtin::BI__builtin_powi
   7197   // FIXME: Builtin::BI__builtin_powif
   7198   // FIXME: Builtin::BI__builtin_powil
   7199 
   7200   case Builtin::BI__builtin_copysign:
   7201   case Builtin::BI__builtin_copysignf:
   7202   case Builtin::BI__builtin_copysignl: {
   7203     APFloat RHS(0.);
   7204     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
   7205         !EvaluateFloat(E->getArg(1), RHS, Info))
   7206       return false;
   7207     Result.copySign(RHS);
   7208     return true;
   7209   }
   7210   }
   7211 }
   7212 
   7213 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
   7214   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   7215     ComplexValue CV;
   7216     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   7217       return false;
   7218     Result = CV.FloatReal;
   7219     return true;
   7220   }
   7221 
   7222   return Visit(E->getSubExpr());
   7223 }
   7224 
   7225 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
   7226   if (E->getSubExpr()->getType()->isAnyComplexType()) {
   7227     ComplexValue CV;
   7228     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
   7229       return false;
   7230     Result = CV.FloatImag;
   7231     return true;
   7232   }
   7233 
   7234   VisitIgnoredValue(E->getSubExpr());
   7235   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
   7236   Result = llvm::APFloat::getZero(Sem);
   7237   return true;
   7238 }
   7239 
   7240 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   7241   switch (E->getOpcode()) {
   7242   default: return Error(E);
   7243   case UO_Plus:
   7244     return EvaluateFloat(E->getSubExpr(), Result, Info);
   7245   case UO_Minus:
   7246     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
   7247       return false;
   7248     Result.changeSign();
   7249     return true;
   7250   }
   7251 }
   7252 
   7253 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   7254   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   7255     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   7256 
   7257   APFloat RHS(0.0);
   7258   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
   7259   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   7260     return false;
   7261   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
   7262          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
   7263 }
   7264 
   7265 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
   7266   Result = E->getValue();
   7267   return true;
   7268 }
   7269 
   7270 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
   7271   const Expr* SubExpr = E->getSubExpr();
   7272 
   7273   switch (E->getCastKind()) {
   7274   default:
   7275     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   7276 
   7277   case CK_IntegralToFloating: {
   7278     APSInt IntResult;
   7279     return EvaluateInteger(SubExpr, IntResult, Info) &&
   7280            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
   7281                                 E->getType(), Result);
   7282   }
   7283 
   7284   case CK_FloatingCast: {
   7285     if (!Visit(SubExpr))
   7286       return false;
   7287     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
   7288                                   Result);
   7289   }
   7290 
   7291   case CK_FloatingComplexToReal: {
   7292     ComplexValue V;
   7293     if (!EvaluateComplex(SubExpr, V, Info))
   7294       return false;
   7295     Result = V.getComplexFloatReal();
   7296     return true;
   7297   }
   7298   }
   7299 }
   7300 
   7301 //===----------------------------------------------------------------------===//
   7302 // Complex Evaluation (for float and integer)
   7303 //===----------------------------------------------------------------------===//
   7304 
   7305 namespace {
   7306 class ComplexExprEvaluator
   7307   : public ExprEvaluatorBase<ComplexExprEvaluator, bool> {
   7308   ComplexValue &Result;
   7309 
   7310 public:
   7311   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
   7312     : ExprEvaluatorBaseTy(info), Result(Result) {}
   7313 
   7314   bool Success(const APValue &V, const Expr *e) {
   7315     Result.setFrom(V);
   7316     return true;
   7317   }
   7318 
   7319   bool ZeroInitialization(const Expr *E);
   7320 
   7321   //===--------------------------------------------------------------------===//
   7322   //                            Visitor Methods
   7323   //===--------------------------------------------------------------------===//
   7324 
   7325   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
   7326   bool VisitCastExpr(const CastExpr *E);
   7327   bool VisitBinaryOperator(const BinaryOperator *E);
   7328   bool VisitUnaryOperator(const UnaryOperator *E);
   7329   bool VisitInitListExpr(const InitListExpr *E);
   7330 };
   7331 } // end anonymous namespace
   7332 
   7333 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
   7334                             EvalInfo &Info) {
   7335   assert(E->isRValue() && E->getType()->isAnyComplexType());
   7336   return ComplexExprEvaluator(Info, Result).Visit(E);
   7337 }
   7338 
   7339 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
   7340   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
   7341   if (ElemTy->isRealFloatingType()) {
   7342     Result.makeComplexFloat();
   7343     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
   7344     Result.FloatReal = Zero;
   7345     Result.FloatImag = Zero;
   7346   } else {
   7347     Result.makeComplexInt();
   7348     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
   7349     Result.IntReal = Zero;
   7350     Result.IntImag = Zero;
   7351   }
   7352   return true;
   7353 }
   7354 
   7355 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
   7356   const Expr* SubExpr = E->getSubExpr();
   7357 
   7358   if (SubExpr->getType()->isRealFloatingType()) {
   7359     Result.makeComplexFloat();
   7360     APFloat &Imag = Result.FloatImag;
   7361     if (!EvaluateFloat(SubExpr, Imag, Info))
   7362       return false;
   7363 
   7364     Result.FloatReal = APFloat(Imag.getSemantics());
   7365     return true;
   7366   } else {
   7367     assert(SubExpr->getType()->isIntegerType() &&
   7368            "Unexpected imaginary literal.");
   7369 
   7370     Result.makeComplexInt();
   7371     APSInt &Imag = Result.IntImag;
   7372     if (!EvaluateInteger(SubExpr, Imag, Info))
   7373       return false;
   7374 
   7375     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
   7376     return true;
   7377   }
   7378 }
   7379 
   7380 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
   7381 
   7382   switch (E->getCastKind()) {
   7383   case CK_BitCast:
   7384   case CK_BaseToDerived:
   7385   case CK_DerivedToBase:
   7386   case CK_UncheckedDerivedToBase:
   7387   case CK_Dynamic:
   7388   case CK_ToUnion:
   7389   case CK_ArrayToPointerDecay:
   7390   case CK_FunctionToPointerDecay:
   7391   case CK_NullToPointer:
   7392   case CK_NullToMemberPointer:
   7393   case CK_BaseToDerivedMemberPointer:
   7394   case CK_DerivedToBaseMemberPointer:
   7395   case CK_MemberPointerToBoolean:
