Home | History | Annotate | Download | only in i386
      1 // This file is dual licensed under the MIT and the University of Illinois Open
      2 // Source Licenses. See LICENSE.TXT for details.
      3 
      4 #include "../assembly.h"
      5 
      6 // di_int __moddi3(di_int a, di_int b);
      7 
      8 // result = remainder of a / b.
      9 // both inputs and the output are 64-bit signed integers.
     10 // This will do whatever the underlying hardware is set to do on division by zero.
     11 // No other exceptions are generated, as the divide cannot overflow.
     12 //
     13 // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware
     14 // on x86_64.  The performance goal is ~40 cycles per divide, which is faster than
     15 // currently possible via simulation of integer divides on the x87 unit.
     16 //
     17 
     18 // Stephen Canon, December 2008
     19 
     20 #ifdef __i386__
     21 
     22 .text
     23 .align 4
     24 DEFINE_COMPILERRT_FUNCTION(__moddi3)
     25 
     26 /* This is currently implemented by wrapping the unsigned modulus up in an absolute
     27    value.  This could certainly be improved upon. */
     28 
     29 	pushl		%esi
     30 	movl	 20(%esp),			%edx	// high word of b
     31 	movl	 16(%esp),			%eax	// low word of b
     32 	movl		%edx,			%ecx
     33 	sarl		$31,			%ecx	// (b < 0) ? -1 : 0
     34 	xorl		%ecx,			%eax
     35 	xorl		%ecx,			%edx	// EDX:EAX = (b < 0) ? not(b) : b
     36 	subl		%ecx,			%eax
     37 	sbbl		%ecx,			%edx	// EDX:EAX = abs(b)
     38 	movl		%edx,		 20(%esp)
     39 	movl		%eax,		 16(%esp)	// store abs(b) back to stack
     40 
     41 	movl	 12(%esp),			%edx	// high word of b
     42 	movl	  8(%esp),			%eax	// low word of b
     43 	movl		%edx,			%ecx
     44 	sarl		$31,			%ecx	// (a < 0) ? -1 : 0
     45 	xorl		%ecx,			%eax
     46 	xorl		%ecx,			%edx	// EDX:EAX = (a < 0) ? not(a) : a
     47 	subl		%ecx,			%eax
     48 	sbbl		%ecx,			%edx	// EDX:EAX = abs(a)
     49 	movl		%edx,		 12(%esp)
     50 	movl		%eax,		  8(%esp)	// store abs(a) back to stack
     51 	movl		%ecx,			%esi	// set aside sign of a
     52 
     53 	pushl		%ebx
     54 	movl	 24(%esp),			%ebx	// Find the index i of the leading bit in b.
     55 	bsrl		%ebx,			%ecx	// If the high word of b is zero, jump to
     56 	jz			9f						// the code to handle that special case [9].
     57 
     58 	/* High word of b is known to be non-zero on this branch */
     59 
     60 	movl	 20(%esp),			%eax	// Construct bhi, containing bits [1+i:32+i] of b
     61 
     62 	shrl		%cl,			%eax	// Practically, this means that bhi is given by:
     63 	shrl		%eax					//
     64 	notl		%ecx					//		bhi = (high word of b) << (31 - i) |
     65 	shll		%cl,			%ebx	//			  (low word of b) >> (1 + i)
     66 	orl			%eax,			%ebx	//
     67 	movl	 16(%esp),			%edx	// Load the high and low words of a, and jump
     68 	movl	 12(%esp),			%eax	// to [2] if the high word is larger than bhi
     69 	cmpl		%ebx,			%edx	// to avoid overflowing the upcoming divide.