   7396   case CK_ReinterpretMemberPointer:
   7397   case CK_ConstructorConversion:
   7398   case CK_IntegralToPointer:
   7399   case CK_PointerToIntegral:
   7400   case CK_PointerToBoolean:
   7401   case CK_ToVoid:
   7402   case CK_VectorSplat:
   7403   case CK_IntegralCast:
   7404   case CK_IntegralToBoolean:
   7405   case CK_IntegralToFloating:
   7406   case CK_FloatingToIntegral:
   7407   case CK_FloatingToBoolean:
   7408   case CK_FloatingCast:
   7409   case CK_CPointerToObjCPointerCast:
   7410   case CK_BlockPointerToObjCPointerCast:
   7411   case CK_AnyPointerToBlockPointerCast:
   7412   case CK_ObjCObjectLValueCast:
   7413   case CK_FloatingComplexToReal:
   7414   case CK_FloatingComplexToBoolean:
   7415   case CK_IntegralComplexToReal:
   7416   case CK_IntegralComplexToBoolean:
   7417   case CK_ARCProduceObject:
   7418   case CK_ARCConsumeObject:
   7419   case CK_ARCReclaimReturnedObject:
   7420   case CK_ARCExtendBlockObject:
   7421   case CK_CopyAndAutoreleaseBlockObject:
   7422   case CK_BuiltinFnToFnPtr:
   7423   case CK_ZeroToOCLEvent:
   7424   case CK_NonAtomicToAtomic:
   7425     llvm_unreachable("invalid cast kind for complex value");
   7426 
   7427   case CK_LValueToRValue:
   7428   case CK_AtomicToNonAtomic:
   7429   case CK_NoOp:
   7430     return ExprEvaluatorBaseTy::VisitCastExpr(E);
   7431 
   7432   case CK_Dependent:
   7433   case CK_LValueBitCast:
   7434   case CK_UserDefinedConversion:
   7435     return Error(E);
   7436 
   7437   case CK_FloatingRealToComplex: {
   7438     APFloat &Real = Result.FloatReal;
   7439     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
   7440       return false;
   7441 
   7442     Result.makeComplexFloat();
   7443     Result.FloatImag = APFloat(Real.getSemantics());
   7444     return true;
   7445   }
   7446 
   7447   case CK_FloatingComplexCast: {
   7448     if (!Visit(E->getSubExpr()))
   7449       return false;
   7450 
   7451     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   7452     QualType From
   7453       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   7454 
   7455     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
   7456            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
   7457   }
   7458 
   7459   case CK_FloatingComplexToIntegralComplex: {
   7460     if (!Visit(E->getSubExpr()))
   7461       return false;
   7462 
   7463     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   7464     QualType From
   7465       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   7466     Result.makeComplexInt();
   7467     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
   7468                                 To, Result.IntReal) &&
   7469            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
   7470                                 To, Result.IntImag);
   7471   }
   7472 
   7473   case CK_IntegralRealToComplex: {
   7474     APSInt &Real = Result.IntReal;
   7475     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
   7476       return false;
   7477 
   7478     Result.makeComplexInt();
   7479     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
   7480     return true;
   7481   }
   7482 
   7483   case CK_IntegralComplexCast: {
   7484     if (!Visit(E->getSubExpr()))
   7485       return false;
   7486 
   7487     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
   7488     QualType From
   7489       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
   7490 
   7491     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
   7492     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
   7493     return true;
   7494   }
   7495 
   7496   case CK_IntegralComplexToFloatingComplex: {
   7497     if (!Visit(E->getSubExpr()))
   7498       return false;
   7499 
   7500     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
   7501     QualType From
   7502       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
   7503     Result.makeComplexFloat();
   7504     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
   7505                                 To, Result.FloatReal) &&
   7506            HandleIntToFloatCast(Info, E, From, Result.IntImag,
   7507                                 To, Result.FloatImag);
   7508   }
   7509   }
   7510 
   7511   llvm_unreachable("unknown cast resulting in complex value");
   7512 }
   7513 
   7514 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
   7515   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
   7516     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
   7517 
   7518   bool LHSOK = Visit(E->getLHS());
   7519   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
   7520     return false;
   7521 
   7522   ComplexValue RHS;
   7523   if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
   7524     return false;
   7525 
   7526   assert(Result.isComplexFloat() == RHS.isComplexFloat() &&
   7527          "Invalid operands to binary operator.");
   7528   switch (E->getOpcode()) {
   7529   default: return Error(E);
   7530   case BO_Add:
   7531     if (Result.isComplexFloat()) {
   7532       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
   7533                                        APFloat::rmNearestTiesToEven);
   7534       Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
   7535                                        APFloat::rmNearestTiesToEven);
   7536     } else {
   7537       Result.getComplexIntReal() += RHS.getComplexIntReal();
   7538       Result.getComplexIntImag() += RHS.getComplexIntImag();
   7539     }
   7540     break;
   7541   case BO_Sub:
   7542     if (Result.isComplexFloat()) {
   7543       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
   7544                                             APFloat::rmNearestTiesToEven);
   7545       Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
   7546                                             APFloat::rmNearestTiesToEven);
   7547     } else {
   7548       Result.getComplexIntReal() -= RHS.getComplexIntReal();
   7549       Result.getComplexIntImag() -= RHS.getComplexIntImag();
   7550     }
   7551     break;
   7552   case BO_Mul:
   7553     if (Result.isComplexFloat()) {
   7554       ComplexValue LHS = Result;
   7555       APFloat &LHS_r = LHS.getComplexFloatReal();
   7556       APFloat &LHS_i = LHS.getComplexFloatImag();
   7557       APFloat &RHS_r = RHS.getComplexFloatReal();
   7558       APFloat &RHS_i = RHS.getComplexFloatImag();
   7559 
   7560       APFloat Tmp = LHS_r;
   7561       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   7562       Result.getComplexFloatReal() = Tmp;
   7563       Tmp = LHS_i;
   7564       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   7565       Result.getComplexFloatReal().subtract(Tmp, APFloat::rmNearestTiesToEven);
   7566 
   7567       Tmp = LHS_r;
   7568       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   7569       Result.getComplexFloatImag() = Tmp;
   7570       Tmp = LHS_i;
   7571       Tmp.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   7572       Result.getComplexFloatImag().add(Tmp, APFloat::rmNearestTiesToEven);
   7573     } else {
   7574       ComplexValue LHS = Result;
   7575       Result.getComplexIntReal() =
   7576         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
   7577          LHS.getComplexIntImag() * RHS.getComplexIntImag());
   7578       Result.getComplexIntImag() =
   7579         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
   7580          LHS.getComplexIntImag() * RHS.getComplexIntReal());
   7581     }
   7582     break;
   7583   case BO_Div:
   7584     if (Result.isComplexFloat()) {
   7585       ComplexValue LHS = Result;
   7586       APFloat &LHS_r = LHS.getComplexFloatReal();
   7587       APFloat &LHS_i = LHS.getComplexFloatImag();
   7588       APFloat &RHS_r = RHS.getComplexFloatReal();
   7589       APFloat &RHS_i = RHS.getComplexFloatImag();
   7590       APFloat &Res_r = Result.getComplexFloatReal();
   7591       APFloat &Res_i = Result.getComplexFloatImag();
   7592 
   7593       APFloat Den = RHS_r;
   7594       Den.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   7595       APFloat Tmp = RHS_i;
   7596       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   7597       Den.add(Tmp, APFloat::rmNearestTiesToEven);
   7598 
   7599       Res_r = LHS_r;
   7600       Res_r.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   7601       Tmp = LHS_i;
   7602       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   7603       Res_r.add(Tmp, APFloat::rmNearestTiesToEven);
   7604       Res_r.divide(Den, APFloat::rmNearestTiesToEven);
   7605 
   7606       Res_i = LHS_i;
   7607       Res_i.multiply(RHS_r, APFloat::rmNearestTiesToEven);
   7608       Tmp = LHS_r;
   7609       Tmp.multiply(RHS_i, APFloat::rmNearestTiesToEven);
   7610       Res_i.subtract(Tmp, APFloat::rmNearestTiesToEven);
   7611       Res_i.divide(Den, APFloat::rmNearestTiesToEven);
   7612     } else {
   7613       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
   7614         return Error(E, diag::note_expr_divide_by_zero);
   7615 
   7616       ComplexValue LHS = Result;
   7617       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
   7618         RHS.getComplexIntImag() * RHS.getComplexIntImag();
   7619       Result.getComplexIntReal() =
   7620         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
   7621          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
   7622       Result.getComplexIntImag() =
   7623         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
   7624          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
   7625     }
   7626     break;
   7627   }
   7628 
   7629   return true;
   7630 }
   7631 
   7632 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
   7633   // Get the operand value into 'Result'.
   7634   if (!Visit(E->getSubExpr()))
   7635     return false;
   7636 
   7637   switch (E->getOpcode()) {
   7638   default:
   7639     return Error(E);
   7640   case UO_Extension:
   7641     return true;
   7642   case UO_Plus:
   7643     // The result is always just the subexpr.
   7644     return true;
   7645   case UO_Minus:
   7646     if (Result.isComplexFloat()) {
   7647       Result.getComplexFloatReal().changeSign();
   7648       Result.getComplexFloatImag().changeSign();
   7649     }
   7650     else {
   7651       Result.getComplexIntReal() = -Result.getComplexIntReal();
   7652       Result.getComplexIntImag() = -Result.getComplexIntImag();
   7653     }
   7654     return true;
   7655   case UO_Not:
   7656     if (Result.isComplexFloat())
   7657       Result.getComplexFloatImag().changeSign();
   7658     else
   7659       Result.getComplexIntImag() = -Result.getComplexIntImag();
   7660     return true;
   7661   }
   7662 }
   7663 
   7664 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
   7665   if (E->getNumInits() == 2) {
   7666     if (E->getType()->isComplexType()) {
   7667       Result.makeComplexFloat();
   7668       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
   7669         return false;
   7670       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
   7671         return false;
   7672     } else {
   7673       Result.makeComplexInt();
   7674       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
   7675         return false;
   7676       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
   7677         return false;
   7678     }
   7679     return true;
   7680   }
   7681   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
   7682 }
   7683 
   7684 //===----------------------------------------------------------------------===//
   7685 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
   7686 // implicit conversion.
   7687 //===----------------------------------------------------------------------===//
   7688 
   7689 namespace {
   7690 class AtomicExprEvaluator :
   7691     public ExprEvaluatorBase<AtomicExprEvaluator, bool> {
   7692   APValue &Result;
   7693 public:
   7694   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
   7695       : ExprEvaluatorBaseTy(Info), Result(Result) {}
   7696 
   7697   bool Success(const APValue &V, const Expr *E) {
   7698     Result = V;
   7699     return true;
   7700   }
   7701 
   7702   bool ZeroInitialization(const Expr *E) {
   7703     ImplicitValueInitExpr VIE(
   7704         E->getType()->castAs<AtomicType>()->getValueType());
   7705     return Evaluate(Result, Info, &VIE);
   7706   }
   7707 
   7708   bool VisitCastExpr(const CastExpr *E) {
   7709     switch (E->getCastKind()) {
   7710     default:
   7711       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   7712     case CK_NonAtomicToAtomic:
   7713       return Evaluate(Result, Info, E->getSubExpr());
   7714     }
   7715   }
   7716 };
   7717 } // end anonymous namespace
   7718 
   7719 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
   7720   assert(E->isRValue() && E->getType()->isAtomicType());
   7721   return AtomicExprEvaluator(Info, Result).Visit(E);
   7722 }
   7723 
   7724 //===----------------------------------------------------------------------===//
   7725 // Void expression evaluation, primarily for a cast to void on the LHS of a
   7726 // comma operator
   7727 //===----------------------------------------------------------------------===//
   7728 
   7729 namespace {
   7730 class VoidExprEvaluator
   7731   : public ExprEvaluatorBase<VoidExprEvaluator, bool> {
   7732 public:
   7733   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
   7734 
   7735   bool Success(const APValue &V, const Expr *e) { return true; }
   7736 
   7737   bool VisitCastExpr(const CastExpr *E) {
   7738     switch (E->getCastKind()) {
   7739     default:
   7740       return ExprEvaluatorBaseTy::VisitCastExpr(E);
   7741     case CK_ToVoid:
   7742       VisitIgnoredValue(E->getSubExpr());
   7743       return true;
   7744     }
   7745   }
   7746 };
   7747 } // end anonymous namespace
   7748 
   7749 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
   7750   assert(E->isRValue() && E->getType()->isVoidType());
   7751   return VoidExprEvaluator(Info).Visit(E);
   7752 }
   7753 
   7754 //===----------------------------------------------------------------------===//
   7755 // Top level Expr::EvaluateAsRValue method.