     70 	jae			2f
     71 
     72 	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
     73 
     74 	divl		%ebx					// eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r
     75 
     76 	pushl		%edi
     77 	notl		%ecx
     78 	shrl		%eax
     79 	shrl		%cl,			%eax	// q = qs >> (1 + i)
     80 	movl		%eax,			%edi
     81 	mull	 24(%esp)					// q*blo
     82 	movl	 16(%esp),			%ebx
     83 	movl	 20(%esp),			%ecx	// ECX:EBX = a
     84 	subl		%eax,			%ebx
     85 	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
     86 	movl	 28(%esp),			%eax
     87 	imull		%edi,			%eax	// q*bhi
     88 	subl		%eax,			%ecx	// ECX:EBX = a - q*b
     89 
     90 	jnc			1f						// if positive, this is the result.
     91 	addl	 24(%esp),			%ebx	// otherwise
     92 	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
     93 1:	movl		%ebx,			%eax
     94 	movl		%ecx,			%edx
     95 
     96 	addl		%esi,			%eax	// Restore correct sign to result
     97 	adcl		%esi,			%edx
     98 	xorl		%esi,			%eax
     99 	xorl		%esi,			%edx
    100 	popl		%edi					// Restore callee-save registers
    101 	popl		%ebx
    102 	popl		%esi
    103 	retl								// Return
    104 
    105 2:	/* High word of a is greater than or equal to (b >> (1 + i)) on this branch */
    106 
    107 	subl		%ebx,			%edx	// subtract bhi from ahi so that divide will not
    108 	divl		%ebx					// overflow, and find q and r such that
    109 										//
    110 										//		ahi:alo = (1:q)*bhi + r
    111 										//
    112 										// Note that q is a number in (31-i).(1+i)
    113 										// fix point.
    114 
    115 	pushl		%edi
    116 	notl		%ecx
    117 	shrl		%eax
    118 	orl			$0x80000000,	%eax
    119 	shrl		%cl,			%eax	// q = (1:qs) >> (1 + i)
    120 	movl		%eax,			%edi
    121 	mull	 24(%esp)					// q*blo
    122 	movl	 16(%esp),			%ebx
    123 	movl	 20(%esp),			%ecx	// ECX:EBX = a
    124 	subl		%eax,			%ebx
    125 	sbbl		%edx,			%ecx	// ECX:EBX = a - q*blo
    126 	movl	 28(%esp),			%eax
    127 	imull		%edi,			%eax	// q*bhi
    128 	subl		%eax,			%ecx	// ECX:EBX = a - q*b
    129 
    130 	jnc			3f						// if positive, this is the result.
    131 	addl	 24(%esp),			%ebx	// otherwise
    132 	adcl	 28(%esp),			%ecx	// ECX:EBX = a - (q-1)*b = result
    133 3:	movl		%ebx,			%eax
    134 	movl		%ecx,			%edx
    135 
    136 	addl		%esi,			%eax	// Restore correct sign to result
    137 	adcl		%esi,			%edx
    138 	xorl		%esi,			%eax
    139 	xorl		%esi,			%edx
    140 	popl		%edi					// Restore callee-save registers
    141 	popl		%ebx
    142 	popl		%esi
    143 	retl								// Return
    144 
    145 9:	/* High word of b is zero on this branch */
    146 
    147 	movl	 16(%esp),			%eax	// Find qhi and rhi such that
    148 	movl	 20(%esp),			%ecx	//
    149 	xorl		%edx,			%edx	//		ahi = qhi*b + rhi	with	0  rhi < b
    150 	divl		%ecx					//
    151 	movl		%eax,			%ebx	//
    152 	movl	 12(%esp),			%eax	// Find rlo such that
    153 	divl		%ecx					//
    154 	movl		%edx,			%eax	//		rhi:alo = qlo*b + rlo  with 0  rlo < b
    155 	popl		%ebx					//
    156 	xorl		%edx,			%edx	// and return 0:rlo
    157 
    158 	addl		%esi,			%eax	// Restore correct sign to result
    159 	adcl		%esi,			%edx
    160 	xorl		%esi,			%eax
    161 	xorl		%esi,			%edx
    162 	popl		%esi
    163 	retl								// Return
    164 
    165 
    166 #endif // __i386__
    167