   7756 //===----------------------------------------------------------------------===//
   7757 
   7758 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
   7759   // In C, function designators are not lvalues, but we evaluate them as if they
   7760   // are.
   7761   QualType T = E->getType();
   7762   if (E->isGLValue() || T->isFunctionType()) {
   7763     LValue LV;
   7764     if (!EvaluateLValue(E, LV, Info))
   7765       return false;
   7766     LV.moveInto(Result);
   7767   } else if (T->isVectorType()) {
   7768     if (!EvaluateVector(E, Result, Info))
   7769       return false;
   7770   } else if (T->isIntegralOrEnumerationType()) {
   7771     if (!IntExprEvaluator(Info, Result).Visit(E))
   7772       return false;
   7773   } else if (T->hasPointerRepresentation()) {
   7774     LValue LV;
   7775     if (!EvaluatePointer(E, LV, Info))
   7776       return false;
   7777     LV.moveInto(Result);
   7778   } else if (T->isRealFloatingType()) {
   7779     llvm::APFloat F(0.0);
   7780     if (!EvaluateFloat(E, F, Info))
   7781       return false;
   7782     Result = APValue(F);
   7783   } else if (T->isAnyComplexType()) {
   7784     ComplexValue C;
   7785     if (!EvaluateComplex(E, C, Info))
   7786       return false;
   7787     C.moveInto(Result);
   7788   } else if (T->isMemberPointerType()) {
   7789     MemberPtr P;
   7790     if (!EvaluateMemberPointer(E, P, Info))
   7791       return false;
   7792     P.moveInto(Result);
   7793     return true;
   7794   } else if (T->isArrayType()) {
   7795     LValue LV;
   7796     LV.set(E, Info.CurrentCall->Index);
   7797     APValue &Value = Info.CurrentCall->createTemporary(E, false);
   7798     if (!EvaluateArray(E, LV, Value, Info))
   7799       return false;
   7800     Result = Value;
   7801   } else if (T->isRecordType()) {
   7802     LValue LV;
   7803     LV.set(E, Info.CurrentCall->Index);
   7804     APValue &Value = Info.CurrentCall->createTemporary(E, false);
   7805     if (!EvaluateRecord(E, LV, Value, Info))
   7806       return false;
   7807     Result = Value;
   7808   } else if (T->isVoidType()) {
   7809     if (!Info.getLangOpts().CPlusPlus11)
   7810       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
   7811         << E->getType();
   7812     if (!EvaluateVoid(E, Info))
   7813       return false;
   7814   } else if (T->isAtomicType()) {
   7815     if (!EvaluateAtomic(E, Result, Info))
   7816       return false;
   7817   } else if (Info.getLangOpts().CPlusPlus11) {
   7818     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
   7819     return false;
   7820   } else {
   7821     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
   7822     return false;
   7823   }
   7824 
   7825   return true;
   7826 }
   7827 
   7828 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
   7829 /// cases, the in-place evaluation is essential, since later initializers for
   7830 /// an object can indirectly refer to subobjects which were initialized earlier.
   7831 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
   7832                             const Expr *E, bool AllowNonLiteralTypes) {
   7833   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
   7834     return false;
   7835 
   7836   if (E->isRValue()) {
   7837     // Evaluate arrays and record types in-place, so that later initializers can
   7838     // refer to earlier-initialized members of the object.
   7839     if (E->getType()->isArrayType())
   7840       return EvaluateArray(E, This, Result, Info);
   7841     else if (E->getType()->isRecordType())
   7842       return EvaluateRecord(E, This, Result, Info);
   7843   }
   7844 
   7845   // For any other type, in-place evaluation is unimportant.
   7846   return Evaluate(Result, Info, E);
   7847 }
   7848 
   7849 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
   7850 /// lvalue-to-rvalue cast if it is an lvalue.
   7851 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
   7852   if (!CheckLiteralType(Info, E))
   7853     return false;
   7854 
   7855   if (!::Evaluate(Result, Info, E))
   7856     return false;
   7857 
   7858   if (E->isGLValue()) {
   7859     LValue LV;
   7860     LV.setFrom(Info.Ctx, Result);
   7861     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
   7862       return false;
   7863   }
   7864 
   7865   // Check this core constant expression is a constant expression.
   7866   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
   7867 }
   7868 
   7869 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
   7870                                  const ASTContext &Ctx, bool &IsConst) {
   7871   // Fast-path evaluations of integer literals, since we sometimes see files
   7872   // containing vast quantities of these.
   7873   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
   7874     Result.Val = APValue(APSInt(L->getValue(),
   7875                                 L->getType()->isUnsignedIntegerType()));
   7876     IsConst = true;
   7877     return true;
   7878   }
   7879 
   7880   // FIXME: Evaluating values of large array and record types can cause
   7881   // performance problems. Only do so in C++11 for now.
   7882   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
   7883                           Exp->getType()->isRecordType()) &&
   7884       !Ctx.getLangOpts().CPlusPlus11) {
   7885     IsConst = false;
   7886     return true;
   7887   }
   7888   return false;
   7889 }
   7890 
   7891 
   7892 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
   7893 /// any crazy technique (that has nothing to do with language standards) that
   7894 /// we want to.  If this function returns true, it returns the folded constant
   7895 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
   7896 /// will be applied to the result.
   7897 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
   7898   bool IsConst;
   7899   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
   7900     return IsConst;
   7901 
   7902   EvalInfo Info(Ctx, Result);
   7903   return ::EvaluateAsRValue(Info, this, Result.Val);
   7904 }
   7905 
   7906 bool Expr::EvaluateAsBooleanCondition(bool &Result,
   7907                                       const ASTContext &Ctx) const {
   7908   EvalResult Scratch;
   7909   return EvaluateAsRValue(Scratch, Ctx) &&
   7910          HandleConversionToBool(Scratch.Val, Result);
   7911 }
   7912 
   7913 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
   7914                          SideEffectsKind AllowSideEffects) const {
   7915   if (!getType()->isIntegralOrEnumerationType())
   7916     return false;
   7917 
   7918   EvalResult ExprResult;
   7919   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
   7920       (!AllowSideEffects && ExprResult.HasSideEffects))
   7921     return false;
   7922 
   7923   Result = ExprResult.Val.getInt();
   7924   return true;
   7925 }
   7926 
   7927 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
   7928   EvalInfo Info(Ctx, Result);
   7929 
   7930   LValue LV;
   7931   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
   7932       !CheckLValueConstantExpression(Info, getExprLoc(),
   7933                                      Ctx.getLValueReferenceType(getType()), LV))
   7934     return false;
   7935 
   7936   LV.moveInto(Result.Val);
   7937   return true;
   7938 }
   7939 
   7940 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
   7941                                  const VarDecl *VD,
   7942                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
   7943   // FIXME: Evaluating initializers for large array and record types can cause
   7944   // performance problems. Only do so in C++11 for now.
   7945   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
   7946       !Ctx.getLangOpts().CPlusPlus11)
   7947     return false;
   7948 
   7949   Expr::EvalStatus EStatus;
   7950   EStatus.Diag = &Notes;
   7951 
   7952   EvalInfo InitInfo(Ctx, EStatus);
   7953   InitInfo.setEvaluatingDecl(VD, Value);
   7954 
   7955   LValue LVal;
   7956   LVal.set(VD);
   7957 
   7958   // C++11 [basic.start.init]p2:
   7959   //  Variables with static storage duration or thread storage duration shall be
   7960   //  zero-initialized before any other initialization takes place.
   7961   // This behavior is not present in C.
   7962   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
   7963       !VD->getType()->isReferenceType()) {
   7964     ImplicitValueInitExpr VIE(VD->getType());
   7965     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
   7966                          /*AllowNonLiteralTypes=*/true))
   7967       return false;
   7968   }
   7969 
   7970   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
   7971                        /*AllowNonLiteralTypes=*/true) ||
   7972       EStatus.HasSideEffects)
   7973     return false;
   7974 
   7975   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
   7976                                  Value);
   7977 }
   7978 
   7979 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
   7980 /// constant folded, but discard the result.
   7981 bool Expr::isEvaluatable(const ASTContext &Ctx) const {
   7982   EvalResult Result;
   7983   return EvaluateAsRValue(Result, Ctx) && !Result.HasSideEffects;
   7984 }
   7985 
   7986 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
   7987                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
   7988   EvalResult EvalResult;
   7989   EvalResult.Diag = Diag;
   7990   bool Result = EvaluateAsRValue(EvalResult, Ctx);
   7991   (void)Result;
   7992   assert(Result && "Could not evaluate expression");
   7993   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
   7994 
   7995   return EvalResult.Val.getInt();
   7996 }
   7997 
   7998 void Expr::EvaluateForOverflow(const ASTContext &Ctx,
   7999                     SmallVectorImpl<PartialDiagnosticAt> *Diags) const {
   8000   bool IsConst;
   8001   EvalResult EvalResult;
   8002   EvalResult.Diag = Diags;
   8003   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
   8004     EvalInfo Info(Ctx, EvalResult, true);
   8005     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
   8006   }
   8007 }
   8008 
   8009 bool Expr::EvalResult::isGlobalLValue() const {
   8010   assert(Val.isLValue());
   8011   return IsGlobalLValue(Val.getLValueBase());
   8012 }
   8013 
   8014 
   8015 /// isIntegerConstantExpr - this recursive routine will test if an expression is
   8016 /// an integer constant expression.
   8017 
   8018 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
   8019 /// comma, etc
   8020 
   8021 // CheckICE - This function does the fundamental ICE checking: the returned
   8022 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
   8023 // and a (possibly null) SourceLocation indicating the location of the problem.
   8024 //
   8025 // Note that to reduce code duplication, this helper does no evaluation
   8026 // itself; the caller checks whether the expression is evaluatable, and
   8027 // in the rare cases where CheckICE actually cares about the evaluated
   8028 // value, it calls into Evalute.
   8029 
   8030 namespace {
   8031 
   8032 enum ICEKind {
   8033   /// This expression is an ICE.
   8034   IK_ICE,
   8035   /// This expression is not an ICE, but if it isn't evaluated, it's
   8036   /// a legal subexpression for an ICE. This return value is used to handle
   8037   /// the comma operator in C99 mode, and non-constant subexpressions.
   8038   IK_ICEIfUnevaluated,
   8039   /// This expression is not an ICE, and is not a legal subexpression for one.
   8040   IK_NotICE
   8041 };
   8042 
   8043 struct ICEDiag {
   8044   ICEKind Kind;
   8045   SourceLocation Loc;
   8046 
   8047   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
   8048 };
   8049 
   8050 }
   8051 
   8052 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
   8053 
   8054 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
   8055 
   8056 static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
   8057   Expr::EvalResult EVResult;
   8058   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
   8059       !EVResult.Val.isInt())
   8060     return ICEDiag(IK_NotICE, E->getLocStart());
   8061 
   8062   return NoDiag();
   8063 }
   8064 
   8065 static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
   8066   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
   8067   if (!E->getType()->isIntegralOrEnumerationType())
   8068     return ICEDiag(IK_NotICE, E->getLocStart());
   8069 
   8070   switch (E->getStmtClass()) {
   8071 #define ABSTRACT_STMT(Node)
   8072 #define STMT(Node, Base) case Expr::Node##Class:
   8073 #define EXPR(Node, Base)
   8074 #include "clang/AST/StmtNodes.inc"
   8075   case Expr::PredefinedExprClass:
   8076   case Expr::FloatingLiteralClass:
   8077   case Expr::ImaginaryLiteralClass:
   8078   case Expr::StringLiteralClass:
   8079   case Expr::ArraySubscriptExprClass:
   8080   case Expr::MemberExprClass:
   8081   case Expr::CompoundAssignOperatorClass:
   8082   case Expr::CompoundLiteralExprClass:
   8083   case Expr::ExtVectorElementExprClass:
   8084   case Expr::DesignatedInitExprClass:
   8085   case Expr::ImplicitValueInitExprClass:
   8086   case Expr::ParenListExprClass:
   8087   case Expr::VAArgExprClass:
   8088   case Expr::AddrLabelExprClass:
   8089   case Expr::StmtExprClass:
   8090   case Expr::CXXMemberCallExprClass:
   8091   case Expr::CUDAKernelCallExprClass:
   8092   case Expr::CXXDynamicCastExprClass:
   8093   case Expr::CXXTypeidExprClass:
   8094   case Expr::CXXUuidofExprClass:
   8095   case Expr::MSPropertyRefExprClass:
   8096   case Expr::CXXNullPtrLiteralExprClass:
   8097   case Expr::UserDefinedLiteralClass:
   8098   case Expr::CXXThisExprClass:
   8099   case Expr::CXXThrowExprClass:
   8100   case Expr::CXXNewExprClass:
   8101   case Expr::CXXDeleteExprClass:
   8102   case Expr::CXXPseudoDestructorExprClass:
   8103   case Expr::UnresolvedLookupExprClass:
   8104   case Expr::DependentScopeDeclRefExprClass:
   8105   case Expr::CXXConstructExprClass:
   8106   case Expr::CXXStdInitializerListExprClass:
   8107   case Expr::CXXBindTemporaryExprClass:
   8108   case Expr::ExprWithCleanupsClass:
   8109   case Expr::CXXTemporaryObjectExprClass:
   8110   case Expr::CXXUnresolvedConstructExprClass:
   8111   case Expr::CXXDependentScopeMemberExprClass:
   8112   case Expr::UnresolvedMemberExprClass:
   8113   case Expr::ObjCStringLiteralClass:
   8114   case Expr::ObjCBoxedExprClass:
   8115   case Expr::ObjCArrayLiteralClass:
   8116   case Expr::ObjCDictionaryLiteralClass:
   8117   case Expr::ObjCEncodeExprClass:
   8118   case Expr::ObjCMessageExprClass:
   8119   case Expr::ObjCSelectorExprClass:
   8120   case Expr::ObjCProtocolExprClass:
   8121   case Expr::ObjCIvarRefExprClass:
   8122   case Expr::ObjCPropertyRefExprClass:
   8123   case Expr::ObjCSubscriptRefExprClass:
   8124   case Expr::ObjCIsaExprClass:
   8125   case Expr::ShuffleVectorExprClass:
   8126   case Expr::BlockExprClass:
   8127   case Expr::NoStmtClass:
   8128   case Expr::OpaqueValueExprClass:
   8129   case Expr::PackExpansionExprClass:
   8130   case Expr::SubstNonTypeTemplateParmPackExprClass:
   8131   case Expr::FunctionParmPackExprClass:
   8132   case Expr::AsTypeExprClass:
   8133   case Expr::ObjCIndirectCopyRestoreExprClass:
   8134   case Expr::MaterializeTemporaryExprClass:
   8135   case Expr::PseudoObjectExprClass:
   8136   case Expr::AtomicExprClass:
   8137   case Expr::InitListExprClass:
   8138   case Expr::LambdaExprClass:
   8139     return ICEDiag(IK_NotICE, E->getLocStart());
   8140 
   8141   case Expr::SizeOfPackExprClass:
   8142   case Expr::GNUNullExprClass:
   8143     // GCC considers the GNU __null value to be an integral constant expression.
   8144     return NoDiag();
   8145 
   8146   case Expr::SubstNonTypeTemplateParmExprClass:
   8147     return
   8148       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
   8149 
   8150   case Expr::ParenExprClass:
   8151     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
   8152   case Expr::GenericSelectionExprClass:
   8153     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
   8154   case Expr::IntegerLiteralClass:
   8155   case Expr::CharacterLiteralClass:
   8156   case Expr::ObjCBoolLiteralExprClass:
   8157   case Expr::CXXBoolLiteralExprClass:
   8158   case Expr::CXXScalarValueInitExprClass:
   8159   case Expr::UnaryTypeTraitExprClass:
   8160   case Expr::BinaryTypeTraitExprClass:
   8161   case Expr::TypeTraitExprClass:
   8162   case Expr::ArrayTypeTraitExprClass:
   8163   case Expr::ExpressionTraitExprClass:
   8164   case Expr::CXXNoexceptExprClass:
   8165     return NoDiag();
   8166   case Expr::CallExprClass:
   8167   case Expr::CXXOperatorCallExprClass: {
   8168     // C99 6.6/3 allows function calls within unevaluated subexpressions of
   8169     // constant expressions, but they can never be ICEs because an ICE cannot
   8170     // contain an operand of (pointer to) function type.
   8171     const CallExpr *CE = cast<CallExpr>(E);
   8172     if (CE->isBuiltinCall())
   8173       return CheckEvalInICE(E, Ctx);
   8174     return ICEDiag(IK_NotICE, E->getLocStart());
   8175   }
   8176   case Expr::DeclRefExprClass: {
   8177     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
   8178       return NoDiag();
   8179     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
   8180     if (Ctx.getLangOpts().CPlusPlus &&
   8181         D && IsConstNonVolatile(D->getType())) {
   8182       // Parameter variables are never constants.  Without this check,
   8183       // getAnyInitializer() can find a default argument, which leads
   8184       // to chaos.
   8185       if (isa<ParmVarDecl>(D))
   8186         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   8187 
   8188       // C++ 7.1.5.1p2
   8189       //   A variable of non-volatile const-qualified integral or enumeration
   8190       //   type initialized by an ICE can be used in ICEs.
   8191       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
   8192         if (!Dcl->getType()->isIntegralOrEnumerationType())
   8193           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   8194 
   8195         const VarDecl *VD;
   8196         // Look for a declaration of this variable that has an initializer, and
   8197         // check whether it is an ICE.
   8198         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
   8199           return NoDiag();
   8200         else
   8201           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
   8202       }
   8203     }
   8204     return ICEDiag(IK_NotICE, E->getLocStart());
   8205   }
   8206   case Expr::UnaryOperatorClass: {
   8207     const UnaryOperator *Exp = cast<UnaryOperator>(E);
   8208     switch (Exp->getOpcode()) {
   8209     case UO_PostInc:
   8210     case UO_PostDec:
   8211     case UO_PreInc:
   8212     case UO_PreDec:
   8213     case UO_AddrOf:
   8214     case UO_Deref:
   8215       // C99 6.6/3 allows increment and decrement within unevaluated
   8216       // subexpressions of constant expressions, but they can never be ICEs
   8217       // because an ICE cannot contain an lvalue operand.
   8218       return ICEDiag(IK_NotICE, E->getLocStart());
   8219     case UO_Extension:
   8220     case UO_LNot:
   8221     case UO_Plus:
   8222     case UO_Minus:
   8223     case UO_Not:
   8224     case UO_Real:
   8225     case UO_Imag:
   8226       return CheckICE(Exp->getSubExpr(), Ctx);
   8227     }
   8228 
   8229     // OffsetOf falls through here.
   8230   }
   8231   case Expr::OffsetOfExprClass: {
   8232     // Note that per C99, offsetof must be an ICE. And AFAIK, using
   8233     // EvaluateAsRValue matches the proposed gcc behavior for cases like
   8234     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
   8235     // compliance: we should warn earlier for offsetof expressions with
   8236     // array subscripts that aren't ICEs, and if the array subscripts
   8237     // are ICEs, the value of the offsetof must be an integer constant.
   8238     return CheckEvalInICE(E, Ctx);
   8239   }
   8240   case Expr::UnaryExprOrTypeTraitExprClass: {
   8241     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
   8242     if ((Exp->getKind() ==  UETT_SizeOf) &&
   8243         Exp->getTypeOfArgument()->isVariableArrayType())
   8244       return ICEDiag(IK_NotICE, E->getLocStart());
   8245     return NoDiag();
   8246   }
   8247   case Expr::BinaryOperatorClass: {
   8248     const BinaryOperator *Exp = cast<BinaryOperator>(E);
   8249     switch (Exp->getOpcode()) {
   8250     case BO_PtrMemD:
   8251     case BO_PtrMemI:
   8252     case BO_Assign:
   8253     case BO_MulAssign:
   8254     case BO_DivAssign:
   8255     case BO_RemAssign:
   8256     case BO_AddAssign:
   8257     case BO_SubAssign:
   8258     case BO_ShlAssign:
   8259     case BO_ShrAssign:
   8260     case BO_AndAssign:
   8261     case BO_XorAssign:
   8262     case BO_OrAssign:
   8263       // C99 6.6/3 allows assignments within unevaluated subexpressions of
   8264       // constant expressions, but they can never be ICEs because an ICE cannot
   8265       // contain an lvalue operand.
   8266       return ICEDiag(IK_NotICE, E->getLocStart());
   8267 
   8268     case BO_Mul:
   8269     case BO_Div:
   8270     case BO_Rem:
   8271     case BO_Add:
   8272     case BO_Sub:
   8273     case BO_Shl:
   8274     case BO_Shr:
   8275     case BO_LT:
   8276     case BO_GT:
   8277     case BO_LE:
   8278     case BO_GE:
   8279     case BO_EQ:
   8280     case BO_NE:
   8281     case BO_And:
   8282     case BO_Xor:
   8283     case BO_Or:
   8284     case BO_Comma: {
   8285       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   8286       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   8287       if (Exp->getOpcode() == BO_Div ||
   8288           Exp->getOpcode() == BO_Rem) {
   8289         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
   8290         // we don't evaluate one.
   8291         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
   8292           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
   8293           if (REval == 0)
   8294             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   8295           if (REval.isSigned() && REval.isAllOnesValue()) {
   8296             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
   8297             if (LEval.isMinSignedValue())
   8298               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   8299           }
   8300         }
   8301       }
   8302       if (Exp->getOpcode() == BO_Comma) {
   8303         if (Ctx.getLangOpts().C99) {
   8304           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
   8305           // if it isn't evaluated.
   8306           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
   8307             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
   8308         } else {
   8309           // In both C89 and C++, commas in ICEs are illegal.
   8310           return ICEDiag(IK_NotICE, E->getLocStart());
   8311         }
   8312       }
   8313       return Worst(LHSResult, RHSResult);
   8314     }
   8315     case BO_LAnd:
   8316     case BO_LOr: {
   8317       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
   8318       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
   8319       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
   8320         // Rare case where the RHS has a comma "side-effect"; we need
   8321         // to actually check the condition to see whether the side
   8322         // with the comma is evaluated.
   8323         if ((Exp->getOpcode() == BO_LAnd) !=
   8324             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
   8325           return RHSResult;
   8326         return NoDiag();
   8327       }
   8328 
   8329       return Worst(LHSResult, RHSResult);
   8330     }
   8331     }
   8332   }
   8333   case Expr::ImplicitCastExprClass:
   8334   case Expr::CStyleCastExprClass:
   8335   case Expr::CXXFunctionalCastExprClass:
   8336   case Expr::CXXStaticCastExprClass:
   8337   case Expr::CXXReinterpretCastExprClass:
   8338   case Expr::CXXConstCastExprClass:
   8339   case Expr::ObjCBridgedCastExprClass: {
   8340     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
   8341     if (isa<ExplicitCastExpr>(E)) {
   8342       if (const FloatingLiteral *FL
   8343             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
   8344         unsigned DestWidth = Ctx.getIntWidth(E->getType());
   8345         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
   8346         APSInt IgnoredVal(DestWidth, !DestSigned);
   8347         bool Ignored;
   8348         // If the value does not fit in the destination type, the behavior is
   8349         // undefined, so we are not required to treat it as a constant
   8350         // expression.
   8351         if (FL->getValue().convertToInteger(IgnoredVal,
   8352                                             llvm::APFloat::rmTowardZero,
   8353                                             &Ignored) & APFloat::opInvalidOp)
   8354           return ICEDiag(IK_NotICE, E->getLocStart());
   8355         return NoDiag();
   8356       }
   8357     }
   8358     switch (cast<CastExpr>(E)->getCastKind()) {
   8359     case CK_LValueToRValue:
   8360     case CK_AtomicToNonAtomic:
   8361     case CK_NonAtomicToAtomic:
   8362     case CK_NoOp:
   8363     case CK_IntegralToBoolean:
   8364     case CK_IntegralCast:
   8365       return CheckICE(SubExpr, Ctx);
   8366     default:
   8367       return ICEDiag(IK_NotICE, E->getLocStart());
   8368     }
   8369   }
   8370   case Expr::BinaryConditionalOperatorClass: {
   8371     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
   8372     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
   8373     if (CommonResult.Kind == IK_NotICE) return CommonResult;
   8374     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   8375     if (FalseResult.Kind == IK_NotICE) return FalseResult;
   8376     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
   8377     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
   8378         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
   8379     return FalseResult;
   8380   }
   8381   case Expr::ConditionalOperatorClass: {
   8382     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
   8383     // If the condition (ignoring parens) is a __builtin_constant_p call,
   8384     // then only the true side is actually considered in an integer constant
   8385     // expression, and it is fully evaluated.  This is an important GNU
   8386     // extension.  See GCC PR38377 for discussion.
   8387     if (const CallExpr *CallCE
   8388         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
   8389       if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p)
   8390         return CheckEvalInICE(E, Ctx);
   8391     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
   8392     if (CondResult.Kind == IK_NotICE)
   8393       return CondResult;
   8394 
   8395     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
   8396     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
   8397 
   8398     if (TrueResult.Kind == IK_NotICE)
   8399       return TrueResult;
   8400     if (FalseResult.Kind == IK_NotICE)
   8401       return FalseResult;
   8402     if (CondResult.Kind == IK_ICEIfUnevaluated)
   8403       return CondResult;
   8404     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
   8405       return NoDiag();
   8406     // Rare case where the diagnostics depend on which side is evaluated
   8407     // Note that if we get here, CondResult is 0, and at least one of
   8408     // TrueResult and FalseResult is non-zero.
   8409     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
   8410       return FalseResult;
   8411     return TrueResult;
   8412   }
   8413   case Expr::CXXDefaultArgExprClass:
   8414     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
   8415   case Expr::CXXDefaultInitExprClass:
   8416     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
   8417   case Expr::ChooseExprClass: {
   8418     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
   8419   }
   8420   }
   8421 
   8422   llvm_unreachable("Invalid StmtClass!");
   8423 }
   8424 
   8425 /// Evaluate an expression as a C++11 integral constant expression.
   8426 static bool EvaluateCPlusPlus11IntegralConstantExpr(ASTContext &Ctx,
   8427                                                     const Expr *E,
   8428                                                     llvm::APSInt *Value,
   8429                                                     SourceLocation *Loc) {
   8430   if (!E->getType()->isIntegralOrEnumerationType()) {
   8431     if (Loc) *Loc = E->getExprLoc();
   8432     return false;
   8433   }
   8434 
   8435   APValue Result;
   8436   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
   8437     return false;
   8438 
   8439   assert(Result.isInt() && "pointer cast to int is not an ICE");
   8440   if (Value) *Value = Result.getInt();
   8441   return true;
   8442 }
   8443 
   8444 bool Expr::isIntegerConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
   8445   if (Ctx.getLangOpts().CPlusPlus11)
   8446     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, 0, Loc);
   8447 
   8448   ICEDiag D = CheckICE(this, Ctx);
   8449   if (D.Kind != IK_ICE) {
   8450     if (Loc) *Loc = D.Loc;
   8451     return false;
   8452   }
   8453   return true;
   8454 }
   8455 
   8456 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, ASTContext &Ctx,
   8457                                  SourceLocation *Loc, bool isEvaluated) const {
   8458   if (Ctx.getLangOpts().CPlusPlus11)
   8459     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
   8460 
   8461   if (!isIntegerConstantExpr(Ctx, Loc))
   8462     return false;
   8463   if (!EvaluateAsInt(Value, Ctx))
   8464     llvm_unreachable("ICE cannot be evaluated!");
   8465   return true;
   8466 }
   8467 
   8468 bool Expr::isCXX98IntegralConstantExpr(ASTContext &Ctx) const {
   8469   return CheckICE(this, Ctx).Kind == IK_ICE;
   8470 }
   8471 
   8472 bool Expr::isCXX11ConstantExpr(ASTContext &Ctx, APValue *Result,
   8473                                SourceLocation *Loc) const {
   8474   // We support this checking in C++98 mode in order to diagnose compatibility
   8475   // issues.
   8476   assert(Ctx.getLangOpts().CPlusPlus);
   8477 
   8478   // Build evaluation settings.
   8479   Expr::EvalStatus Status;
   8480   SmallVector<PartialDiagnosticAt, 8> Diags;
   8481   Status.Diag = &Diags;
   8482   EvalInfo Info(Ctx, Status);
   8483 
   8484   APValue Scratch;
   8485   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
   8486 
   8487   if (!Diags.empty()) {
   8488     IsConstExpr = false;
   8489     if (Loc) *Loc = Diags[0].first;
   8490   } else if (!IsConstExpr) {
   8491     // FIXME: This shouldn't happen.
   8492     if (Loc) *Loc = getExprLoc();
   8493   }
   8494 
   8495   return IsConstExpr;
   8496 }
   8497 
   8498 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
   8499                                    SmallVectorImpl<
   8500                                      PartialDiagnosticAt> &Diags) {
   8501   // FIXME: It would be useful to check constexpr function templates, but at the
   8502   // moment the constant expression evaluator cannot cope with the non-rigorous
   8503   // ASTs which we build for dependent expressions.
   8504   if (FD->isDependentContext())
   8505     return true;
   8506 
   8507   Expr::EvalStatus Status;
   8508   Status.Diag = &Diags;
   8509 
   8510   EvalInfo Info(FD->getASTContext(), Status);
   8511   Info.CheckingPotentialConstantExpression = true;
   8512 
   8513   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
   8514   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : 0;
   8515 
   8516   // Fabricate an arbitrary expression on the stack and pretend that it
   8517   // is a temporary being used as the 'this' pointer.
   8518   LValue This;
   8519   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
   8520   This.set(&VIE, Info.CurrentCall->Index);
   8521 
   8522   ArrayRef<const Expr*> Args;
   8523 
   8524   SourceLocation Loc = FD->getLocation();
   8525 
   8526   APValue Scratch;
   8527   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
   8528     // Evaluate the call as a constant initializer, to allow the construction
   8529     // of objects of non-literal types.
   8530     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
   8531     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
   8532   } else
   8533     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : 0,
   8534                        Args, FD->getBody(), Info, Scratch);
   8535 
   8536   return Diags.empty();
   8537 }
   8538